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POLYA’S URN MODEL AND
COMPUTER AIDED GEOMETRIC DESIGN*

RONALD N. GOLDMANTY

Abstract. In this paper Polya’s urn model is used to generate blending functions for computer aided
geometric design. There are over a dozen geometric properties which are currently considered to be desirable
for computer aided geometric design. Curves and surfaces which use blending functions generated from
Polya’s urn model are shown to share many of these geometric properties. Derivations of these geometric
properties are traced back to the probabilistic interpretation of the blending functions.

CR categories and subject description: 13.5 (Computer Graphics): Computational Geometry and
Object Modeling-Curve Representations
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1. Introduction. Typical in computer aided geometric design is the following

interaction between system and user.

1. A designer introduces a collection of control points which to him describe the
shape of some curve or surface.

2. The system loosely approximates the designer’s intent applying some internal
scheme, the details of which are often hidden from the user, to construct a
smooth curve or surface.

3. The designer moves some of his control points in directions which he feels
intuitively will help the computer to improve its approximation.

4. The system modifies the curve or surface in an attempt to conform more closely
to the designer’s intent.

Steps 3, 4 may be repeated several times until the user is satisfied.

Generally, systems try to approximate a designer’s intent by using an internal
collection of predefined functions to blend smoothly the designer’s control points.
Thus, given an ordered collection of points P, - - -, P, a system will construct a curve

P(t) =Y Bi(t)Py, O=t=1,
k

where Bg(t),- - -, By(t) are an internal collection of predefined blending functions.
Lagrange polynomials, Bezier curves and B-splines are all defined precisely in this
manner.

The final shape of the curve depends both on the blending functions available to
the system and on the control points selected by the user, but the geometric properties
of the curve depend only on the blending functions. Thus it is natural to ask:

1. What geometric properties do we wish to build into our curves?

2. Where can we find suitable blending functions?

With the advantages of experience and hindsight we shall try to answer the first
question. The answer to the second question is the main theme of this paper.

This paper is divided into two main parts. Section 2 reviews in detail the geometric
properties which are desirable for the curves of computer aided geometric design.
Readers already familiar with computer aided geometric design may quickly skim this
section. The remainder of this paper is devoted to our main theme: the intimate
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relationship between classical discrete probability theory and computer aided geometric
design. This discussion commences in § 3. Knowledgeable readers may wish to begin
here.

2. Computer aided geometric design. We wish to determine which curves

P(t) =Y Bi(t)Py, 0=st=1,
k

defined by a collection of control points Py,- -+, P, and a collection of blending
functions Bg(t), - - -, By (t) are suitable for computer aided geometric design. We shall
begin by listing those properties which experience has shown us are desirable. We
shall then discuss each property in turn to determine its implications for the blending
functions. The desirable properties for the curves of computer aided geometric design are
the following: 1. well-defined, 2. convex hull, 3. smooth, 4. interpolates end points,
5. extends to surfaces, (a. rectangular, b. triangular), 6. symmetry, 7. geometric
construction algorithm, 8. exactly reproduces points and lines, 9. nondegenerate, 10.
subdivision algorithm, 11. augmentation algorithm, 12. variation diminishing and 13.
local control.

2.1. Well-defined. A curve
P(t)=Y Bi(t)P,, 0=t=1
k
is said to be well-defined iff it depends only on the points Py, - - -, P, and not on the
choice of the coordinate origin. Equivalently, the curve P(t) is well-defined iff translat-

ing each point P, by the same vector v, translates the entire curve by the same vector
v; that is, iff

P(t)new = P(t)old+ 0.
Thus for every vector v and every parameter f,

% Bi(1) Py +[§ Bi(9)]v =‘£. Bi(8)(Pi+0) = P()new = P(t)giat v =§ Bi() P+,

SO
[22. Bi()]v=v
for every vector v and every parameter t. But this can happen iff

L Bi(n=1
K

for every value of ¢. Thus we have shown that

P(t) is well-defined© Y, Bi(t) =1.
k

That the curves must be well-defined is crucial for computer aided geometric
design. A designer wishes to describe a shape. He should not have to be concerned
with artifacts of the system such as the current position of the coordinate origin, and
he would certainly be astonished if identical collections of control points generated
physically distinct curves merely due to some internal change in the system. Therefore
to be effective for computer aided geometric design, a curve must be well-defined.
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2.2. Convex hull. A set S is said to be convex iff whenever 2 points P, Q lie in
S, the entire line segment PQ lies within S. The intersection of convex sets is clearly
convex. By definition, the convex hull of a set S is the intersection of all the convex
sets which contain S. Equivalently, the convex hull of S is the smallest convex set
which contains S. It follows easily by induction on n that for any collection of points
Py, -+, P,

convex hull (P, -+, P,) ={}, ctPclck Z0and }, ¢, =1}.
k k

Thus a well-defined curve
P(t) =§ Bx(t) Py

lies in the convex hull of the points P, - - -, P, iff
Bi(t)=0, 0=t=1.
That is, for well-defined curves
convex hull propertys By (1) =0,0=t=1.

Since in computer aided geometric design the points define the curve, there must
be some obvious relationship between the exact location of the control points and the
approximate location of the actual curve. The convex hull property localizes the curve
to the proximity of its control points. This feature is of great practical importance for
computer assisted geometric design.

2.3. Smooth. A curve is said to be smooth iff it is differentiable. The more
derivatives it has the smoother it is said to be. For a curve

P(t) =Y Bi(t)P,
the derivative is
dBj
dt

P'(t)=Y, P

Thus
P(t) is smooth < Bi(t) is differentiable.

That the curves used in computer aided geometric design must generally be smooth
is obvious; usually several derivatives are required. Thus the differentiability of the
blending functions is a crucial characteristic of these curves.

2.4. Interpolates end points. In computer aided geometric design we do not
require that the curve pass through all the points specified by the designer. After all,
the designer only uses the points to describe the general flow of the curve, not its exact
location. We are trying to approximate shape, not interpolate position. However the
start and the end points are special. Where else could the curve start but at the designers
first point; where else could it terminate but at his last point? After the initial point,
he may wish to indicate only the general flow of the curve, but he may as well tell us
exactly where to start; why make us guess? Similarly, from symmetry considerations
(see below), he may as well indicate the exact terminus of his curve.

Aside from these arguments, there is an even more compelling reason to insist
that curves exactly interpolate their first and last control points. Often a designer will
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wish to attach several curves end to end. If their end points are not exactly specified
by the user, it would be extremely difficult for the system to insure continuity between
contiguous curves. However for curves which pass through their end points, the user
can enforce continuity simply by selecting the last point of his previous curve as the
first point of his next curve.

A curve

P(t) =3 Bi(t)P,, O=t=1
k

passes through its end points P,, P, iff
P(0) = P,, P(1)=P,.
Thus, in general, P(t) interpolates its end points iff

0, k#0,
1, k=0,

0, k#n,

and BZ(1)={1 k=

BZ(0)={

2.5. Extensions to surfaces. A sequence of control points defines a curve; a grid
of control points defines a surface. In computer aided geometric design the grid is
usually either triangular or rectangular depending upon whether the designer wishes
to construct 3 sided or 4 sided surface patches. Given a curve

P(t)=Y Bi(t)P,, 0=t=1,
we say that it has extensions to surfaces iff there are surfaces
Q(u’ U) =z B:}(u, U)Qij’

whose boundary curves have the same blending functions as P(¢) and whose control
points are the boundary points of the grid. The trick is to find nontrivial blending
functions Bjj(u, v) which either vanish or reduce to Bj(?) on the boundaries.

For curves which interpolate their end points it is always possible to generate
rectangular extensions simply by defining

Bji(u,v)=B}(uw)B}(v), Q(u,v)=Y B} (u)B}(v)Q;, O0=uv=1.
On the boundaries we get
Q(O’ U) =Z B?(D)QO]B 0(11 U) =Z B;’(U)an,
Q(u’0)=zB?(u)Qi09 Q(u, 1)=ZB:I(u)Qm’

as required. The surface Q(u, v) is called the tensor product surface, and it is standard
in computer aided geometric design.

Nondegenerate triangular patches are more difficult to generate. Given a triangular
grid {Q;;}, i+j=n, we need to construct a well-defined, nondegenerate surface

Q(u,v)=Y Bj(u,v)Qy;, O=u+v=1
such that on the boundaries

Q(0,v)=Y B} (v)Qop, Q(u,0)=Y B¥(u)Qi, Q(u,1—u)=Y B/ (u)Q;,_:
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In general this can happen iff there exist blending functions Bj(i, v) which satisfy

0, i#0, 0, j#0,
B0, v)= . Bij(u,0)= .
(0, 0) {B,'-'(v), i=0, (14,0) {B?(u), j=0,
n _}0, i+j#n,
Bij(u 1 u)—{B?(u), i+j=n.

Recently triangular Bezier patches have been studied by Sabin [11], by Farin [4], [5]
and by Goldman [8].

2.6. Symmetry. The order in which a designer selects his control points is critical
in the determination of his intent. In general, the very same control points chosen in
different order will generate very different curves (see Fig. 1).

P, =0,
)

/W

P,=0,

P,=0Q;

F1G. 1

However a strict inversion of order should not lead to a distinctly different curve,
but only to a reversal in orientation (see Fig. 2).

P, =0,
[ ]

Fi1G. 2

This symmetry is part of a designer’s natural intent and must therefore be captured
by the curves used in computer aided geometric design.
Now a curve

P(t)=B[P,, -+, P,J(1) =L Bk()P, 0=t=1
will have the required symmetry property iff
B[Pm' ot 7P0](t)=B[PO’ e ’Pn](lwt)
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that is, iff
2 Bi(t)P,— =YL Bi(1-1)P,.
In general, this will be true iff
Bi(t)=B-«(1-1).
Thus for curves
symmetry< Bi(t) = B,_(1—1).

Similar but more complex symmetry conditions will be required for the surfaces of
computer aided geometric design.

2.7. Geometric construction algorithm. Let
P(t)= B[Py, - - -, P,]J(t) =¥ Bk() P,

be a curve defined by a collection of control points Py, - -+, P, and a collection of
blending functions Bg(#), - - -, Bn(t). In general, the blending functions may be compli-
cated expressions and therefore either difficult or expensive to evaluate. A geometric
construction algorithm provides a simple, numerically stable technique for evaluating
P(r) for any parameter r.

The basic idea is to construct, recursively, a triangular array of points {PE(r)},
k+ L = n, such that:

1. Pi(r)=Py;

2. Pi(r) lies on the straight line joining Py "(r) and Px:i(r);

3. Pg(r)=P(r);
(see Fig. 3).

P (r)=P,

Py(r)

Pi(r)=P(r) oo

P3(r)=P.
PY(r) =P, :(N=F,

F1G. 3. Geometric construction algorithm.

Since Pi(r) lies on the straight line joining Py~ '(r) and Pk;i(r), there must be
functions i “(r), sk “(r) such that

Pi(n) =fi (NP () + s M PEEL(n), D +siTH) =1.

Thus to compute P(r), instead of evaluating the blending functions B%(r), we need
only evaluate the functions f3 (r), sk “(r). The hope is that these functions are
relatively simple and therefore easy and inexpensive to compute. But where do they
come from, and how do we get our hands on them?

The answer, of course, is that somehow they must be related to the original
blending functions. Till now, we have tacitly assumed that there exist collections of
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blending functions { Bx(#)} for every value of n, and that these collections of blending
functions for the various n’s are in someway related. We shall now show that if there
is a simple, explicit, recursion formula relating the functions {Bj"'(#)} to the functions
{B%(?)}, then a geometric construction algorithm exists, and the functions f *(r),
sk %(r) are just those that appear in the recursion formula.

Assume a simple recursion relation

By (1) =fi() Bi(1) + si_i(r) Bi_(1),

where

fr(O)+si(t)=1.

That is, assume that BL*!(¢) can be constructed from the functions B(¢), Bi_,(t) and
some simple multiplier functions f7(¢), si—,(¢). If we use these multiplier functions to
construct the collection of points {P(r)}, then we can prove the following results.
LEmMMA 2.1. B[Py(r), -, Pn_1(r)](r)= B[Py, - -, P,](r).
Proof. B[Py(r),- -, Pr_1(N](r) =% Bi"'(r)Pi(r)
=Y By {(Nfi (NPt sk (NPl =T [f (B (r) + siZ1(r) BiZi(n)Pe
=Y. Bi(r)P,= B[Py, -+,P,](r). O
LEMMA 2.2. B[P&(r), -, P*_.(P)](r)= B[Py, - -, P,](r).
Proof. This result follows immediately from Lemma 2.1 by induction on k. 0O
LemMma 2.3. P§(r) =P(r).
Proof. This result follows immediately from Lemma 2.2 with k=n. 0O
Thus we have shown that

recursion formula=>geometric construction algorithm.

2.8. Exactly reproduces points and lines. Suppose that a designer selects all his
control points P, at the same location P,. Then he would expect his curve to collapse
to the single point P,. A curve is said to exactly reproduce points iff

P, = P, for all k=>P(t) =P, for all t.

Thus the curve P(t) exactly reproduces points iff

[X Bi(9)]1Py= P,
or iff
Y Bi()=1.

Thus exactly reproducing points is equivalent to being well-defined.

Now suppose that a designer selects control points which are equally spaced along
a straight line. He would then expect the system to generate exactly the straight line
along which the points lay. Any oscillations around this line, any deviations from
linearity, would be unacceptable; by selecting his points along a straight line, he is

specifically requesting that the curve not wiggle.
Let

P(t) =Y Bi(t)Py, 0=t=1
be a well-defined curve, and let
L(t)=At+B, 0=¢r=1

be a straight line. We can select n+ 1 equally spaced points, Py, - - -, P,, along the line
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nesfd)-a)

The curve P(t) exactly reproduces the line L(¢) iff
P(t)=L(1), 0=t=1,

L(t) by setting

for this particular choice of control points Py, - - -, P,. In this case

At+B=L(1)=P(1)=Y B{(t)P, =Y BZ(”[A( k) +B]

n
=%z kB}(1)+ B Y. Bi(1) =—‘32 kB}(1)+ B,

In general this can be true ift
Y kBi(t) = nt.
Thus we have shown that
P(t) exactly reproduces points< Y. Bi(t) =1,
P(t) exactly reproduces lines& Y. kBy(t) = nt.

