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POLYA’S URN MODEL AND
COMPUTER AIDED GEOMETRIC DESIGN*

RONALD N. GOLDMAN?

Abstract. In this paper Polya’s urn model is used to generate blending functions for computer aided
geometric design. There are over a dozen geometric properties which are currently considered to be desirable
for computer aided geometric design. Curves and surfaces which use blending functions generated from
Polya’s urn model are shown to share many of these geometric properties. Derivations of these geometric
properties are traced back to the probabilistic interpretation of the blending functions.

CR categories and subject description: 13.5 (Computer Graphics)" Computational Geometry and
Object Modeling-Curve Representations
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1. Introduction. Typical in computer aided geometric design is the following
interaction between system and user.

1. A designer introduces a collection of control points which to him describe the
shape of some curve or surface.

2. The system loosely approximates the designer’s intent applying some internal
scheme, the details of which are often hidden from the user, to construct a
smooth curve or surface.

3. The designer moves some of his control points in directions which he feels
intuitively will help the computer to improve its approximation.

4. The system modifies the curve or surface in an attempt to conform more closely
to the designer’s intent.

Steps 3, 4 may be repeated several times until the user is satisfied.
Generally, systems try to approximate a designer’s intent by using an internal

collection of predefined functions to blend smoothly the designer’s control points.
Thus, given an ordered collection of points P0," , Pn, a system will construct a curve

P( t) Z B’( t)Pk, O-<t<_-l,
k

where B(t),..., B,(t) are an internal collection of predefined blending functions.
Lagrange polynomials, Bezier curves and B-splines are all defined precisely in this
manner.

The final shape of the curve depends both on the blending functions available to
the system and on the control points selected by the user, but the geometric properties
of the curve depend only on the blending functions. Thus it is natural to ask:

1. What geometric properties do we wish to build into our curves?
2. Where can we find suitable blending functions?

With the advantages of experience and hindsight we shall try to answer the first
question. The answer to the second question is the main theme of this paper.

This paper is divided into two main parts. Section 2 reviews in detail the geometric
properties which are desirable for the curves of computer aided geometric design.
Readers already familiar with computer aided geometric design may quickly skim this
section. The remainder of this paper is devoted to our main theme" the intimate
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relationship between classical discrete probability theory and computer aided geometric
design. This discussion commences in 3. Knowledgeable readers may wish to begin
here.

2. Computer aided geometric design. We wish to determine which curves

P( t) E B(t)Pk, 0<----t--<--l,
k

defined by a collection of control points P0,’",Pn and a collection of blending
functions B(t),. , B(t) are suitable for computer aided geometric design. We shall
begin by listing those properties which experience has shown us are desirable. We
shall then discuss each property in turn to determine its implications for the blending
functions. The desirable properties for the curves of computer aided geometric design are
the following: 1. well-defined, 2. convex hull, 3. smooth, 4. interpolates end points,
5. extends to surfaces, (a. rectangular, b. triangular), 6. symmetry, 7. geometric
construction algorithm, 8. exactly reproduces points and lines, 9. nondegenerate, 10.
subdivision algorithm, 11. augmentation algorithm, 12. variation diminishing and 13.
local control.

2.1. Well-defined. A curve

P( t) B(t)Pk, 0--<--t----<l
k

is said to be well-defined iff it depends only on the points P0,""", Pn and not on the
choice of the coordinate origin. Equivalently, the curve P(t) is well-defined iff translat-
ing each point Pk by the same vector v, translates the entire curve by the same vector

v; that is, iff

P( t)new P(t)old + V.

Thus for every vector v and every parameter t,

Y B’( t)Pk +[ B(t)]v Y B’( t)(Pk + v) P( t)new P( t)old A- V B’( t)Pk + V,
k k k k

SO

[ B’(t)]v v
k

for every vector v and every parameter t. But this can happen iff

E B(t)= 1
k

for every value of t. Thus we have shown that

P(t) is well-defined :> B(t) 1.
k

That the curves must be well-defined is crucial for computer aided geometric
design. A designer wishes to describe a shape. He should not have to be concerned
with artifacts of the system such as the current position of the coordinate origin, and
he would certainly be astonished if identical collections of control points generated
physically distinct curves merely due to some internal change in the system. Therefore
to be effective for computer aided geometric design, a curve must be well-defined.
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2.2. Convex hull. A set S is said to be convex iff whenever 2 points P, Q lie in
S, the entire line segment PQ lies within S. The intersection of convex sets is clearly
convex. By definition, the convex hull of a set S is the intersection of all the convex
sets which contain S. Equivalently, the convex hull of S is the smallest convex set
which contains S. It follows easily by induction on n that for any collection of points
Po, P,

convex hull (Po, ", P) { CkPklCk >= 0 and Ck 1}.
k k

Thus a well-defined curve

P(t) B’(t)Pk
k

lies in the convex hull of the points P0,""", Pn iff

B’ >= O 0_-<t=<l.