2.9. Nondegenerate. A well-defined curve
P(t) =Y Bi(t)Px
is said to be nondegenerate ift
P(t) = P, for all t= P, = P, for all k.

That is, a curve is said to be nondegenerate iff the only time it collapses to a single
point is when all the control points are located at that same point.

THEOREM 2.1. Let P(t) =Y B}(t)P, be a well-defined curve. Then P(t) is non-
degenerate iff the blending functions { By (t)} are linearly independent.

Proof. Suppose that the blending functions are linearly independent. If

Y Bk(t)P. =P,

then since the curve is well defined
L Bi()P =Y Bi()P;, ¥ Bi(1)(Pc—Po)=0.
Therefore for every vector v,
Y Bi()[(Px—Po) - v]=0.

Now since the blending functions {B%(¢)} are linearly independent, we must have

(P—Py)-v=0
for every vector v and every index k. Hence

P, =P, foreveryindex k.

Thus, the curve P(?) is nondegenerate.
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Conversely, suppose that the curve is nondegenerate, and that

Y aBi(t)=0.
Let v be any nonzero vector, and let

P, =Py+co.
Then,

P(t) =Y Bi(1)P. =¥ Bi(t)(Po+ cxv) = [¥ BR()]Po+[¥ ckBk(1)]v = Po.
Hence, since P(t) is nondegenerate, it follows that
P,=P,, forallk.
Therefore,
¢.=0 forall k.

Thus the functions {B}(#)} are linearly independent. [
Thus we have shown that

P(t) is nondegenerate < { B%(#)} are linearly independent.

It is important for computer aided geometric design that the curves be nondegenerate.
After all, a curve which collapses unexpectedly to a single point is not of much use to
a designer. Also, we wish to avoid burning holes in the screen with very bright spots
caused by degenerate curves.

2.10. Subdivision algorithm. Consider again a curve
P(t)=B[Po," -+, P,J() =X Bi()P,, 0=t=1

and fix 2 points P(a), P(b) along P(t). A subdivision algorithm is a technique for
constructing a sequence of points Q, * * +, Q, such that if

Q()=B[Qo, "+, Q,1(1) =Y Br(1)Q,, 0=t=1,
then

Q)= P(r), 0=t=1, Q(0)=P(a), Q(1)=P(b).

Subdivision algorithms are important in computer aided geometric design for
many reasons. They enable us to trim curves. They allow us to apply formulas initially
developed only for the end points of a curve, where the parameter is O or 1, at arbitrary
locations along the curve. Thus they help simplify the computations of tangent,
curvature and torsion. When combined with the convex hull property, they lead to
accurate, iterative, intersection routines [9].

If the functions { B;(#)} are nth degree polynomials in ¢, then the linear indepen-
dence of the blending functions implies that they form a basis for all nth degree
polynomials in ¢ In particular since the functions {Bj(rt)} are also nth degree poly-
nomials in ¢, there are constants {B}.(r)} such that

Bi(rt) =§ Bii(r)Bi(1).

Let
Qu(r) =3 Bix(r)P:
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ProrosiTiON 2.1. B[Qq(r), -, Q,(r)](t) = B[Py, - -, P,](n
Proof.

B[Qo(r), -+ -, Qu(NI(0) =L, Bi() Q(r) =%, Bi(1) ¥; Bi(r)P;
=2 (X« Bi(r)Bi()]P; =%; B/ (rt)P;= B[P, - - -, P,](rt). a

Thus the points Qq(r), - - -, Q,(r) subdivide the curve P(t) from P(0) to P(r).
Using symmetry, we can also subdivide the curve P(t) from P(r) to P(1). By applying
these two subdivision algorithms one after the other, we can subdivide the curve P(t)
between any two points P(a) and P(b). Hence we have shown that

polynomial basis=>subdivision algorithm.

To actually subdivide the curve P(t), we need explicit expressions for the constants
Bii(r). It is often easier to prove the existence of such constants than to actually
compute them. However, we shall show in § 3 that for the Bernstein polynomials

Bi(r)=Bi(r), Bi(rn) =§ Bi(r)Bi(1), Q«(r)=% Bf(r)P;=B[P," - -, P](r).

2.11. Augmentation algorithm. Suppose that for each integer n we have a collec-
tion of blending functions {B}(¢)}. Given a curve

P(t) =B[PO’ Y Pn](t) =E BZ(t)Pk
an augmentation algorithm is a technique for finding new control points Qo, - * * , Q41
such that
B[OOa Tty Qn+1](t) = B[PO’ Y Pn](t)

Thus an augmentation algorithm is a technique for representing the same exact curve
with one additional control point. Augmentation algorithms are useful in computer
aided geometric design because the additional control points they generate allow us
greater flexibility in determining the final shape of our curves.

If the functions {Bj(¢)} are a polynomial basis for each n, then we can write the
nth degree polynomials { B}(#)} in terms of the (n+ 1)st degree polynomials { B *'(1)}.
That is, there must be constants {A};} such that

(1) =% ALBI(0).
Let . ‘
Q=Y AP O=i=n+1.
k

PROPOSITION 2.2. B[Qy," -, Qni11(t) = B[Py, - - -, P,1(¢).
Proof.

B[Qo," **, Quuil() =%, BI" (0Q; =%, BI"'(1) L, AiPx
=2 [X; ARBIT (01P =X, Bi(t)P = B[Py, - -, P,](1). =
Hence we have shown that
polynomial basis=>augmentation algorithm.

To actually augment a curve P(t), we need to know the values of the constants Ay.
As with subdivision, it is often easier to prove the existence of these constants than
to actually compute them. Nevertheless in § 3 we shall compute these constants for a
whole family of blending functions.
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2.12. Variation diminishing. A curve
P(t) =Y Bi(t)Py, 0=t=1

is said to be variation diminishing iff for every collection of points Py, - -, P, and
every plane R, the number of times P(¢) crosses R is less than or equal to the number
of times the polygon determined by the ordered vertices P, * - -, P, crosses R. Thus,
intuitively a curve is variation diminishing iff it does not oscillate any more than the
chords which connect its control points. Clearly to have any hope of being variation
diminishing, a curve must be nondegenerate and lie in the convex hull of its control
points.

Nondegeneracy and the convex hull property are necessary but not sufficient
conditions. To obtain a sufficient condition, we will appeal to the following rule.

Descartes’ law of signs. A collection of functions { B ()} is said to satisfy Descartes’
law of signs in the interval (a, b) iff for every collection of constants (cg, - - -, ¢,)

zerosin (a, b) [¥, c,B(t)]= sign alternations of (co, * - -, ¢,)-

It is well known that the power functions {t*} satisfy Descartes’ law of signs in
the interval (0, o) [12]. Using this fact, it is easy to prove that the Bernstein polynomials
(Dt*(1—1)""* satisfy Descartes’ law of signs in the interval (0, 1) [10] (see Theorem
A2).

THEOREM 2.2. Let P(t)=Y) Bi(t)P,, 0=t=1 be a well-defined curve. If the
blending functions {B}(t)} satisfy Descartes’ law of signs in the interval (0, 1), then the
curve P(t) is variation diminishing.

Proof. Let R be a plane, Q a point on R and N a vector normal to R. Then a
point P lies on the plane R iff

(Q-P):N=0
and 2 points P, P; lie on opposite sides of the plane R iff

sign [(Q—P,)- N]=—sign [(Q—P))- N].
Let
I =number of times P(t) crosses R,

J =number of times the polygon determined by P,, - - -, P, crosses R.
We must show that

I=J
Now since P(t) is well-defined

Q—-P(1)=Q-Y Bi(t)P. =% Bi(t) Q=YX Bi(t) P =% Bk(1)(Q~Py).

Therefore by Descartes’ law of signs
I =zeros in (0,1)[(Q—P(t))- N]=zeros in (0,1) [¥ Bi(t)(Q—P,)-N]
=sign alternations of [(Q—P,y)-N,---,(Q—P,)-N]=J. 0
We have shown that
Descartes’ law of signs=>variation diminishing property.
Notice too that
Descartes’ law of signs=>linearly independent blending functions

=>nondegenerate curves.
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In computer aided geometric design curves must not oscillate too much; designers
must be able to control the wiggle. Therefore the variation diminishing property is
critical. Thus even though Lagrange polynomials exactly interpolate position, they
have proved to be inappropriate for computer aided geometric design. They tend to
oscillate uncontrollably precisely because they are not variation diminishing. On the
other hand, even though Bezier curves do not faithfully interpolate position, they have
proved to be quite useful for computer aided geometric design. Bezier curves give an
accurate representation of a designer’s intent because they are variation diminishing.

2.13. Local control. Given a curve
P(t)=Y Bi(t)P,, O0=t=1,

we are said to have local control iff changing any one control point P, has only a local
effect on the shape of P(t). We can have local control iff the support of each blending
function is only some fraction of the total domain of ¢ Thus

we have local control & Bj(t) has local support.

Local control is important in computer aided geometric design because it allows
a designer to alter a segment with which he is dissatisfied without ruining the shape
of the remainder of the curve. It is for this reason that B-splines have become
increasingly popular in computer aided geometric design.

For curves whose blending functions do not have local support, we can use
subdivision algorithms to isolate unsatisfactory segments into separate curves. We can
then alter these segments without affecting the remainder of the curve. This gives us
a measure of local control at the cost of the loss of some derivatives at the joints.

For Bezier curves it is easy to show that [6]

(n ]), Z (-1)~ "( )Pk, p(i)(l)—( ])' Z (-1y~- "( ) .

Thus for Bezier curves the jth derivative at each end point depends only on the adjacent
J control points. This additional fact allows us to predict exactly which derivatives at
the joints will be affected by moving any particular control point. For example, the
general formulas for curvature and torsion are [13]

|P'(t) X P"(2)| P'(t)-[P"(t) X P"(1)]
P |P'(8) X P"(1)[?

Therefore at the end points of a Bezier curve

P(i)(O) —

K(t)= T(t)=

(n—=1) |(P1—Po) X (P,— Py)| 1=0

K(t)= n |P1_P0|3 ’ ’
(n=1) |(Pa-1=P,) X (Py—2— P, )| =1

n |Pn—1_Pn|3 ’ ’

(n—2) (P1=Po) [(P,— Py) X(P3—P,)] 1=0

T(t) = n |(Py = Po) X (P,— P))? ’ ’
(n=2) (Py-1—P,) [(Po2—Pu ) X(Py3— Pu3)] =1

h |(Puei = Po) X Py = P,y ’ .

Thus only the first 2 adjacent control points have any effect on the curvature, and
only the first 3 adjacent control points have any effect on the torsion, at the end points.
Hence moving any other control point will have no effect on these critical values at
the joints.
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2.14. Summary. We summarize our results in Table 1.

TABLE 1
Curve Blending functions
1. |well-defined & Y Bi(n=1
2. |convex hull =] (=0
3. [smooth & | Bi(¢) differentiable
4. [interpolates end points & | BR(0)= {?’ t :g»
o-{i
5. {extends to surfaces
a. rectangular & |same as 4
b. triangular & | Bj(0,v)= {0’" ' 0,
B}(v), i=0,
5=, 2o,
B‘"’(“’l_“)={%r<u), o
6. |symmetry & | BR(t)=B,_(1-1)
7. | geometric construction algorithm & | recursion formula
8. | exactly reproduces straight lines & | Y kBi(t)=nt
9. |nondegenerate <& | linear independence
10. | subdivision algorithm & | polynomial basis
11. |augmentation algorithm <& | polynomial basis
12. | variation diminishing <& | Descartes’ law of signs
13. | local control & | local support

example, it is easy to show that

conditions 1, 2, 8=>condition 4,

The conditions on the blending functions in Table 1 are not all independent. For

condition 12=>condition 9.

Notice too that not all the implications go in both directions. For example, if the

blending functions are a polynomial basis, then the curve necessarily has a subdivision
algorithm. However it may be that there are other conditions which could imply that
a curve has a subdivision algorithm even if its blending functions are not a polynomial

basis.
Finally, the reader should recognize that everything we have said in this section

about curves has a analogue for surfaces.
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3. Polya’surn model. The question remains: where can we find blending functions
with all, or even just a few, of the properties listed in the preceding section? If we
focus our attention on the first two properties

Y. Bi(t)=1, 0=t=1, Bx(H)=0, 0=t=1,

they strike a familiar chord; these are just the defining characteristics of discrete
probability distributions. Therefore to find appropriate blending functions for computer
aided geometric design, we can look to classical discrete probability theory. Indeed
we already know that the blending functions for the Bezier curves are the Bernstein
polynomials and these polynomials represent the binomial distribution.

There are many classical discrete probability distributions which we could consider.
However here we shall restrict our attention to a particularly propitious collection of
distributions which arise from an urn model first introduced by G. Polya [3].

Polya’s urn. Consider an urn initially containing w white balls and b black balls.
One ball at a time is drawn at random from the urn and its color inspected. It is then
returned to the urn and a constant number c of balls of the same color are added to
the urn.

Let

w
t=
w

T initial probability of drawing a white ball,

a= wi b =initial percentage of balls added to the urn.

If we hold a constant and allow ¢ to vary, we obtain a discrete probability distribution
Di(t) = probability of drawing exactly k white balls in the first n trials.

Notice that we get a different probability distribution D}(t) for each distinct value of
a (see below). In particular, if @ =0, then D}(t) is just the binomial distribution
(sampling with replacement). From here on we shall assume that a is a fixed constant.

The functions D5(t) have many properties which are desirable for computer aided
geometric design. Since they represent a probability distribution, it follows immediately
that

Y Dx(t)=1, 0=t=1, Dx(t)z0, 0=t=1.

In addition, if initially there are no white balls in the urn, then we will never add any
white balls to the urn. Similarly, if initially there are only white balls in the urn, then
the urn will always contain only white balls. Therefore

0, k#0,
1, k=0,

0, k#n,

2(0)={

Also since white balls and black balls are treated identically, this urn model is symmetric
with respect to white and black. Therefore

probability of drawing exactly probability of drawing exactly
k white balls in the first = n— k black balls in the first
n trials n trials

SO

k() =Dy (1-1).
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By considering 2 Polya urns each with 2 colors, we get the 2-dimensional distri-
bution

Dj"(s, t) = probability of drawing exactly j white balls in the
first m trials from urn 1 and exactly k white balls
in the first n trials from urn 2.

This distribution is just the product of the distribution for each individual urn. That is,

Dj" (s, t) = Dj*(s) Dic(1).

This urn model can also be extended to urns containing balls of many different
colors. After each pick, we still just return the selected ball along with ¢ new balls of
the same color. Consider an urn which initially holds r red, w white, and b black balls,
and let

r N o .
i initial probability of drawing a red ball,
v= Trwib initial probability of drawing a white ball,
¢ o
L initial perentage of balls added to the urn.

Again if we hold a constant and allow u, v to vary, we obtain a discrete probability
distribution in two variables

Di(u, v) = probability of drawing exactly i red balls and
j white balls in the first » trials.

Therefore

ZD,‘}(u,v)=1, O=u+v=1, Di(u,v)=0, 0=u+v=1.
L]

Moreover if initially one color is absent from the urn, then this urn behaves exactly
like an urn with balls of only two colors. Therefore

0, i#0, 0, j#0,
D0, )= : "(u,0) = .
(0, 0) {D;'<v>, i=o, Diw0) {Dr<u>, i=0,
0, i+j#n,

D 1=u) ={D;’(u), i+j=n,

There is a recursion formula relating D} '(¢) to D(¢) and Dj_,(¢t). Indeed let

fk(t) = probability of failing to draw a white ball after
drawing exactly k white balls in the first n trials,

s%(t) = probability of succeeding to draw a white ball after
drawing exactly k white balls in the first » trials.

Then certainly
fr() +s() =1.
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Moreover

D}*'(t) = probability of drawing exactly k white balls in the
first n+1 trials

= (probability of drawing exactly k white balls in the
first n trials)

X (probability of failing to draw a white ball on the next trial)

+ (probability of drawing exactly k — 1 white balls in the
first n trials)

X (probability of succeeding to draw a white ball on the
next trial)

= DE(0)fr() + Di—1(8) sk (1)
SO
D (1) = fr()Di(t) + sk() Dk (1), fr()+si() =1.

We can compute f(?), si(t) explicitly. After exactly k successes in the first n
trials there are w+ kc white balls and w+ b+ nc total balls in the urn. Therefore

number of white balls __w +kc
total number of balls w+b+nc

sp(t) =

Dividing numerator and denominator by w+ b, we get

1-0)+(n—k
sﬁ(‘)ﬂtiﬁ, fZ(t)=1—sz(t)=%:(:a—)“.

Since by definition
Do(=1-t,  Di()=t,

it follows by induction on n that D;(t) depends only on a and on ¢ In particular for
the binomial distribution

a=0, sp(t)=t, fu)=1—1t, B (1)=1—-1)Bi(t)+tBi_i(1),

which is the standard recursion formula for the Bernstein polynomials.

Since si(t), fr(t), Dy(t), Di(t) are all first degree polynomials in ¢, it again
follows easily by induction on n that D%(¢) is an nth degree polynomial in . Therefore
certainly

Di(t) is infinitely differentiable.

We can even derive an explicit expression for Di(#). There are () ways of selecting
exactly k white balls in the first n trials. To compute the probability of just one such
way, we must multiply together k success factors of type sf(¢) and n — k failure factors
of type f; () where for each L either si(t) or f*(t) appears but not both. Now the
denominators of s (t), f,'-“(t) are identical. Moreover i must take on the values
0,---,k—1; L—j must take on the values 0, - -, n—k—1; and L must take on the
values 0O, - - -, n—1. Therefore

n(t)=<n>t- Clt+(k=1Dald-1) - - [(1-)+(n—k—1)a]
. k (1+a)---[1+(n—1)a] :
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(For further details see [2].) When a =0, this formula reduces to the binomial distri-
bution

Bz(t)=(2)t"(1—t)"“’<.

In our derivation of the explicit formula for Dy(¢f) we observed that the prob-
abilities of any 2 distinct ways of selecting exactly k white balls in the first n trials are
identical. This critical observation has several important consequences. Let

S,.(t) =a priori probability of selecting a white ball on the nth trial,
E, (t) = the expected number of white balls selected in the first n trials.

Then it is obvious from probabilistic considerations that

S.(0=L st ODI(0, E (=L kD0, E()= % S0

The first two formulas are just weighted averages, and the third formula just says
that the expectation is the sum of the a priori probabilities.

ProposiTION 3.1. S,(¢f)=t, n=1.

Proof. We shall use a simple counting argument. Let

Ax(t) = probability of selecting exactly k white balls in the
next n trials after selecting a white ball on the first
trial.

Since the probabilities of any 2 distinct ways of selecting exactly k white balls in the
first n trials are identical, it follows that

sk(t) Dy(t) = probability of selecting exactly k white balls in
the first n trials and then selecting a white ball on
the (n+1)st trial

_ ( n) probability of selecting, in one particular way,
k/ exactly k +1 white balls in the first n+1 trials

= probability of selecting a white ball on the first trial
and then selecting exactly k white balls in the next n
trials

=tAL(1).
Therefore,

Sn+1(t)=§ SZ(t)DZ(t)=t%AZ(t) =t o

CoOROLLARY 3.1. E,(t)=nt.

CoOROLLARY 3.2. ¥ kDy(t) =nt.

Another consequence of the critical observation about the Polya distribution is
that it allows us to derive an explicit formula for D}(¢) in terms of D} *'(¢) and D}11(¢).
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LeEmMA 3.1.

(n+1-k)

fr()Di(t) = (n+1)

Dy (o).

Proof. As above

fx(t) D% () = probability of selecting exactly k white balls in the
first n trials and then selecting a black ball on the
next trial.

Now there are a total of (i) ways of selecting exactly k white balls in n trials, and a
total of (";') ways of selecting exactly k white balls in n+1 trials. Therefore since
each distinct way has exactly the same probability of occurring, it follows that

(&)

= ety _(MFLZK)
FO DY) = G H)Dk (=T, 0
k
LEmmA 3.2.
SHODHD) = (e DR,

Proof. Again

s%(t) Di(t) = probability of selecting exactly k white balls in the
first n trials and then selecting a white ball on the
next trial.

Now there are (}) ways of selecting exactly k white balls in n trials, and (;71) ways
of selecting exactly k+1 white balls in n+1 trials. Therefore, since each distinct way
has exactly the same probability of occurring, it follows that

&) ..

+1
UL = & DE(0) = (A D). 0
k+1
CoROLLARY 3.3.
n _M ( ]-) n+1
Di(t) = (n+1) k(t)+ (n+1) Diii(1).

Proof. This result follows immediately by simple addition from Lemmas 3.1,
32. 0O

The coefficients in the formula of the preceding corollary do not depend on the
value of a. This means that the formula for raising the degree of the Polya distributions
is identical to the formula for the binomial distribution. Geometrically this means that
the augmentation algorithm for the Polya curves is identical to the augmentation
algorithm for Bezier curves. Specifically if

k (n+1-k)

=Pt

Py



then for any Polya distribution the curve with control points Qy, -
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to the curve with control points Py, - -+, P,
Because of their similarity to the Bernstein polynomials, the polynomials
Dg(t), - - -, Du(t) satisfy Descartes’ law of signs in the interval (0, 1). However, since
our proof of this result is not based on probability theory, we shall defer it to the
Appendix. From the fact that these polynomials satisfy Descartes’ law of signs, we
also conclude that they are linearly independent and that they form a polynomial basis
for all nth degree polynomials in .

We summarize our results in Table 2.

-, Q,+1 is identical

TABLE 2
Urn Formula
1. | probability distribution Y Di()=1, 0=t=1,
Di()z0, 0=t=1
. 0, k#0,
2. | adding balls only of the selected color x(0)= I k=0
0(1) = {0, k#n,
, 1, k=n,
3. | symmetry between white and black Di(t)=Dj_,(1-1)
4. | extensions to multiple urns Dji"(s, 1) = D['(s) Di(t)
5. | extensions t ith multiple col D0, v) {0’ %0,
. ions to urns with multiple colors (0, 0)= .
P i DX(v), i=0,
0, j#0,
D} (u,0)= .
.0) {D.-"w), j=0,
0, i+j#n,
Di(u,1-u)=4 L
D (u), i+j=n.
6. | relationship between first n and first n+1 picks DNy =fr(t)Di(t)+sp_ (1) DR_ (1),
(recursion) fr@+sp(n=1
7. | polynomial function #(1) infinitely differentiable
8. | expectation Y kD(t)=nt
9. | raising degree D) =[(n+1-k)/(n+1)]D}*'(1)
+[(k+1)/(n+ DD}
10. | similarity to Bernstein polynomials {D}(1)} satisfy Descartes’ law of signs

in the interval (0, 1),

{Dy(1)} are a polynomial basis

Comparing Table 2 with Table 1, we see immediately that a curve

P(t) =Y Di(t)Py,

which uses one of Polya’s urn distributions {D(#)} for its blending functions will
automatically have all of the following geometric properties: 1. well-defined, 2. convex



20 RONALD N. GOLDMAN

hull, 3. smooth, 4. interpolates end points, 5. extends to surfaces (a. rectangular, b.
triangular), 6. symmetry, 7. geometric construction algorithm, 8. exactly reproduces
points and lines, 9. nondegenerate, 10. subdivision algorithm, 11. augmentation
algorithm and 12. variation diminishing.

Missing are only local control and an explicit subdivision algorithm.

We cannot hope for local control in the sense of § 2.13 since the functions Dx(t)
do not have local support; even the classical Bezier curves fail to allow this kind of
local control. However for curves which admit a subdivision algorithm, we can achieve
a degree of local control by using the subdivision algorithm to isolate unsatisfactory
segments. Changes to control points will then have only a local effect though we may
lose some derivatives at the joints.

Since the functions {D%(#)} form a polynomial basis, we know that there always
exist constants {D}.(r)} such that

Di(rt) =% Di(r)Di(t).
However to actually subdivide a specific curve, we need explicit formulas for the
constants {D}.(r)}. We shall now show that, for the binomial distribution,
Bji(r)=BI(r).
ProprosITION 3.2. The binomial distribution satisfies the identity
Bi(rt) =§ B(nB(1).

Proof. This proof is based on Polya’s urn model (a = 0) of the binomial distribution.
Consider two binomial urns: one with red and blue balls, the other with white and
black balls. Let

r = probability of selecting a red ball from urn 1,

t = probability of selecting a white ball from urn 2.

red white
blue black
urn 1 urn 2

F1G. 4. Super urn.

Place these two urns into a super urn. A selection from the super urn consists of
selecting one ball from each regular urn, inspecting the colors, and replacing the balls
(see Fig. 4). The super urn is also a binomial urn and

rt = probability of selecting a red-white combination
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Therefore,

B} (rt) = probability of selecting exactly i red-white
combinations in n trials

=Y (probability of selecting exactly k white balls
¥ in n trials)

X (probability of selecting exactly i red balls during
the k trials where the white balls were chosen)

=3 BI(nBL(». 0

When the small urns model the binomial distribution, then so does the large urn
since both small and large urns employ sampling with replacement. However when
the small urns model some other Polya distribution { Dg(#)} with a # 0, then the large
urn will no longer model this same distribution since the addition of new balls into
the two small urns has a very different effect on the composition of the super urn.
Therefore this identity is not generally valid for arbitrary Polya distributions. Indeed,
for arbitrary Polya distributions, we do not yet have explicit expressions for Dj(r).

For Bezier curves the subdivision algorithm is intimately related to the geometric
construction algorithm which generates the points {P5(r)}. Indeed it is the points
{P§(r)} which actually subdivide the Bezier curve at P(r) [7]. Since arbitrary Polya
distributions also give rise to a geometric construction algorithm, it may be that the
points {P§(r)} also subdivide these curves at P(r). As yet this is still an open question.

The Polya distribution has a free constant a. By varying this free constant, we
can alter the shape of our curves without moving our control points. We would like
to understand the geometric impact of increasing the value of a. Consider then what
happens in the limit when a is actually infinite. In this case after the first pick, we
must add an infinite number of balls of the selected color to the urn. Therefore, with
probability 1, all the balls selected after the first trial will be of the same color as the
ball selected on the first trial. Hence

Di(t)=1-t, k=0,
lim Di(t)=10, k#0,n,
o Di(t)=t, k=n.
Thus,

lim P(t) =(1—t)Py+1tP,.
Therefore the effect of increasing a from 0 to oo is simply to flatten a Bezier curve

into a straight line (see Fig. 5).
P,

a =0

F1G. 5. Polya curves for different values of a (n=3).
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4. Other probabilistic models. The main theme of this paper is that the blending
functions of computer aided geometric design are discrete probability distributions.
Therefore if we know what properties we wish to build into our curves, we can construct
probabilistic models to generate the required blending functions.

Conversely, starting with a discrete probability distribution, we can study the
geometric properties of the curves that it generates. If these properties are sufficiently
interesting, then eventually applications may be found for these curves in computer
aided geometric design. For example, we could begin with the following variation of
Polya’s urn model.

Generalized Polya’s urn. Consider an urn containing w white balls and b black
balls. One ball at a time is drawn at random from the urn and its color inspected. It
is then returned to the urn and c, balls of the same color and ¢, balls of the opposite
color are added to the urn.

Again this urn model gives rise to a collection of probability distributions Dj(t).
However while some properties of the original Polya urns, like the symmetry between
white and black, are retained, other properties, like adding only balls of the selected
color, are abandoned. This change implies that the corresponding curves will no longer
pass through the designer’s end points. If, for some reason, the user wishes to relax
this end point condition, then this model may generate just the blending functions he
requires.

Or consider the classical Poisson model.

Poisson model. Certain events occur at random times. Their occurrences are such
that:

1. The number of events occurring in two disjoint time intervals is independent.

2. There is a fixed constant a such that when At is small, the probability of one

event occurring in time At is approximately aAt.

3. The probability of more than one event occurring in time At is negligible when

At is small.
For each fixed value of a, the Poisson model gives rise to a probability distibution

D, (t) = probability of k events occurring in the time interval (0, ?).

It is a well-known fact [1] that, explicitly,

~ar(a))”

Dk(t)=e k! )

t=0.