That is, for well-defined curves

convex hull property:> B(t) => 0, 0 -<_ _-< 1.

Since in computer aided geometric design the points define the curve, there must
be some obvious relationship between the exact location of the control points and the
approximate location of the actual curve. The convex hull property localizes the curve
to the proximity of its control points. This feature is of great practical importance for
computer assisted geometric design.

2.3. Smooth. A curve is said to be smooth iff it is differentiable. The more
derivatives it has the smoother it is said to be. For a curve

the derivative is

Thus

P( t) E B(t)P

dB’P’(t) Y--rk.

P(t) is smooth B’(t) is differentiable.

That the curves used in computer aided geometric design must generally be smooth
is obvious; usually several derivatives are required. Thus the differentiability of the
blending functions is a crucial characteristic of these curves.

2.4. Interpolates end points. In computer aided geometric design we do not

require that the curve pass through all the points specified by the designer. After all,
the designer only uses the points to describe the general flow of the curve, not its exact
location. We are trying to approximate shape, not interpolate position. However the
start and the end points are special. Where else could the curve start but at the designers
first point; where else could it terminate but at his last point? After the initial point,
he may wish to indicate only the general flow of the curve, but he may as well tell us
exactly where to start; why make us guess? Similarly, from symmetry considerations
(see below), he may as well indicate the exact terminus of his curve.

Aside from these arguments, there is an even more compelling reason to insist
that curves exactly interpolate their first and last control points. Often a designer will
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wish to attach several curves end to end. If their end points are not exactly specified
by the user, it would be extremely difficult for the system to insure continuity between
contiguous curves. However for curves which pass through their end points, the user
can enforce continuity simply by selecting the last point of his previous curve as the
first point of his next curve.

A curve

P( t) Y B(t)Pk, 0_<-t<_-I
k

passes through its end points Po, Pn iff

P(O) Po, P(1) Pn.

Thus, in general, P(t) interpolates its end points iff

B(O) {O, k O, (0, kn,
1, k=O,

and B(1)=
1, k=n.

2.5. Extensions to surfaces. A sequence of control points defines a curve; a grid
of control points defines a surface. In computer aided geometric design the grid is
usually either triangular or rectangular depending upon whether the designer wishes
to construct 3 sided or 4 sided surface patches. Given a curve

P( t) . B’( t)Pk, O<_-t<_-l,

we say that it has extensions to surfaces iff there are surfaces

O(u, v)=E B’(u, v)Oij,

whose boundary curves have the same blending functions as P(t) and whose control
points are the boundary points of the grid. The trick is to find nontrivial blending
functions B(u, v) which either vanish or reduce to B’(t) on the boundaries.

For curves which interpolate their end points it is always possible to generate
rectangular extensions simply by defining

B(u, v)= B’](u)B’(v), O(u, v)=E B’(u)B’(v)Oij, 0<= u, v<= 1.

On the boundaries we get

O(O, v) E B’(v) Ooj,

O(u, O)=E B’(u)Oio,

Q(1, v)=E B’(v)Q,,j,

Q(u, 1)=E B’(u)Qi,,,

as required. The surface O(u, v) is called the tensor product surface, and it is standard
in computer aided geometric design.

Nondegenerate triangular patches are more difficult to generate. Given a triangular
grid { Oil}, i+ <-n, we need to construct a well-defined, nondegenerate surface

O(u, v)=E B’(u, v)Oil, O=<u+v-<l

such that on the boundaries

O(O,v)=YB’(V)Oo, O(u,O)=EB’](u)Oo, O(u,l-u)=EB’f(u)Q,,,-i.
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In general this can happen iff there exist blending functions B(i, v) which satisfy

{0, is0’ B(u, 0) { Jrs0’B,i(0, v)= B’(v), i=0, (u), ]=0,

B(u, 1- u) {,(u),
Recently triangular Bezier patches have been studied by Sabin [11], by Farin [4], [5]
and by Goldman [8].