Moreover it is easy to show either by direct probabilistic arguments or from the explicit
formula for D, (?) that the Poisson distribution has the following properties [1]:
Y D(t)=1,t=0.
D (t)=0,t=0.
D, (t) is infinitely differentiable.
D(0)={% 28
Dy (r+t)=%,, ;- Di(r)D;(1).
Y kD, (t) = at (expectation).
{Dy(t)} are linearly independent.
8. {D, (1)} satisfy Descartes’ law of signs in the interval (0, ).
Therefore curves

NoUnE L

P(t) =Y Dy(t)Py,

which use a Poisson distribution as blending functions automatically have the following
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geometric properties: 1. well-defined, 2. convex hull, 3. smooth, 4. interpolates initial
point, 5. extends to surfaces, 6. subdivision algorithm, 7. exactly reproduces points
and lines, 8. nondegenerate and 9. variation diminishing.

Since they require an infinite sequence of control points, Poisson curves can have
neither symmetry, nor a geometric construction algorithm, nor an augmentation
algorithm. Nor do the functions D, (f) have local support. Hence there is no local
control in the sense of § 2.13. However for N large and ¢ small, Dy(?) is negligibly
small. Therefore if the points {P,.} are bounded, then the points {P,}, k > N, have little
effect on the curve near ¢t=0. Also

' 0, k>j,
DPO)=1 i\
com(an ke

SO
PO0)=a’y, (—1)"“"( Ii)Pk.

Therefore just like Bezier curves (see § 2.13), the jth derivative of a Poisson curve at
t =0 depends only on its first j+1 control points.

We can use these formulas to calculate the curvature and the torsion of a Poisson
curve at ¢t =0. For curvature we have

_IP'(0)XP"(0)| _|(P1=Po) X (P>=Py)|
IP'(O)IS |(P1"Po)|3 ’

K(0)

and for torsion
P'(0) - [P"(0)xP"(0)] _ (Pi—Po) - [(Pa— Py) X (P3—P,)]
|P'(0)Pu(0)|2 l(Pl_PO) X (Pz“Pl)|2

T(0)=

Notice that the curvature depends only on the first three control points and the torsion
only on the first four; moreover both are independent of a. The comparable formulas
for Bezier curves (see § 2.13) are

(n—1) |(P1"P0)X(P2_P1)|
|(P1_Po)|3 ’

(n—2) (Py—Po)-[(P,— Py) X (P;— P,)]
I(PI_PO)X(PZ_P1)|2

K(0)=

T(0)=

Therefore

lim Bezier curvature (0) = Poisson curvature (0),

n->oo

lim Bezier torsion (0) = Poisson torsion (0).

n->oo

Poisson curves are actually limiting cases of Bezier curves. Indeed let n -0 and
t-0 in such a way that lim (nt) exists and is finite. Then it is a well-known fact [1] that

lim binomial distribution (¢) = Poisson distribution [lirg (nt)].
néw n->
t—>0 t->0

For this reason the Poisson distribution is often used to approximate the binomial
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distribution when n is large. Therefore it follows that

lim Bezier [P, -+, P,](¢t) =Poisson [Py, Py, * -][ lim (nt)].

n->oo

t->0 >0

Thus one possible application of Poisson curves could be as a quick approximation for
Bezier curves of high degree.

Poisson curves are different from the classical curves of computer aided geometric
design because they use an infinite number of control points. Clearly some truncation
will be required before these curves can be effectively employed. Therefore the
convergence properties of Poisson curves need to be carefully understood before they
can be applied directly to problems in computer aided geometric design.

5. Conclusions and questions. Probability theory is the key to deeper insight into
many of the curves and surfaces of computer aided geometric design. Many geometric
properties of these curves and surfaces are just reflections of corresponding probabilistic
properties of their blending functions. Thus rather than derive these geometric proper-
ties from explicit representations of the blending functions, we have tried to give
arguments based on their probabilistic interpretations. These arguments are simpler,
more general, more natural and more elegant. By adopting this high level perspective,
we have realized a deeper level of understanding.

Still, many questions remain. We must clarify the relationship between geometric
construction algorithms and subdivision algorithms. For curves P(¢) which use one of
Polya’s urn distributions as blending functions, do the points {P§(r)} always subdivide
the curve at P(r)? If not, can we indeed construct simple, general, subdivision
algorithms? How?

As yet, we have been unable to derive the variation diminishing property from
purely probabilistic considerations. Can this be done? We believe that the answer is
yes because Descartes’ law of signs can be interpreted as a statement about the
expectation of a sequence of scalars ¢y, - * +, ¢, with respect to a discrete probability
distribution {D%(#)}. However so far we have met with little success in this direction.

Differential conditions—tangents, curvature, torsion—still elude direct probabilis-
tic interpretations. Is there anything that probability theory can tell us about these
critical conditions?

We have shown that the classical expectation of a discrete distribution is related
to the geometric property of exactly reproducing straight lines. What is the geometric
significance of the variance, or of the standard deviation, cr of the higher order means
of a discrete distribution?

Laplace and Fourier transforms play a fundamental role in probability theory.
Do they also have an important role in computer aided geometric design?

Finally, we have looked only at discrete probability distributions. What precisely
is the role of continuous probability distributions in computer aided geometric design?

Appendix: Polya’s urn model and Descartes’ law of signs. In this appendix we
shall give an elementary proof of the fact that the discrete probability distributions
Dqg(t), - - -, Dy(t) generated by Polya’s urn model satisfy Descartes’ law of signs in
the interval (0, 1). It then follows automatically from Theorem 2.2 that curves which
use these polynomials as blending functions are necessarily variation diminishing.

To begin, recall that a collection of functions Fy(t),- - -, F,(¢) is said to satisfy
Descartes’ law of signs in the interval (a, b) iff for every collection of constants ¢y, * * - , ¢,

zeros in (a, b) [ ¢, Fi(t)]= sign alternations of (co, - * -, C,).
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THEOREM A.1 (Descartes). The power functions 1,t,---,t" satisfy Descartes’
law of signs in the interval (0, c0).
Proof. See [12]. O
LEMMA A.1. Let py, - - -, p. be a collection of positive constants, and let
Fk(t)=PkEk(t)’ k=0’ 1""’n'

Then Fy(t),:--,F,(t) satisfy Descartes’ law of signs in the interval (a,b) iff
Ey(t),- - -, E,(t) satisfy Descartes’ law of signs in the interval (a, b).

Proof. Suppose that the functions Ey(t), - - -, E,(¢) satisfy Descartes’ law of signs
in the interval (a, b). Then

zeros in (a, b) [¥, ckFi(t)]=zeros in (a, b) [}, ckpEx(t)]
=sign alternations (poCo, * * * » PuCn)
=sign alternations (co, * - -, Cp)-

Therefore the functions Fy(t), - - -, F,,(¢) satisfy Descartes’ law of signs in the interval
(a, b).

Conversely if the functions Fy(?), - - -, F,(t) satisfy Descartes’ law of signs in the
interval (a, b), then by what we have just proved the functions Ey(?), - - -, E,(¢) must
also satisfy Descartes’ law of signs in the interval (a, b) since

LEMMA A.2. Let p, q be positive constants, and let

] — Ej(t)’ ]#ka
F(® {PEk(t)"‘quﬂ(f), j=k

If Ey(t), -, E,(t) satisfy Descartes’ law of signs in the interval (a,b), then
Fy(t), - - -, F,(t) satisfy Descartes’ law of signs in the interval (a, b).
Proof. To be specific, suppose that

Fy(t) = pE;(t) + qEy41(1).

Then by construction

Y iFi(t) =Y s;Ej(1),

where
Cj, ]# k, k+ 1,
§j =< PCk, ]= k,
G+1tqe, j=k+1.

Therefore since p, ¢ >0
sgn (s;)=sgn (¢), j#k+1, sgn (Se+1) =sgn (¢;) or sgn (Cr41)-
Now if
sgn (Sk+1) =580 (1)
then

sign alternations (S, Sg+1, Sk+2) = sign alternations (g, Cx+1, Cr+2)-
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On the other hand, if
sgn (Sk+1) =sgn ()
then
sign alternations (S, Sx+1, Sc+2) = sign alternations (¢, Cx, Cr+2)
= sign alternations (cy, Cr+1, Cr+2)-
Therefore in general
sign alternations (s, * - * , §,) = sign alternations (co, * - * , Cp)-

Now suppose that the functions Ey(¢), - - -, E,(¢) satisfy Descartes’ law of signs in the
interval (a, b). Then

zerosin (a, b) [Y, ¢;F;(t)]=zerosin (a, b) [}, 5;E;(t)]
=sign alternations (S, * * -, S,)
= sign alternations (co, - * -, Cy).

Therefore the functions Fy(t), - - -, F,(¢) satisfy Descartes’ law of signs in the interval
(a, b). An exactly analogous argument works if

Fi(t) = pEi(t) + qE_1(1). 0

We now introduce the following notation:

BZ(t)=(Z)t"(1—t)""‘, M=t (1-n"*,

n)t- [+ (k—=1Dald=2t)---[1=t)+(n—k~1)a]
k (1+a)---[1+(n—1)a] ’

drity=t---[t+(k=Dal1—1) - - - [A—)+(n—k—1)a].

Dt =

The polynomials B(t) are the Bernstein polynomials, and the polynomials Dj(t) are
the polynomials which define the discrete probability ditributions generated by Polya’s
urn model (see § 3). The functions by(t), di(t) are just these same polynomials with
their constant coefficients stripped off. By Lemma A.1, to prove that the polynomials
Bg(t),- -+, Bu(t) (Dg(t),- -+, Dp(t)) satisfy Descartes’ law of signs in the interval
(0, 1), it is enough to prove that the polynomials bg(¢),- -+, bn(t) (do(t), -+, dn(1))
satisfy Descartes’ law of signs in the interval (0, 1). This we now proceed to do.

THeorREM A.2 (Polya and Schoenberg). The Bernstein polynomials
Bg(t), - - -, Bi(t) satisfy Descartes’ law of signs in the interval (0, 1).

Proof. Since it is short, we repeat the proof given in [10]. By Lemma A.1, we
need only prove this result for the polynomials bg(t), - - -, bn(?). Now let u=1t/(1—t¢).
Then by Theorem A.1

zerosin (0, 1) [Y ckb}(t)]1=zerosin (0,1) [¥ ¢ t*(1— 1" ]

[¥ ct(1=0""*]
(1-"

=zeros in (0, ) [T c;u*]

=zerosin (0, 1)

=sign alternations (¢, * * * , Cy)-
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Therefore the polynomials bg(t), - - -, b (¢) satisfy Descartes’ law of signs in the interval
(0,1). O

THEOREM A.3. The polynomials Dj(t), - - -, D}(t) which define the discrete proba-
bility distributions generated by Polya’s urn model satisfy Descartes’ law of signs in the
interval (0, 1).

Proof. By Lemma A.1 we need only prove this result for the polynomials
dg(t), - -+, dn(t). Now we have just proved a special case of this result since Theorem
A.2 is the case where a = 0. The idea of the general proof is to start with the collection
of functions bg(t),: - -, by(t) (a=0), and step by step to transform these functions
into the functions dg(t),- - -, dn(t) (a>0) all the while retaining Descartes’ law of
signs. That is, we shall construct sequences of functions Fox (), -, Fu(t) 0=k=L
such that:

a. FOO(t)9 e 9Fn0(t) = bg(t)> Y bZ(t),

b. FOL(t)’ T FnL(t) = d(')’(t)> T d:(t)>

c. For(t),- -, Fu(t) satisfy Descartes’ law of signs in the interval (0, 1).

We proceed as follows:

1. The first sequence is obtained from bg(t), - - -, byp(#) by replacing one factor

of t by (¢+a) in the function b;(t); thus

bi(v), j#n,
Fy(n)=
{(’—tﬂbzm, j=n

2. The second sequence is obtained from the first sequence by replacing one factor
of t by (t+a) in the function b;_,(?).
3. Continue in this fashion down to b3(t), each time replacing one factor of ¢ by
(t+a); this procedure generates (n—1) sequences of functions.
4. Now return to [(¢+a)/t]b,(t) and change one factor of ¢ to (t+2a).
5. Continue in this fashion down to [(# +a)/ t]b5(t), each time changing one factor
of ¢ to (t+2a); this procedure generates (n—2) new sequences of functions.
6. Repeat this procedure for the terms (¢t+3a),- - -, (t+[n—1]a).
7. The last step generates the sequences of functions Ey(t),- - -, E,(t) where
E.(t)=t(t+a) - (t+[k—1]Ja)1—1)"
Let us stop here for a moment and show that every sequence of functions which we
have generated so far satisfies Descartes’ law of signs in the interval (0, 1). The proof
is by induction. Certainly by Theorem A.2 the Oth sequence satisfies Descartes’ law
of signs in the interval (0, 1) since the Oth sequence is just bg(t),- - -, bn(t). Now
suppose that a sequence Gy(t), - - - , G,(1) satisfies Descartes’ law of signs in the interval
(0, 1), and consider the very next sequence Hy(t), - - -, H,(t). By construction if

G ()=t(t+a) - - (t+ja)t* (1 —)"
G(t)=t(t+a) - (t+ja)t* 7' (1—)"K
G =t(t+a) - - (t+ja)(t+[j+1]a)t 1 (1—)"" 7,
then
H;(t) = Gi(t), i#k,
H()=1t(t+a) - (t+ja)(t+[j+1]a)e* T2 (1—)" "
=G(t)+(j+Dat(t+a) - - (t+ja)t* 7 2(1—)"
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But notice that
G()+ G ()=t(t+a) - (t+ja)t* >(1—)" X
Therefore
H () =[1+(j+1)alGi (1) +(j+1)aG,—(2).

Since by assumption a >0 and Gy(?), - - -, G, (t) satisfy Descartes’ law of signs in the
interval (0, 1), it follows by Lemma A.2 that the functions Hy(?), - - - , H,() also satisfy
Descartes’ law of signs in the interval (0, 1). Thus the property of satisfying Descartes’
law of signs in the interval (0, 1) propagates down to the last sequence Eo(2), - - - , E,(?).

Now apply the same construction to the factors (1— ). That is, starting with E(¢)
replace one factor of (1—1¢) by (1—¢+a). Continue this procedure down to E,_,(?)
generating (n—1) new sequences. Then return to [(1—¢+a)/(1—1)]E(t) and repeat
the preceeding construction for the terms (1—¢+2a), - - -, (1—t+[n—1]a). The same
argument as before shows that each sequence along the way must satisfy Descartes’
law of signs in the interval (0, 1). But the last sequence is exactly dg(t),- - -, dn(%).
This completes the proof. O

CorOLLARY A.l1. Every curve P(t) =Y Dy(t)Py,, which uses a distribution gener-
ated by Polya’s urn model for blending functions, is variation diminishing.

Proof. This result is an immediate consequence of Theorem A.3 and Theorem 2.2.
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A SIMPLE GAME WITH NO SYMMETRIC SOLUTION*
MOHAMED A. RABIET

Abstract. This paper presents an n-person simple game in characteristic function form for which no
von Neumann-Morgenstern solution (stable set) exhibits the symmetry of the characteristic function, for
n=9.

AMS 1970 subject classification. Primary 90D12
IAOR 1973 subject classification. Main: Games

Key words. game theory, solution, coalitions, stable set, simple games, voting games, symmetric solutions

1. Introduction. The following basic question was raised by L. S. Shapley at the
Fourth International Workshop on Game Theory in 1978 [5]. Does every simple game
have a solution that retains the symmetry of the game?

In this paper we answer this question in the negative by exhibiting simple games
that have no symmetric solutions. These are either nonproper or nonstrong. It remains
an open question whether every simple, strong and proper game has a symmetric
solution.

Section 2 contains definitions. Section 3 describes the games and outlines the
proof of the nonsymmetry of their solutions.

2. Definitions. We describe a game by its characteristic function v, which is a
mapping from the set of subsets of the player set to the real numbers. A simple game
(see [8] and [9]) has a characteristic function that takes on only the values 0 (on losing
coalitions) and 1 (on winning ones).

We will consider games in which adding a player to a winning coalition preserves
the winning property, so that the characteristic function is monotone increasing. A
proper game does not have two disjoint winning coalitions. A strong game is one with
no two losing coalitions whose union is the entire player set.

The symmetry group of a game is the set of permutations of players that preserve
the characteristic function. An imputation is a nonnegative valued vector that sums to
one, whose components correspond to the players. An imputation X dominates another
imputation Y, if X’s components are strictly greater than Y’s on a winning coalition.
A solution of a game is a set of imputations, no one dominating another, that among
them dominate all other imputations. The condition that no imputation of a solution
dominates another is called internal stability; that every other imputation is dominated
is called external stability. Some games have many solutions ([7],[9]) and some have
few ([2], [4]) or none at all ([3],[6]).

Every simple game has at least one solution, which we can obtain by taking all
imputations whose support is contained in some minimal winning coalition.

A symmetric solution is a solution that is fixed by the symmetry group of the game.

3. The example. We first present a simple and strong, but not proper nine-person
game that has no symmetric solution. This corresponds directly to a ten-person proper
but not strong game with the same properties.

* Received by the editors March 31, 1981, and in revised form September 15, 1983. This research was
supported in part by the Office of Naval Research under contract N00014-75-C-0678 NR 047-094 at
Cornell University.

t Sana’a University, Department of Mathematics, Faculty of Sciences, Sana’a, Yemen Arab Republic.
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We number the players 1, - - -, 9. In this game, all coalitions of three or more players
win except (1,2, 3), (4,5, 6) and (7, 8,9).

If we add a tenth player and insist that the winning coalitions include him along
with the sets of three or more players as indicated among the nine, we obtain a proper
but not strong game with the same properties. (See Gillies [1].)

We now prove the nonexistence of a symmetric solution to these games.

THEOREM 1.. The nine-person game just described has no symmetric solution.

Proof. It is obvious that no imputation that dominates an image of itself under a
symmetry operation can belong to a symmetric solution without violating the internal
stability of that solution. This severely limits the form of ‘“‘allowable imputations’ that
can belong to such a solution, as follows:

1. No allowable imputation can take on two distinct values on each of (1,2, 3),
(4,5,6) and (7, 8,9). (Otherwise on the winning coalition consisting of the inverse
image of the larger of these values it dominates any imputation obtained by switching
those players with the inverse images of the smaller values.)

2. An allowable imputation that takes on two distinct values on two of (1, 2, 3),
(4,5,6) and (7, 8,9) (say the first two) must have the form (a, b, b, ¢, b, b, b, b, b) up
to permutations.

From the previous step the allowed values are (a, b, ¢, d, e, f, 8, 8 8)-

If the first three values were all distinct we would arrange to have a>b>c,d>e
and by permuting 3»2->1- 3, and 5»4- 5, arrange to obtain an imputation domi-
nated by the original one on (1, 2, 4). This limits the allowed form to (a, b, b, ¢, d, d,
eee).

If b+#e, say b<e, we may permute (1,2,3) with (7,8,9) and 4 with 5, again
obtaining dominance on a winning coalition (8,9, 4) or (8,9, 5).

3. An allowed imputation that is constant on two of (1, 2, 3), (4,5, 6) and (7, 8, 9)
takes the same value on both and therefore has the form (a, b, ¢, d,d, d, d, d, d) up
to permutations. Moreover all of a, b, c must be greater than d, or all less than d, or
one must equal d. These follow by arguments similar to those above, which we leave
to the reader.

A symmetric solution must therefore consist of imputations that, up to permuta-
tion, have the form (a, b, ¢, d, d, d, d,d, d), (a, b, b, ¢, b, b, b, b, b) or (a, b, c, b, b, b,
b, b, b).

Moreover, such a solution can contain imputations having only exactly one value
of d in the former form or b in the latter form, and if both forms were present these
would have to have the same value. Otherwise the solution would obviously lack
internal stability.

It is necessary that each of the following imputations be in or be dominated by
an imputation in such symmetric solution:

—(1 11 111

I_(G, 6’65 6565 65 01 07 O)
(11 11 11

II_’(67 6 07 65 65 01 65 65 O)

—(1 11 111 111
III—(91 9595 959595 95959,

IV=(5%% 858 880).
The choice ¢ (imputation I) fails to be a solution since it does not dominate
imputation II. In order to dominate I then we must have a > § for some imputation
in the solution. To dominate III a solution of the first form would have to have £> d > 3;
since, by the remarks above, a, b and ¢ would all have to be larger than d the entries



A SIMPLE GAME WITH NO SYMMETRIC SOLUTION 31

in this imputation could not possibly sum to one, so that the first form cannot
occur.

In either of the other two forms, domination of I requires a > §, of III requires
b>3, and of IV requires b or ¢> 4. These requirements are incompatible with the
condition that a+c+7b=1, which completes the proof.

Acknowledgments. The author would like to thank William Lucas for sugges-
tions and valuable comments, as well as Daniel Kleitman and W. T. Trotter for major
editorial assistance.
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DECOMPOSITION OF FUZZY MATRICES*

HIROSHI HASHIMOTO*

Abstract. A problem of decomposition of fuzzy rectangular matrices is examined and some properties
of decomposition are shown. Any fuzzy matrix can be factored into a product of a square matrix and a
rectangular matrix of the same dimension. This square matrix has reflexivity and transitivity. The decomposi-
tion of fuzzy matrices is closely related to fuzzy databases and fuzzy retrieval models.

1. Introduction. We consider decomposition of fuzzy rectangular matrices. It is
shown that any fuzzy matrix is factored into a product of a square matrix and a
rectangular matrix of the same dimension. This square matrix has reflexivity and
transitivity, so that it is a matrix which represents a preorder [2], [8]. The decomposition
of fuzzy matrices is closely related to fuzzy databases and fuzzy retrieval models.

2. Definitions. Some operations and notation are defined. For x, y in the interval
[0,1], x+y, xy, x—y, x*y are defined as follows.

x+y=max (x, y),
xy =min (x, y),

. _{x if x>y,
Y=o itx=y,

- _{1 ifx=y,
y x ifx<y.

Next we define some matrix operations on fuzzy matrices whose elements exist
in the interval [0,1]. Let A=[a;] (mXn), B=[b;] (mXn), F=[f;] (nxl), and
R =[r;] (nXn). Then the following operations are defined.

AF = [él a fk,.].

AxF= LH (@ fi) ]

A'=[a;] (the transpose of A).
A = B if and only if a; = b;; for all i, j.
AR=R-R'.
Furthermore some special types of fuzzy matrices are defined [2], [8]. A matrix
R is said to be transitive if R*><R. A matrix R, all of whose diagonal elements are
one, is called reflexive. Conversely a matrix R, all of whose diagonal elements are

zero, is called irreflexive. A matrix R is nilpotent if R” =0 (0 is the zero matrix). We
deal only with fuzzy matrices.

3. Results. Using the operations defined above we construct a square matrix
which represents a hierarchy of rows of a given rectangular matrix. This matrix has

* Received by the editors November 24, 1982, and in revised form October 11, 1983.
T Faculty of Economics, Yamaguchi University, Yamaguchi City, 753 Japan.
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reflexivity and transitivity, and plays an important role in decomposition of the matrix.
We show some properties of the square matrix. Then we prove some theorems and
propositions on the decomposition of fuzzy matrices.

Lemma 1. If A=[a;] is an mXn fuzzy matrix, then AxA’ is reflexive and
transitive.

Proof. Let S=[s;]=A=*A’. That is,

s;= 11 (@ *a).
k=1
Clearly
si= [l (an*ax)=1.
k=1

Thus S is reflexive.
Suppose that s;s; = ¢ >0 for some I Then

n
si= 11 (ax*an)=c,
k=1

n
s;= 11 (an*ay)=c
k=1

If 5;<c, then
an<ap and a;<c

for some h. Therefore since s;= ¢ and s; = ¢ we have
]
c>ay =ay, = Aajn,

which is a contradiction. Hence s; = ¢, so that § is transitive. 0

Letting A; be the ith row of A, if A;= A, then s; =1, where s;; is the (i, j) entry
of S=A=*A’'. Hence the matrix S represents inclusion among the rows of A. In other
words, S gives the hierarchy of the rows of A. The hierarchy is reflexive and transitive.
This fact becomes clearer if A is Boolean [3].

A reflexive and transitive relation is called a preorder, which has some interesting
properties [2], [8]. If an nX n fuzzy matrix R is reflexive and transitive, then as is
well-known R is idempotent, that is, R?=R.

PROPOSITION 1. Let S =[s;] be an m X m fuzzy matrix. Then the following condi-
tions are equivalent.

(1) The matrix S is reflexive and transitive.

(2) S*S'=8S.

Proof. (1) implies (2). Suppose that

T

(sik * Sjk) =c¢>0.
1

Then by setting k=j we have s;=c. Next we show that S=S#*S’. Suppose that
s;=¢>0.If sy <c and s; <s; for some /, then

S = SiiSjt = CSji = CSi = Sy,
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so that s; = s;, which is a contradiction. Hence

T3

(Sik * Si) Z ¢,
1

so that S=S*S'.

Equation (2) implies (1). This is clear from Lemma 1. O
LemmMma 2. If A=[ay;] is an m X n fuzzy matrix, then

(AxA"YA=A.
Proof. Let B=[b;]=(A*A’")A. That is,
b= I (ail*akl)akj-
k=1 1=1

By Lemma 1, A* A’ is reflexive, so that A= B. We show that B= A. Suppose that
b;> a;. Then
n
IHI (aq* aw) > ay, an;> ay,
for some h. For [ =j we have
Qi * Ayj > Ay,

so that a;; = a,;, which is a contradiction. Hence b;=a;. 0O
In the language of information retrieval [5], [7], A is called a fuzzy term-document
matrix. Then A* A’ is considered to be a fuzzy term-term matrix which represents a
hierarchy of terms. However since A* A’ is obtained by using A, if we multiply A* A’
by A, any information is not added to A. That is, the product (A* A") A is equal to A.
LemMma 3. If A=[ay;] is an m X n fuzzy matrix and S =[s;] is an m X m transitive
matrix, then

where Q =[q;] is an m X m nilpotent matrix such that Q= S.
Proof. Let

B=[b,~j]=SA, C=[C,]]=S(A"‘QA).
That is

m m m
bj= Y swa, ;= 2 Su\ a;— Y Gy ).
k=1 1 =1

k=

Since it is clear that c; = b;, we show that b; = ¢;;. Suppose that b; =b>0 and c; <b.
Then

Sil(O) = b, ) a,(o),- =b

for some k =1(0). Since b; > c;, we have

m
lz qi0y il Z Aoy Z b.
=1

Thus

Qoun=Zb a1 Zb, s b
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for some [(1). Therefore
1
sunZ b, @z b, qiay=b.

Since b; > c;;, we have

m
IZ Q1)1 Z a1y Z b.
=1

Thus
BanEb, @2 Zb, s zb
for some [(2). Therefore
SuZ b, ae;zb qiRuxzb.
By repeating the same argument
SumZ b, @im Z by qiG1m Z b.

This contradicts the fact that Q is nilpotent. Hence b;=c¢;. [
Similarly, we obtain the following lemma.
LEMMA 4. If A is an m X n fuzzy matrix and R is an n X n transitive matrix, then

AR =(A—-AP)R,

where P is an n X n nilpotent matrix such that P= R.
The above lemma is very useful for retrieval models [5], [7]. That is, A is a
document-keyword matrix and the matrix R plays a role of a fuzzy thesaurus.
THEOREM 1. If A is an m X n fuzzy matrix, then

A=(A*A")(A-QA),
where Q is an m X m nilpotent matrix such that Q= A*A’'.
Proof. By Lemma 1, A* A’ is transitive. Therefore by Lemma 3
(A*A)A=(A*A")(A— QA).
Using Lemma 2, we have
A=(A*A")(A—-QA). 0

The above theorem shows that any fuzzy matrix can be factored into a product
of two matrices. Decomposition of matrices is important to simplification of various
systems.

Similarly we obtain the following theorem.

THEOREM 2. If A is an m X n fuzzy matrix, then

A=(A-AP)(A'xA),

where P is an n X n nilpotent matrix such that P=(A'*A)’.

Since an irreflexive and transitive matrix is nilpotent, the following two corollaries
are obtained.

CorOLLARY 1. If A is an m X n fuzzy matrix, then

A=(A*A")(A-QA),

where Q is an m X m irreflexive and transitive matrix such that Q=A*A’.
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COROLLARY 2. If A is an m X n fuzzy matrix, then
A=(A-AP)(A'*A),

where P is an n X n irreflexive and transitive matrix such that P=(A'* A)'.