2.6. Symmetry. The order in which a designer selects his control points is critical
in the determination of his intent. In general, the very same control points chosen in
different order will generate very different curves (see Fig. 1).

Po Oz

o(t)

P3

FIG.

However a strict inversion of order should not lead to a distinctly different curve,
but only to a reversal in orientation (see Fig. 2).

PI (3

P4 O0

P3 QI

FIG. 2

This symmetry is part of a designer’s natural intent and must therefore be captured
by the curves used in computer aided geometric design.

Now a curve

P( t) B[Po, Pn](t) E BT,( t)Pk, 0 <- <- 1

will have the required symmetry property iff

B[P,,,..., Po](t) B[Po, , P,]( 1 t)
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that is, iff

Y. B(t)Pn_k Y.B(1 t)Pk.

In general, this will be true iff

B’( t) B_k(1- t).

Thus for curves

symmetry B(t) B-k(1 t).

Similar but more complex symmetry conditions will be required for the surfaces of
computer aided geometric design.

2.7. Geometric construction algorithm. Let

P(t) B[Po, , P](t) Z B(t)P
be a curve defined by a collection of control points Po," "’, P and a collection of
blending functions B(t),. , B,(t). In general, the blending functions may be compli-
cated expressions and therefore either difficult or expensive to evaluate. A geometric
construction algorithm provides a simple, numerically stable technique for evaluating
P(r) for any parameter r.

The basic idea is to construct, recursively, a triangular array of points {P(r)},
k + L <_- n, such that:

1. Pk r) Pk
2. P(r) lies on the straight line joining P-l(r) and L-1Pk+l(r);
3. P(r) P(r);

(see Fig. 3).

pO (r) P

P(r)

P r) P( r)
P(r)

Po Po

FIG. 3. Geometric construction algorithm.

Since P(r) lies on the straight line joining P-l(r) and L--1Pk/l(r), there must be
functions f-L(r), s-(r) such that

n-L L-1P(r) =f-(r)p-l(r)+ Sk (r)Pk+l(r), f-L(r) + s-L(r) 1.

Thus to compute P(r), instead of evaluating the blending functions B(r), we need
only evaluate the functions f-L(r), s-L(r). The hope is that these functions are
relatively simple and therefore easy and inexpensive to compute. But where do they
come from, and how do we get our hands on them?

The answer, of course, is that somehow they must be related to the original
blending functions. Till now, we have tacitly assumed that there exist collections of
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blending functions {B(t)} for every value of n, and that these collections of blending
functions for the various n’s are in someway related. We shall now show that if there
is a simple, explicit, recursion formula relating the functions {B/l(t)} to the functions
{B(t)}, then a geometric construction algorithm exists, and the functions f’-L(r),
s-L(r) are just those that appear in the recursion formula.

Assume a simple recursion relation

B+l(t) f’( t)B’( t) + s’_l( r)B’_l( t),

where

f(t) + s(t) 1.

That is, assume that B+l(t) can be constructed from the functions B(t), B_l(t) and
some simple multiplier functions f(t), S-l(t). If we use these multiplier functions to
construct the collection of points {P(r)}, then we can prove the following results.

LEMMA 2.1 B[P(r),’",P,-l(r)](r) =B[Po,’",Pn](r).
Proof. B[plo(r) ,-l(r)plk(r),... ,P,_l(r)](r)=,Bk

n--1= Bk l(r)[f’-l(r)Pk + S’-I(r)Pk+I]=Y [f’-l(r)B-l(r)+ Sk-l(r)B-1k-l(r)]Pk
=2 B’(r)Pk B[Po, P.](r). [-!

LEMMA 2.2 B[Po r) k,’’’,P.-k(r)](r) =B[P0,...,Pn](r).
Proof. This result follows immediately from Lemma 2.1 by induction on k.
LEMMA 2.3. P(r) P(r).
Proof. This result follows immediately from Lemma 2.2 with k n.

Thus we have shown that

recursion formula=:>geometric construction algorithm.

2.8. Exactly reproduces points and lines. Suppose that a designer selects all his
control points Pk at the same location P0. Then he would expect his curve to collapse
to the single point P0. A curve is said to exactly reproduce points iff

Pk Po for all k:=>P(t)= Po for all t.

Thus the curve P(t) exactly reproduces points iff

[2 B(t)]Po Po
or iff

E B(t)-- 1.