LEMMA 5. Let S=[s;] and Q =[q;;] be m X m transitive matrices. If S= Q, then
S— Q' is irreflexive and transitive.

Proof. Let H=[h;]=S—Q'. That is,

hi = s;—q;:
Then
hi = 5;—q: =0,
so that H is irreflexive. Next suppose that
hiychi;=c>0.

Then there are two cases.
Case 1. Sik = €, Sik = Gki» Skj =cC
Case 2. sy = c, 8= C, ;> Q.
Clearly s;;= c. Suppose that g; = c. In the first case
ki = 9xq;i = G,

which is a contradiction. Furthermore, in the second case

9ix Z g9 = G,

which is a contradiction. Hence g; < ¢, so that h; = c. That is, H is transitive. 0
By Lemma 5 we obtain the following lemma.
LEMMA 6. If S is an m X m transitive matrices, then AS is irreflexive and transitive.
The operation A is useful for a discussion of preferences and has some important

properties [4]. Now we obtain the following two corollaries by Theorem 1, Theorem
2, and Lemma 6.

COROLLARY 3. If A is an m X n fuzzy matrix, then
A=(A*A")(A—ASA),

where S=A*A'.
COROLLARY 4. If A is an m X n fuzzy matrix, then

A=(A—AAR)(A'xA),
where R =(A'+A)’.
PROPOSITION 2. If A is an m X n fuzzy matrix and F is an n X | fuzzy matrix, then
AF =(A- AP)F,

where P is nilpotent and P<=F *F"'.
Proof. By Lemma 4

(A—AP)F*F")=A(F*F'").
By Lemma 2

(F+F')F=F.
Hence

(A—AP)(F+F')F=A(FxF')F,
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so that
(A-—AP)F=AF. 3]
PROPOSITION 3. If A is an m X n fuzzy matrix and F is an n X | fuzzy matrix, then
AF = A(F - PF),

where P is nilpotent and P=(A'+A)'".

Using Proposition 2 and Proposition 3 we have the following two propositions,
respectively.

ProPOSITION 4. If A is an m X n fuzzy matrix and F is an n X | fuzzy matrix, then
AF =(A— AAR)F,
where R=FF'.
ProposITION 5. If A is an m X n fuzzy matrix and F is an n X | fuzzy matrix, then
AF = A(F—ARF),

where R =(A'+A)’.
The following proposition is obvious, but it is useful for the decomposition of
fuzzy matrices.

PROPOSITON 6. Let A=[a;] be an m X n fuzzy matrix and let F =[f;] be an nx1
fuzzy matrix (n=2). If

Y S Z i fpi
k#p
for all i, j, then deleting both the pth column of A and the pth row of F does not change

AF.
Example 1. Let

0.1 0.6 0.5 0.1
A=101 02 02 0.1].
0.2 04 06 03
We decompose A by Corollary 3. Then
1 1 01
S=A*A’=[O.2 1 0.1:|,

04 1 1

0 10
AS=]10 0 O},
04 1 0

0.1 02 0.2 0.1
ASA=[O 0 0 O :l,

0.1 04 04 0.1

0 06 05 0
A—-ASA=]01 02 02 0.1].
02 0 06 03
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Thus A is decomposed as follows:

1 1 0170 06 05 O
A=S(A-ASA)={02 1 01]]01 02 02 0.1
04 1 1 02 0 06 03

Using Proposition 6 (p=2) we have

1 01
0 06 05 0
A=102 0.1 [ ]
04 1 02 0 06 03

4. Concluding remarks. Sanchez [6] introduced a matrix operation equivalent to
* in order to solve fuzzy equations. He showed some interesting properties of the
operation. It is an important matter to solve fuzzy equations in the fields such as fuzzy
control [1].

Decomposition of rectangular fuzzy matrices may be useful for decomposition of
fuzzy databases. By the decomposition we can know a hierarchy of keys or attributes.
Decomposition of fuzzy matrices is closely related to reduction of fuzzy retrieval models.
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COMPLEXITY AND STABILITY IN COMPARTMENTAL MODELS*

GILBERT G. WALTERT

Abstract. Compartmental models, by which flows through various systems can be studied, have a dual
aspect: one structural and the other dynamic. The structural leads to a directed graph and may be analyzed
by means of graph theory. The dynamic leads to a system of differential equations which are usually linear.
The coefficient matrix in this case has a special form, that of the negative transpose of an M-matrix in which
the off diagonal elements are nonnegative and the columns add up to zero. Hence the eigenvalues have a
nonpositive real part.

If the digraph is weakly connected, the differential equation has a stable equilibrium solution; if it is
unilaterally connected, the solution is unique; if it is strongly connected, the solution is feasible as well. It
is possible to define various indices of stability which may then be shown to be related to indices of complexity
of the structure. However, it is also possible, by redirecting the flows, to show that a given model can be
reduced to a mammillary system with the same equilibrium solution. Hence any index of stability based on
the equilibrium solution has no relation to a complexity index based on the number of arcs per vertex.
Other stability indices, however, increase with increasing complexity.

1. Introduction. Compartmental models are used for the analysis and simulation
of systems arising in a number of diverse disciplines such as ecology, economics,
physiology, genetics, psychology, and chemistry. We shall be motivated mainly by
applications to ecology although our results could be used in these other disciplines
as well. While they are not the only models used in ecology, many of the others, such
as Lotka-Volterra equations, Markov chains, Leslie matrices and even logistic
equations can be interpreted as special cases of compartmental models.

The question with which we shall be concerned is the relation between the
complexity and stability of ecosystems. The conventional wisdom has been that more
complex systems are more stable. However, May [8] showed that for certain models,
the opposite can be true. We shall interpret this question in terms of compartmental
models with linear donor controlled flows. Some of the results which we present have
appeared in different form elsewhere [11], [12], [13], [14], [15], [16], [17].

The construction of a compartmental model is straightforward and highly intuitive.
The ecosystem (or any system) is partitioned into homogeneous compartments and
the flow of nutrients or energy (or of money, goods, electrons, radioactive tracers,
etc.) traced between them.

In order to keep the discussion general we shall refer to the flow of material
between compartments with the understanding that it could be any of those. Similarly
we shall be concerned as well with the level of material in each compartment. The
compartments are represented by boxes and the flow by arrows. (See Fig. 1.)

This representation is the graphical or structural aspect of the compartmental
model. Some information can already by gleaned from it at this stage. The theory of
directed graphs may be applied by interpreting the compartments as vertices and the
flows as arcs. However, in order to simulate or analyze a system, the model must be
quantified. This is done by studying the rate of change of the level x; of the ith
compartment in time. The flow between the ith and the jth compartment, designated
fi» is a rate, measured in quantity of material per unit time.

* Received by the editors July 1, 1983, and in revised form September 27, 1983. This paper was
presented at SIAM 1983 National Meeting, June 1983, Denver, Colorado under the title, Stability and
structure of compartmental models.

t Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
53201.
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fi fPH fhe
- p —— H b—»—— C
'op fpD l
f
D f cp
HD

F1G. 1. The flow of nutrients through a simple ecosystem. The nutrient input ( f;) is taken up by plants
(P) some of which are eaten by herbivores (H) which in turn are eaten by carnivores (C). Part of the nutrients
from each compartment flows to the detritivores (D) which in turn make the nutrient available to the plants.

A differential equation describing the behavior of x; may be obtained by equating
the time rate of change of x; to the difference between the flow rates coming in and
those going out of the ith compartment, i.e.

dx; n n .
(1'1) E—= Z fki—z,fij’ l=1’2’.'.’n'
t k=0 j=0

The subscript 0 denotes flows coming from or going to the outside of the system. The
f; may be constant or variable in time and they may be and usually are, functionally
dependent on the x;’s.

The most widely used assumption, in particular in physiology and medicine, is
that the functional form of the f;;, the flow rate, is

(1.2) fi].=a,~,~x,~, i=1’2’-..’n’ j=0’1’-..’n.

Very often, particularly in ecosystems, the use of the derivative is inappropriate
and a finite difference should be used instead. This happens, e.g. if diurnal data are
used. Then the equation (1.1) is replaced by

n

Ax; % = F .
(1'3) h = Z fki-z fij’ l=1’2""’n’
k=0 j=0

where h is the time step and f; are the flow rates averaged over the time h. If
the equation (1.1) is written with the flow rates of (1.2), and if there are no flows
to or from the outside (i.e. the system is closed), then it can be expressed in matrix
form as

(1.4) —=AX

where —A” is a singular M matrix. Similarly if the time step A in (1.3) is sufficiently
small, and the f; given by (1.2), it becomes

(1.5) AX =hAX

If, furthermore, the levels are normalized and X, = X(kh), then (1.5) becomes
(1.6) Xi+1=PX, = (I+hA)X,

where P is a stochastic matrix. Thus we obtain a Markov chain version of the model.

The structure of a closed compartmental model can be represented by a directed
graph in which the compartments are vertices and the flows arcs. For example, Fig.
1, without the flow in, has the directed graph given in Fig. 2.
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H

D
FIG. 2. The digraph of the compartmental model of Fig. 1.

In this work we first (§ 2) present some results that are straightforward or well
known regarding the relation between the structure and the stability of the model. In
§ 3, we study various measures of complexity and in § 4 some measures of stability.
Finally in § 5 we compare them to each other and study the effect on them of
transformations of the model.

2. Some basic properties. The results presented in this section are either well
known or not very complicated. We first observe that because of the nature of the
matrix A in (1.4), namely that the columns sum to zero, that the main diagonal
elements are nonpositive and that the off diagonal elements nonnegative, its eigen-
values, if not zero, must have a negative real part. This is a consequence of Gershgorin’s
theorem (see [7, p.146] or [3]). Hence the solution to the differential equation
approaches an equilibrium solution X, as t— 0, at least if the rank of A=n—1. Even
if the rank <n—1, the same conclusion follows (see [3, p. 45]). Moreover the equili-
brium solution X, = 0 if the initial vector is.

From the standpoint of ecosystems an important question is the determination of
which compartments will be zero and which will be positive ultimately. The answer
depends on the structure of the digraph.

A digraph (V, A) is classified as weakly connected, unilaterally connected, or
strongly connected if there exists respectively a complete semi-path, a complete path,
or a complete closed path (see [9, Chap. 2]). These are illustrated in Fig. 3.

172 1v2 1V2
3 3 3
(a) (b) (c)

FI1G. 3. Digraphs which are weakly connected (a), unilaterally connected (b), and strongly connected (c).

In the weakly connected case the equilibrium solution X, depends on X, and
will always have at least one empty compartment. This is clear in the case of Fig. 3(a)
since compartment 2 will ultimately empty out. In this case the matrix has the form

0 a 0
(2.1a) A=|0 —-a-b 0
0 b 0

and there are two linearly independent equilibrium solutions.
In the unilaterally connected case the equilibrium solution depends only on the
magnitude of X,. It will again have at least one compartment which ultimately will
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empty out. The matrix for the example in Fig. 3(b) has the form

—a—b 0 0
(2.1b) A= a 0 c
b 0 —-c

whence it follows that X, = «[0, 1,0]".

For strongly connected digraphs the X, is positive and again depends only on the
magnitude of X,. The matrix looks like

—a 0 c
A= a -b O
0 b —c

The statements in the general cases are most easily proved using the Markov chain
version of the equations (1.6). The three cases lead to respectively, (a) an absorbing
Markov chain with multiple absorbing states, (b) an absorbing chain with one absorbing
state, and (c) a regular chain. The conclusions are then straightforward. (See [9], [11],

(11)
One could also use properties of M-matrices to reach the same conclusion.
(See [3].)

3. Complexity. A recurring problem in ecology is the relation between the com-
plexity of an ecosystem and its stability. Most ecologists assumed the two concepts
went together, i.e. greater complexity was associated with greater stability. However
May [8] in his 1973 monograph challenged this assumption and indeed showed that
for Lotka—Volterra models of ecosystems, the opposite is sometimes true. However
he did not consider compartmental models and used only the number of nonzero flows
as an indicator of complexity. For compartmental models another approach, which
appears in [16], is possible.

This alternate approach uses a family of complexity indices I'; which are similar
to diversity indices and some of which are based on information theory [10]. It uses
the Markov chain model (1.6) but takes the limit as & - 0 to avoid dependence on the
time step.

DErINITION 3.1 [16]. Let p be an element of the transition matrix P =1+ hA.
The weakness of p will be a monotone function of the form
(3.1) wo(p)=(p *—1)/e, 0<a=1, 0<p=l1,

wo( p) =—log p, O<p=1.

DErFINITION 3.2 [16]. The a-complexity index, T',, of a compartmental model, is

given by
. , Pi%a (Dy)

(3.2) L j§=:1 Eul—r»ltl)zi: hw,(h)
where the inner sum is taken over all i such that p; # 0.

Most of the properties of these indices are easily derived and may be found in
[16]. They are:

(i) l—‘0 == TrA7

(ii) T'; =number of arcs in the digraph,

(i) To=Y;Yixj af‘jl—“), O0<a<l,

(iv) To=T§ T, 0<a<1.

(v) To=—m %Y A; where {A;} are the eigenvalues of A and m is the minimum

nonzero flow rate.
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3.1. Two reduction algorithms [15] [16]. Itis possible to simplify a given compart-
mental model by reducing it to a mammillary system in a number of ways. We mention
two of them here, one of which leaves I'y invariant and the other of which leaves the
equilibrium solution X, invariant. We shall assume that the digraph of our model is
in the form of an advanced rosette initially, i.e. is strongly connected and has a central
vertex lying on all cycles (simple closed paths). Most strongly connected ecosystem
models have this form. See Fig. 4.

1

4 3
F1G. 4. An advanced rosette digraph.

We number the vertices such that the central vertex is numbered 1 and the others
follow in such a way that the matrix A has the form

a1y Q12 Qi3 Qs " Qqn
A1 Gy Qp3 Qpa """ Az
(3.3) A=l|ay 0 az azy - az,
a; 0O 0 o - a,.,

That is, if we cross off the first row and column, the remaining matrix is upper triangular.
DEeFiniTION 3.3. Let A be the matrix of a compartmental model whose digraph

is an advanced rosette. Let the digraph be modified by redirecting the arc (i, j) from

jto1l,1#i#j#1.1f Bisthe matrix corresponding to a sequence of such modifications,

then B is a 0-reduction of A (or of the digraph or of the compartmental model).
For example, Fig. 4 may be changed to Fig. 5 by two such modifications.