Thus exactly reproducing points is equivalent to being well-defined.
Now suppose that a designer selects control points which are equally spaced along

a straight line. He would then expect the system to generate exactly the straight line
along which the points lay. Any oscillations around this line, any deviations from
linearity, would be unacceptable; by selecting his points along a straight line, he is
specifically requesting that the curve not wiggle.

Let

P(t)=Y.B,(t)P, 0<_- t-<_ 1

be a well-defined curve, and let

L(t)=At+B, 0<=t<-I

be a straight line. We can select n + 1 equally spaced points, P0," , P,,, along the line
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L(t) by setting

The curve P(t) exactly reproduces the line L(t) iff

P( t) L( t), 0<_-t-<_l,

for this particular choice of control points Po,""", Pn. In this case

At + B L(t) P(t) BT,(t)P, B’(t)[A() + B]
A
E kB’( t) + B E B’( t) =--A E kB’( t) + B.

n

In general this can be true iff

Thus we have shown that

, kB(t) nt.

P(t) exactly reproduces points:>E B(t) 1,

P(t) exactly reproduces lines: Y’. kB(t) nt.

2.9. Nondegenerate. A well-defined curve

P(t) E B’(t)P

is said to be nondegenerate itt

P(t) Po for all t==>Pk Po for all k.

That is, a curve is said to be nondegenerate iff the only time it collapses to a single
point is when all the control points are located at that same point.

THEOREM 2.1. Let P(t)=Y. B’(t)Pk be a well-defined curve. Then P(t) is non-
degenerate iff the blending functions {B(t)} are linearly independent.

Proof Suppose that the blending functions are linearly independent. If

E B’(t)Pk Po
then since the curve is well defined

E B’(t)P E B’(t)Po,

Therefore for every vector v,

E B’(t)(P Po) O.

Now since the blending functions {B(t)} are linearly independent, we must have

P Po) v O

for every vector v and every index k. Hence

P Po for every index k.

Thus, the curve P(t) is nondegenerate.

E B’( t)[(Pk Po) v] O.
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Conversely, suppose that the curve is nondegenerate, and that

CkBT,(t) O.

Let v be any nonzero vector, and let

P Po + cv.
Then,

P(t) B,( t)Pk Z B’( t)(Po + CkV) [Y B,( t)]P0 + [Y CkB’( t)]v Po.
Hence, since P(t) is nondegenerate, it follows that

Pk Po, for all k.

Therefore,

Ck=O for allk.

Thus the functions {B(t)} are linearly independent. [3
Thus we have shown that

P(t) is nondegenerate {B(t)} are linearly independent.

It is important for computer aided geometric design that the curves be nondegenerate.
After all, a curve which collapses unexpectedly to a single point is not of much use to
a designer. Also, we wish to avoid burning holes in the screen with very bright spots
caused by degenerate curves.

2.10. Subdivision algorithm. Consider again a curve

P( t) B[Po, P](t) , B’( t)Pk, 0 <-_ <- 1

and fix 2 points P(a), P(b) along P(t). A subdivision algorithm is a technique for
constructing a sequence of points Qo," ", Q such that if

Q(t) B[Qo, ", Qn](t) B,( t) Qk, 0 <= <= 1,

then

Q(t)_P(t), 0<=t=<l, Q(O)=P(a), Q(1)=P(b).

Subdivision algorithms are important in computer aided geometric design for
many reasons. They enable us to trim curves. They allow us to apply formulas initially
developed only for the end points of a curve, where the parameter is 0 or 1, at arbitrary
locations along the curve. Thus they help simplify the computations of tangent,
curvature and torsion. When combined with the convex hull property, they lead to
accurate, iterative, intersection routines [9].

If the functions {B(t)} are nth degree polynomials in t, then the linear indepen-
dence of the blending functions implies that they form a basis for all nth degree
polynomials in t. In particular since the functions {B(rt)} are also nth degree poly-
nomials in t, there are constants {B’k(r)} such that

Let

B’(rt) E B’(r)B( t).
k

O(r) E B’( r)Pi.
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PROPOSITION 2.1. B[Qo(r), O,(r)](t) B[Po, Phi(r,
Proof.

B[Qo(r), Qn(r)](t)= k BT,(t)Qk(r)=,k B’(t) Yi B’;k(r)Pi

E [El( B’k r)B’ t) ]Pi E B’ rt)Pi B[Po, Pn ]( rt).