F1G. 5. Modification to Fig. 4 by redirecting arc (3,2) to (3,1) and (4,2) to (4,1).

The effect on the matrix A is to replace a;, j<i by 0 and to add a; to ay; in the
latter’s position. Clearly the trace of A is invariant under this procedure and hence
I'p remains the same.

The other reduction procedure involves the augmented matrix used to find the
equilibrium solution whose (I') length is 1:

1 1 1T -1 - 1

A1 Gy Qp3 " Gy
(3.4) Aa =1as 0 aszz - as, - 0
a, 0O o - a, - 0

The effect of a single 0-reduction on A, is to replace element a;, 1 <i<j by 0.
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DEFINITION 3.4. An co-reduction of A, (or of the digraph or the compartmental
model) is a matrix B, obtained from A, by sequence of elementary row operations
each of which eliminates an element a;, 1 <i<j=n.

This reduction corresponds to the same redirection of an arc of the digraph with
the additional change of a flow rate from vertex 1 to the vertex from which the arc
was removed.

The ultimate form obtained by either reduction is an advanced rosette all of whose
cycles are of length 2. Such a digraph corresponds to a mammillary system. The digraph
of Fig. 5 corresponds to such a system. In both types of reduction, we obtain a matrix
of the form

1 1 1 1 1

az; ap 0 0 0

(3.5) B,={a5 0 a3 -+ O 0
e e e 0 0

a,, O O -+ a, - 0

where the first column changes for co-reduction but not for 0-reduction. Clearly the
equilibrium solution is invariant under co-reduction. We summarize in

ProrposITION 3.1. Let B, be obtained from A, by a 0-reduction and C, by an
co-reduction. Let w, be the first component of the equilibrium solution. Then

(l) wl(Ba) = wl(Aa) = wl(ca)’

(ii) To(Ba) =T'o(As) =To(C,),

(i) T'1(Ba) =T1(Ao) 2T(Co),
with equality holding in each case only if A, is the matrix of mammillary system.

Another operation on the system is a redistribution which consists of transferring
part of a higher flow rate to a lower rate from the same vertex. That is, if a; <ay;, it
replaces the former by a;;+ h and the latter by a,;— h for h sufficiently small.

PROPOSITION 3.2. Let B be obtained from A by a sequence of redistributions. Then

I'.(B)zT.(A)
forany 0=sa =1.

4. Stability indices. All of our compartmental models are stable as we observed
earlier. However some will recover more rapidly from a perturbation than others. A
stability index should measure this rapidity in some way, but should be independent
of the initial values X,. We shall restrict ourselves to strongly connected models and
consider three indices:

(i) Oq= 2 a,'A,', a,~>0, 2“:':1’
i=2
4.1 ®
(4.1) (ii) p '=lim hT, ¥ (P'—W),
h->0 t=1
(iii) m = wi' =mean first passage time.

The first is merely a convex combination of the nonzero eigenvalues A, A3, - - -,
A.. The second, a resilience index, is based on the total deviation from equilibrium
throughout the history of the regular Markov chain:

(4.2) R= § (P'=W).
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Here W is the matrix all of whose columns are X, normalized to length 1, and
P =1+ hA is the transition matrix. The index p combines the elements of R and gets
rid of the time step by taking the limit.

The third index, the mean first passage from a central compartment as in an
advanced rosette, back to itself again is also related to R ([6, p. 79]). Indeed,

(4.3) M=(ER;+E—-R)W,'

is the matrix of mean first passage times. Here R, and W, are the diagonal matrices
which agree with R and W on the main diagonal and E is composed of 1’s. The index
m is just the element in the upper left-hand corner of M.

It can be shown [12] that

(4.4) b= ( -3 /\)

The index m, on the other hand, does not have such a simple relation to the
eigenvalues. For an advanced rosette it is given by [14]

(4.5) m= f[ Ai/aii.

It can also be expressed in units of the turnover time of the first compartment. In
these units m is exactly the mean residence time [2], [4], [15].

5. Complexity vs. stability. If m is taken as the measure of stability, then m is
invariant under the co-reduction algorithm by Proposition 3.1. However I'y decreases.
Similarly if the O-reduction algorithm is used, m increases but I'y remains the same.
Hence it appears that complexity and stability are independent if the former is interpreted
as m and the latter as I'.

If o is taken to be the measure of stability, then for each I', we have

(5.1) r.=(-3% Ai>l-“N“=(—zf‘—f@) CNes—

5) N gy

Hence greater complexity leads to greater stability under this interpretation.

The same is true for the index p provided the spread of the eigenvalues is not
too great. Both T’y and I'; are proportional to minus the sum of the eigenvalues and
hence the greatest contribution to them is from the eigenvalue with the largest negative
real part. p~' on the other hand depends primarily on the eigenvalue with smallest
negative real part. Thus I'y or I'; and p vary together provided the ratio between the
smallest and largest eigenvalue does not change. However it can change considerably
for models with the same complexity index. Consider the two digraphs (weighted) of
Fig. 6. Both have the same complexity indices and are advanced rosettes. Their matrices
are

-2 1 3 -2 1 1
A= 0 -1 1], B=| 0 -1 3
2 0 -4 2 0 —4

Their nonzero eigenvalues are respectively

7 V17

7 1
A=——F— =4t 3
) forA and A ) for B
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3 3

FIG. 6. Two models with the same complexity indices but different eigenvalues.

Hence the spread of the eigenvalues of A is V17 while that of B is 1. The resilience
indices are

p(A) =5,  p(B) =%

Thus no conclusion in general about the relation between complexity and p is possible.
What is needed is some structural criterion for the spread of the eigenvalues. This
appears as yet not to have been done.
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NONNEGATIVE SOLUTIONS OF A QUADRATIC MATRIX
EQUATION ARISING FROM COMPARISON THEOREMS IN
ORDINARY DIFFERENTIAL EQUATIONS*

G. J. BUTLERt, CHARLES R. JOHNSONi Anp H. WOLKOWICZS$

Abstract. We study the quadratic matrix equation
X2+ BX+yA=0,

where A is a given elementwise nonnegative (resp. positive semi-definite) matrix and the solution X is
required to be an elementwise nonnegative (resp. positive semi-definite) matrix. When =—1and y=1,
our results may be used, for example, to obtain a simple nonoscillation criterion for the matrix differential
equation

Y'()+Q(0)Y(1)=0,

where Y and Q are matrix-valued functions and denotes differentiation. This generalizes a result of Hille
for the scalar case. Extensions are given when A and X are nonnegative with respect to more general cone
orderings.

AMS(MOS) subject classification. 15A24

1. Introduction. In this paper we characterize the existence of solutions of the
quadratic matrix equation

(1.1) X2+ BX+yA=0,

where y and B are given real scalars and A is a given “nonnegative” nXn matrix.
We first consider the case when y>0, B<0 and A is either Hermitian positive
semi-definite or elementwise nonnegative. The solution X is then restricted to be
Hermitian or elementwise nonnegative, respectively. In these cases we completely
characterize the existence of a solution in terms of the spectrum of A; see § 2.

In § 3 we use the notion of a positivity cone K, see [9], to unify and extend the
results of § 2. Thus, in the case that y > 0, we characterize the existence of nonnegative
or M-matrix (with respect to K ) solutions of (1.1) when A is nonnegative (with respect
to K).

The problem of the existence of solutions of (1.1) arises in the context of
comparison theorems for two matrix-valued ordinary differential equations. Consider
the equation

(1.2) Y'()+ Q1) Y(r)=0.

Here Y and Q are continuous n X n matrix-valued functions and ' denotes differenti-
ation. Such equations arise both in the self-adjoint case (in the study of Hamiltonian

* Received by the editors February 22, 1983, and in revised form October 13, 1983.

t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1. The
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systems, for example [7], [8]) and in the nonself-adjoint case [1], [5]. See also the
references in [5]. A solution Y (¢) of (1.2) is said to be nonoscillatory if for some t,
it is nonsingular for all ¢ = #,. In that case we may form the so-called Riccati equation

(1.3) Z'()+Z*()+0(1)=0, =1,

where Z(£)=Y'(1)Y'(¢).
Of interest are comparison theorems between two equations of the form (1.2)
with different coefficients. Thus we consider also the equations

(1.2), Y'(1)+ Qi (1) Y(1)=0,
(1.3), Z'(H)+Z*(t)+ Q,(1)=0.

In the scalar case (n=1), the classical Sturm comparison theorem yields the result
that if (1.2) has a nonoscillatory solution (and therefore (1.3) has a solution on some
interval [#y,0)) and if Q(#)= Q,(¢) for all ¢, then (1.2), will have a nonoscillatory
solution (and (1.3), will have a solution on [#,, 0)). There are many other comparison
theorems in the scalar case (see [12], for example).

The extension of comparison theorems to the general matrix case requires some
kind of ordering on the coefficient matrices Q(t), Q,(¢); hence some form of positivity
must be defined. Positive semi-definite is the appropriate concept for studying self-
adjoint equations; positive cone versions of positivity are a suitable choice for nonself-
adjoint equations.

The idea behind comparison theorems is that the oscillatory or nonoscillatory
character of an equation (1.2); may be determined by comparison with some equation
(1.2) whose behavior is known.

Here we shall confine ourselves to obtaining a simple nonoscillation criterion for
(1.2),, which is a generalization of a well-known result of Hille [10] in the scalar case.

Suppose that

T
P(t) = lim Q(s) ds
T> Jt
and
(T
P,(t) = lim Q;(s) ds
T->o Jt

both exist, and are finite, and that
(1.4) P(t)z|P,(1)|z0 forally,

in the sense that P(t)—|P,(t)| has nonnegative elements, and where | P;(#)| is the matrix
whose elements are the absolute values of those of P;(¢).

Under these assumptions, it was shown in [5] that if (1.3) has a positive solution
Z(t) on [y, ), then (1.3), has a positive solution Z,(¢), where 0= Z,(t) = Z(t), t = t,.
(This is a generalization of the Hille~-Wintner theorem in the scalar case [10], [12]).

To apply this result, we look for a suitable candidate for Q(#).

If Q(t)=t"2A, where A is a constant n X n matrix, we can try to find a solution
of (1.3) of the form Z(t)=1t"'X, where X is a constant n X n matrix. This leads to
the quadratic matrix equation

(1.5) X*-X+A=0.

To use the comparison theorem quoted above we require that A and X are positive.



QUADRATIC MATRIX EQUATION FROM COMPARISON THEOREMS 49

Then the solvability of (1.5) reduces to that of (1.1) with B=—1, y=1. Let p(A) be
the spectral radius of A. Theorem 2.3 of § 2 will show that (1.5) has a nonnegative
solution X if and only if

(1.6) p(A) <}, or p(A) =% and the eigenvalues
’ of A which have modulus } have degree equal to 1,

where the degree is the size of the largest Jordan block. Denoting the set of nonnegative
matrices A satisfying (1.6) by &, we have:
THEOREM 1.1. Let Q,(t) be continuous, such that

t =A

J Qq(s) ds
t
for all sufficiently large t, for some A € .
Then (1.2), has a nonoscillatory solution Y, whose associated Riccati variable Z,
satisfies | Z,(t)| = t ' X, t sufficiently large, where X is the unique positive solution of (1.5).
In the scalar case, A can be any constant =}, and we have Hille’s result.

2. Existence of solutions. By using the substitution X =—8Y, we may consider
the equation

(2.1) X*-X+A=0

rather than (1.1), and this we choose to do.

We answer the following two questions concerning existence of solutions:

1. A is given Hermitian, positive semi-definite (psd) and we require X to be
Hermitian;

2. A is given real and nonnegative (elementwise) and we require X to be real
and nonnegative.

The Hermitian case essentially reduces to a scalar problem, and we have:

THEOREM 2.1. Suppose that A is a given Hermitian matrix. Then (2.1) has a
Hermitian solution X if and only if

(2.2) o(A)c (-0, ]

where o(A) is the spectrum of A.

Proof. Since A= X —X? is a polynomial in X, A commutes with any solution X
and so A and X can be simultaneously diagonalized by some unitary matrix U. Thus
X is a Hermitian solution of (2.1) if and only if

(2.3) D*-D+A=0

has a solution, where D= UXU™* and A = UAU™ are the diagonal matrices of eigen-
values of X and A, respectively. Thus the diagonal elements satisfy

d,z—d,'i'A,:O, i=1,"',n.

Since d; =4(1 +V1 —4);) is real if and only if 1—4A;=0, the result follows.
COROLLARY 2.1. Let A be psd. Then (2.1) has a Hermitian solution X if and only
if 0(A)<[0,%], and in this case o(X)<[0, 1], i.e. all Hermitian solutions are psd.
Proof. The result follows since we need 1++v1—4x;=0 for all i.
Now we consider the case that 0 # A = 0 elementwise, and we seek X = 0 (element-
wise) to solve (2.1). The solution of this problem again rests upon the spectrum of A.
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If X solves (2.1), then
0=X>-X+A=(X—-3I)>—i[+A,

SO
(2.4) X=3IxS),
where
(2.5) S=(I-4A)">
If S should admit a series expansion, then
1 © 2 .
(2.6) x=3141 3 1(Faay,
2 2 i=0 1
SO
1 ® (1 .
2.7 X=-7 ) (—1)‘(§)(4A)',
i=1

choosing the negative sign in (2.6), so that X =0. This series will converge if 4p <1
and diverge if 4p>1.
Now consider the following iterative scheme:

(2.8) X,=A, X,u=A+X?% n=1,2,---.

If X,, converges to X as n—>, we shall have X=A+X 2 clearly X =0, and so will
be a nonnegative solution of (2.1). The iterative scheme has the following properties.

LeMmMma 2.1. Suppose that X =0 solves (2.1). Then the sequence of iterates in (2.8)
satisfies

(2.9) 0=X,=X,.=X, n=1,2,---,
and
(210) Snangszn—1, n:l,z’...’

where S, denotes the partial sum of degree k of the series in (2.7).
Proof. X,=A=A+X?*=X, and

X,=AsA+A’=X,=A+X?=A+X*=X,
i.e. (2.9) holds for n=1. Assume that (2.9) holds for a particular value of n. Then
Xn+1_Xn = (X%I_le—'l) 20,

and similarly, X — X, ., =0. Thus (2.9) follows by induction.
To obtain (2.10), observe that the power series X defined by (2.7) formally satisfies

(2.11) X=X*+A.

Denote the partial sum of degree k of the formal series for X? by Ti. Since X has
no constant term, formally squaring the power series shows that T,,, = S%,n=1,2,- - -.
From (2.11), we have S,.;=T,.1+ A, and so

(2.12) S,1=S2+A, n=1,2,---.
Again, we see that T,» = S3+-1, and so

(2.13) Syn= S+ A, n=1,2,---.
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Since $;=S,=X;=A, a simple induction argument with (2.12) and (2.13) gives
(2.10), which completes the proof of the lemma.

In fact, by considering the case when A is a scalar, we see that the infinite series,
obtained by expanding the iteration (2.8), must be the same as (2.7).

Now we can obtain the following existence result.

THEOREM 2.3. (i) 4p <1 implies that there is a nonnegative solution to (2.1).

(ii) 4p>1 implies that there is no nonnegative solution to (2.1).

(iii) If 4p =1, then (2.1) has a nonnegative solution if and only if the eigenvalues
of A which are equal to the spectral radius in modulus, have degree 1, that is,

(2.14) |Ai| = p=>A,; has degree 1.

Proof. If 4p <1, the nonnegative solution X is given explicitly by (2.7).

Now suppose that 4p > 1 and that X =0 is a solution of (2.1). By (2.9) of Lemma
2.1, the iterates of (2.8) are monotone increasing and bounded above by X. Without
loss of generality, we may assume that X, - X, X a positive solution of (2.1). But
then (2.10) of Lemma 2.1 shows that X satisfies (2.6), which will be a divergent power
series when 4p <1. This is a contradiction and gives (ii).

Finally suppose that 4p =1. Suppose that (2.14) holds, and let

(2.15) A=PJpP!

where J is the Jordan canonical form of A. Convergence of the power series in (2.7)
depends only on the individual blocks of J. Since these blocks have spectral radius less
than or equal to §, with equality only if they have degree 1, the power series converges
and yields a nonnegative solution to (2.1).

Conversely, suppose that X =0 is a solution of (2.1) and that (2.14) fails to hold.
First assume that there is exactly one defective Jordan block corresponding to an
eigenvalue equal to p. X satisfies (2.4) and S satisfies (2.5). This contradicts the
criterion in [2] for the existence of a square root of a singular matrix, which states
that the defective Jordan blocks must come in pairs. This then implies that the series
in (2.7) diverges if J is replaced by a single defective Jordan block J. Since the
convergence of the series in (2.7) depends only on the individual Jordan blocks, it
follows that A cannot have any defective blocks corresponding to an eigenvalue equal
to p. (We have already seen that the existence of a positive solution of (2.1) implies
convergence of the series in (2.7) as the limit of the iterates X, of (2.8).)

The result now follows, since |A;| = p implies that the degree of A, i.e. the size of
the largest block in the Jordan canonical form of A that contains A, is not larger than
the degree of the eigenvalue equal to p, see e.g. [6]. Thus there can be no defective
blocks, and (2.14) must hold.

The above results are related to the notion of an M-matrix. Recall that A is an
M -matrix if A=rI—P, where P=0 and p(P)=r. If p(P)=r, then A is a singular
M-matrix. Note that if A is an M-matrix then A has the Z-matrix sign pattern, i.e.
a; =0 if i#j If A is an invertible M-matrix, then A~!'=0 and moreover, A has a
square root A'? which is also an M-matrix. See e.g. [3]. The M-matrix property
arises in (2.5), for if 4p <1, then S? is an invertible M-matrix and so has a square
root S which is also an M-matrix. This implies that X =3(—BI +S)=0. Our proofs
yield the following for singular M-matrices.

COROLLARY 2.1. The (singular) M-matrix pI — A has a square root if and only
if (2.4) holds.
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The series (2.6) yields two solutions to (2.1). Choosing the negative sign yields
s i 3 i
Xi=—7| X (=D{ 7)(4A)" ) =0.
2 i=1 1
The second solution is
© 1
Xo=-1+3( £ 1 (F)aar).
2 i=1 1

Thus X, =I— P, where P=0, and so is a Z-matrix. But, if p <3, then p(P) <1 which
implies that X, is in fact an M-matrix. The case p =} is similar. In fact, we have a
nonnegative solution if and only if we have an M-matrix solution. For if X is an
M-matrix solution, then X =3(I—S) with p(S)=1, see (2.4). But then (I-S) is a
nonnegative solution.

3. Extension to positivity cones. The notion of a positivity cone was introduced
in [9] to give a unified treatment of results on M-matrices and positive definite matrices.
We now extend our results to such cones. Following [9], we define K to be a positivity
cone of matrices if K is a pointed, closed, convex cone, i.e. if KN —K ={0}, K+ K< K
and AKcK, for all A =0, and if

(3.1) PeKimplies P' €K, i=0,1,2, .

The cones K, of all nonnegative (elementwise) matrices, and K,, the cone of positive
semi-definite Hermitian matrices to which we addressed ourselves in § 2, are examples
of positivity cones, as is K; N K,. Additional examples are given in [9].

We let K denote a positivity cone and partially order C™ with respect to K, i.e.
P=0 if PeK. Associated with K are the sets

(3.2) Z={AeC": A=sI-P,scR,PcK},
(3.3) M={AeZ:Re A =0, for all eigenvalues A of A}.

Corresponding to K; and K, above, Z =2, is the set of Z-matrices, M =M, is the set
of M-matrices, Z = Z, is the set of Hermitian matrices and M = M, is the set of positive
semi-definite matrices.

We would like to unify our results from § 2 as well as extend them to general
positivity cones. We shall require the series solution defined by (2.6) and a result
corresponding to Lemma 2.1 concerning the iterative scheme (2.8). For the lemma to
hold in the new partial order, we need an additional condition, (3.4) below.

Lemma 3.1. Lemma 2.1 holds if the partial order induced by a positivity cone K
is closed under commuting products, i.e. K satisfies

(3.4) Bl, BzeK, B1B2=B2B1$B1B2€K.

(this is condition (2.4) in [9]).

Proof. Since A € K and (3.1) holds for a positivity cone, it follows inductively that
the iterates X,, of (2.8) are in K and are polynomials in A with nonnegative coefficients.
Thus we have

(35) Xn+1_Xn=(X31_X%1—1)=(Xn_Xn—1)(Xn+Xn—1)’

since the two factors on the right-hand side commute. It follows inductively from (3.5)
that 0=X,=X,,,,n=1,2,---.
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Now suppose that X =0 solves (2.1). Then X = X*+ A, so
X?=X*+AX =X*+ XA,

so X commutes with A. Since the X,, are polynomials in A, it follows that X commutes
with each X,. It is now easy to show that X, =X for all n, and we have (2.9) of
Lemma 2.1.

The proof of (2.10) proceeds as before.

We remark that K; and K, are both positivity cones that satisfy (3.4).

Next we prove the following result which includes a generalization of Theorem
2.3 to positivity cones satisfying (3.4).

THEOREM 3.1. Let K be a positivity cone satisfying (3.4) and let A=0 (with
respect to K). Then (2.1) has a solution X €K if and only if

(3.6) 4p=1,

with (2.13) holding if 4p=1.

Proof. 1f 4p <1, then the series in (2.7) converges to X, which is a solution to
(2.1). From the definition of the positivity cone, Y120 (—1)'(*/?)(4A)’ € =K. Thus X = 0.
If 4p=1 and (2.3) holds, then we still obtain convergence. (See the argument in the
proof of Theorem 2.3.) Conversely, suppose that X solves (2.1) and X = 0. To complete
the proof we need only show that the existence of a solution X =0 of (2.1) implies
that the series in (2.7) converges. First we show that the order interval [0, X]=
{Y:0= Y = X} is compact. Suppose not. Then there is a sequence {Y,} = [0, X] with
| Y,|| > co. We may assume that Y, /| Y,||» Y eK. But then (X-Y,)/|Y,| €K, and
upon taking the limit as n - 00, we find that — Y € K, a contradiction, since K is pointed.
It follows that [0, X] is compact. Using Lemma 3.1, we deduce that X, - Y, a solution
of (2.1), which implies that the series in (2.7) converges.

Note that an M-matrix solution (with respect to K) is obtained by using the
positive sign in the expansion (2.6).

REFERENCES

[1] S. AHMAD AND A. C. LAZER, An n-dimensional extension of the Sturm separation and comparison
theory to a class of nonselfadjoint systems, SIAM J. Math. Anal., 9 (1978), pp. 1137-1150.
[2] G. ALEFELD AND N. SCHNEIDER, On square roots of M-matrices, Linear Algebra and Appl., 42
(1982), pp.- 119-132.
[3] A. BERMAN AND R. J. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, Academic
Press, New York, 1979.
[4] J. M. BORWEIN AND B. RICHMOND, When does a matrix have a root?, Preprint, Dalhousie University.
[5] G.J. BUTLER AND L. H. ERBE, Comparison theorems for second-order operator-valued linear differential
equations, Pacific J. Math., to appear.
[6] G. W. CROSS AND P. LANCASTER, Square roots of complex matrices, Linear and Multilinear Algebra,
1 (1974), pp. 289-293.
[7] G.J. ETGEN AND R. T. LEWIS, Positive functionals and oscillation criteria for second-order differential
systems, Proc. Edinburgh Math. Soc., 22 (1979), pp. 277-290.
[8] G.J. ETGEN AND J. F. PAWLOWSKI, Oscillation criteria for second-order selfadjoint differential systems,
Pacific J. Math., 66 (1976), pp. 99-110.
[9] M. FIEDLER AND H. SCHNEIDER, Analytic functions of M-matrices and generalizations, Linear and
Multilinear Algebra, to appear.
[10] E. HILLE, Nonoscillation theorems, Trans. Amer. Math. Soc., 64 (1948), pp. 234-252.
[11] C. R. JOHNSON, Inverses of M-matrices, Linear Algebra and Appl., to appear.
[12] C. A. SWANSON, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press,
New York, 1968.



SIAM J. ALG. DISC. METH. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, January 1985 006

ON KERNELS OF GRAPHS AND SOLUTIONS OF GAMES:
A SYNOPSIS BASED ON RELATIONS AND FIXPOINTS*

GUNTHER SCHMIDT+ AND THOMAS STROHLEINt
Dedicated to F. L. Bauer on the occasion of his 60th birthday.

Abstract. We aim at a uniform approach to results concerning the existence of kernels of graphs and
introduce new results in the bipartite case. The Galois connection based on the function which assigns to
a vertex set the set of its nonpredecessors is investigated using a special fixpoint theorem; it is illustrated
by the notions of retardation and expansiveness. The related topic of solutions of games is mentioned, and
an analysis of some chess endings is included as an application. The paper contains an extended bibliography.
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1. Introduction. Research on kernels originated from the theory of games and
economic behaviour. Among those who contributed in the early years were Zermelo,
Ko6nig, Kalmdr, Max Euwe, former world chess champion, and von Neumann.

Our approach is to introduce relational algebra into the study of kernels and to
apply the by now well developed theory of lattice antimorphisms. As our first tool we
recall basic concepts of relational algebra which are easily understood if they are
interpreted in terms of Boolean (n X n)-matrices. The basis is formed by a complete
atomistic Boolean algebra with respect to v (join), A (meet), (complement) and <
(inclusion). If we additionally define composition of relations (Boolean matrix multipli-
cation), identity relation I, transposition 7, zero relation 0, and universal relation L,
we arrive at a relational algebra. In the sequel we proceed by algebraic methods, i.e.,
we rely on lattice formulas and identities for relations like

P(QvR)=PQv PR ( v -distributivity),
P(OAR)c PQAPR ( A -subdistributivity),
PQ<R&P'™R<Q (Schroder rule),
POAR<(PARQT)(QAP™R) (Dedekind rule),
R#0=LRL=L (Tarski rule).

The transitive closure of a relation R is defined as the union of its powers R* = Rv R*v
R3v - -+ whereas R*:=IvR" is called the reflexive transitive closure. Familiar
notions are symmetry (R< R7”), irreflexivity (R<1I) and transitivity (R>< R or
R*cR).

Now we pass to graph terminology: An arbitrary relation B on a set V gives rise
to a graph, more precisely, a directed 1-graph with associated relation B and vertex
set V, denoted by (V, B). Boolean vectors are considered as representing sets of
vertices. In particular, vertices x, ye V are treated as special Boolean vectors. Note
that in this case x < By means that there is an arc from x to y. The zero vector,
representing the empty subset of vertices, is always denoted by the same symbol 0, as

* Received by the editors May 26, 1982, and in revised form October 5, 1983.
1 Institut fir Informatik, Technische Universitit Miinchen, D-8000 Miinchen 2, Bundesrepublik
Deutschland.
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is the zero relation; similarly we use L for the full subset V of vertices and the universal
relation.

If the rules of the following theorem are considered as matrix identities, the
assertion is obvious. Our formal proof, see [48], depends on injectivity (xx” < I) and
row-constancy (x = xL) of the relation x # 0 which represents a single vertex.

ProvrosiTION 1. For arbitrary relations R, S and vertices x, y the following holds:

i) Rx=Rx; ii) xc Ry xy" < R; iii) (RAS)x=RxnaSx.
Proof. i) Applying monotonicity and Schroder’s rule, we get
xTcRT=xx"RTc I x"RT < x’'R” & Rx< Rx.

For the opposite inclusion, we show L=LxL=Lx=(Rv R)x=Rxv Rx & Rxc Rx.
ii) From left to right: x< Ry=>xy” < Ryy” < R. Conversely,

xyTcRox™Rey’ @ Rxcyo Ryc i,
and therefore by (i) Ryc< %, i.e., x< Ry.
iii) Applying Dedekind’s rule, A -subdistributivity is tightened for an injective x:

RxASx<(RASxxT)(xARTSx)= (R A S)x. O

In a graph G =(V, B), the vector BL corresponds to the set of terminal vertices.
The relation B* comprises all the pairs of vertices for which there exists a path
(repetition of arcs and vertices not excluded) from the first vertex to the second one;
it is called the reachability of G: The relation B represents the arcs of G, and B"
represents reachability along paths of length n. This makes related notions