Thus the points Oo(r),’", On(r) subdivide the curve P(t) from P(0) to P(r).
Using symmetry, we can also subdivide the curve P(t) from P(r) to P(1). By applying
these two subdivision algorithms one after the other, we can subdivide the curve P(t)
between any two points P(a) and P(b). Hence we have shown that

polynomial basis =:> subdivision algorithm.

To actually subdivide the curve P(t), we need explicit expressions for the constants
B’k(r). It is often easier to prove the existence of such constants than to actually
compute them. However, we shall show in 3 that for the Bernstein polynomials

Bi(r) Bi (r), B’(rt)=Y Bi (r)B’(t), Qk(r)= Bi (r)Pi B[Po, ,Pk](r).
k

2.11. Augmentation algorithm. Suppose that for each integer n we have a collec-
tion of blending functions {B(t)}. Given a curve

P( t) B[Po, P](t) E B(t)P

an augmentation algorithm is a technique for finding new control points 0o," , On+
such that

B[Oo,’", On+l](t) B[Po,’", Pn](t).

Thus an augmentation algorithm is a technique for representing the same exact curve
with one additional control point. Augmentation algorithms are useful in computer
aided geometric design because the additional control points they generate allow us
greater flexibility in determining the final shape of our curves.

If the functions {B(t)} are a polynomial basis for each n, then we can write the
nth degree polynomials {B(t)} in terms of the (n + 1)st degree polynomials {B+l(t)}.
That is, there must be constants {A’} such that

B’ Y ATB’+Let
Oi A,]t,pt, 0<__i<__n+l.

k

PROPOSITION 2.2. B[Qo," ", Q,+](t) B[Po," , Phi(t).
Proof.

BT+l(t)O E B’+’(t) E A,PB[Qo, Qn+](t) =E,

Ek [Ei A’kB’+l( t)]Pk Zk B(t)Pg B[P0,""", P,](t).

Hence we have shown that

polynomial basis:>augmentation algorithm.

To actually augment a curve P(t), we need to know the values of the constants Ai.
As with subdivision, it is often easier to prove the existence of these constants than
to actually compute them. Nevertheless in 3 we shall compute these constants for a
whole family of blending functions.
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2.12. Variation diminishing. A curve

P( t) E B(t)Pk, 0_--<t_--<l

is said to be variation diminishing iff for every collection of points Po,’" ", Pn and
every plane R, the number of times P(t) crosses R is less than or equal to the number
of times the polygon determined by the ordered vertices Po,""", Pn crosses R. Thus,
intuitively a curve is variation diminishing iff it does not oscillate any more than the
chords which connect its control points. Clearly to have any hope of being variation
diminishing, a curve must be nondegenerate and lie in the convex hull of its control
points.

Nondegeneracy and the convex hull property are necessary but not sufficient
conditions. To obtain a sufficient condition, we will appeal to the following rule.

Descartes’ law ofsigns. A collection of functions {B(t)} is said to satisfy Descartes’
law of signs in the interval (a, b) iff for every collection of constants (c0,..., c)

zeros in (a, b) [E CkB(t)J<----sign alternations of (Co,’’ ", c).

It is well known that the power functions {tk} satisfy Descartes’ law of signs in
the interval (0, ) [12]. Using this fact, it is easy to prove that the Bernstein polynomials
()tk(1--t)-k satisfy Descartes’ law of signs in the interval (0, 1) [10] (see Theorem
A.2).

THEOREM 2.2. Let P( t) Y B’( t)Pk, 0 <-_ <- 1 be a well-defined curve. If the
blending functions {B(t)} satisfy Descartes’ law of signs in the interval (0, 1), then the
curve P( t) is variation diminishing.

Proof. Let R be a plane, Q a point on R and N a vector normal to R. Then a
point P lies on the plane R if[

(Q-P).N=O

and 2 points Pi, Pj lie on opposite sides of the plane R if[

Let
sign [( O Pi )" N] -sign [( O Pj)" N].

I number of times P(t) crosses R,

J number of times the polygon determined by P0,""", P, crosses R.

We must show that

I=<J.
Now since P(t) is well-defined

Q P( t) Q , B’( t)Pk E B’( t) Q-, B’( t)Pk E B(t)(Q Pk).

Therefore by Descartes’ law of signs

/=<zeros in (0, 1)[( Q- P( t)) N] zeros in (0, 1)[EB(t)(Q-Pk)’N]

<_-sign alternations of [(Q-Po)’N,’", (Q-Pn).N]=J.

We have shown that

Descartes’ law of signs variation diminishing property.

Notice too that

Descartes’ law of signs linearly independent blending functions

=:>nondegenerate curves.
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In computer aided geometric design curves must not oscillate too much; designers
must be able to control the wiggle. Therefore the variation diminishing property is
critical. Thus even though Lagrange polynomials exactly interpolate position, they
have proved to be inappropriate for computer aided geometric design. They tend to
oscillate uncontrollably precisely because they are not variation diminishing. On the
other hand, even though Bezier curves do not faithfully interpolate position, they have
proved to be quite useful for computer aided geometric design. Bezier curves give an
accurate representation of a designer’s intent because they are variation diminishing.

2.13. Local control. Given a curve

P( t) , B’( t)P, 0=<t=<l,

we are said to have local control iff changing any one control point Pk has only a local
effect on the shape of P(t). We can have local control iff the support of each blending
function is only some fraction of the total domain of t. Thus

we have local control<::>B,(t) has local support.

Local control is important in computer aided geometric design because it allows
a designer to alter a segment with which he is dissatisfied without ruining the shape
of the remainder of the curve. It is for this reason that B-splines have become
increasingly popular in computer aided geometric design.

For curves whose blending functions do not have local support, we can use
subdivision algorithms to isolate unsatisfactory segments into separate curves. We can
then alter these segments without affecting the remainder of the curve. This gives us
a measure of local control at the cost of the loss of some derivatives at the joints.

For Bezier curves it is easy to show that [6]
n, (--1)J-k()Pk, p(j)(

n, ()P()(0) (-1)-k P.-+k.(n-j). =o 1)=(n--j)!k=O
Thus for Bezier curves the ]th derivative at each end point depends only on the adjacent
] control points. This additional fact allows us to predict exactly which derivatives at
the joints will be affected by moving any particular control point. For example, the
general formulas for curvature and torsion are [13]

IP’(t) P"(t)l P’(t). [P"(t) P’"(t)]
K(t)

IP’(t)] 3 T(t)
IP’(t) x P"(t)]2

Therefore at the end points of a Bezier curve

(n 1_____2) ](P- Po) x (P2- P)I
n ipl_Po]3 t=0,

g(t)-
(n- 1) [(P.-1-P.) x (P.-2-P-I)I

n ie=__e=13
t= 1,

(n-2) (P1-Po)’[(P2-P,) x (Pa:P2)]
n 1--0)- 1)I"

t=0,
T(t)

(n-2) (P.-I-P.)’[(P.-2-P.-I) (P.-3-Pn-2)]
n I(P,_I-P,) x (P,,_e-P,,_I)I2

t= 1.

Thus only the first 2 adjacent control points have any effect on the curvature, and
only the first 3 adjacent control points have any effect on the torsion, at the end points.
Hence moving any other control point will have no effect on these critical values at
the joints.
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2.14. Summary. We summarize our results in Table 1.

TABLE

Curve

well-defined

convex hull

smooth

interpolates end points

extends to surfaces
a. rectangular

b. triangular

symmetry

geometric construction algorithm

exactly reproduces straight lines

nondegenerate

subdivision algorithm

augmentation algorithm

variation diminishing

Blending functions

<=> Z B(t)

<:> B(t)->O

=> B,(t) ditterentiable

0, k0,
: B,(O)=

1, k=O,

0, kn,
B(1)=

1, k=n.

same as 4

B(O, v) ’ iO,

B(v), i=O,

o,. jo,
B’(u,O)= B, (u), j=O,

1_ u) J’0, i+j# n,
B(u, B’(u), i+j=n,

, B(t) B_(1 t)

= recursion formula

:> Y. kB’( t) nt

linear independence

= polynomial basis

polynomial basis

Descartes’ law of signs

local control : local support

The conditions on the blending functions in Table 1 are not all independent. For
example, it is easy to show that

conditions 1, 2, 8:>condition 4, condition 12:>condition 9.

Notice too that not all the implications go in both directions. For example, if the
blending functions are a polynomial basis, then the curve necessarily has a subdivision
algorithm. However it may be that there are other conditions which could imply that
a curve has a subdivision algorithm even if its blending functions are not a polynomial
basis.

Finally, the reader should recognize that everything we have said in this section
about curves has a analogue for surfaces.
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3. Polya’s urn model. The question remains: where can we find blending functions
with all, or even just a few, of the properties listed in the preceding section? If we
focus our attention on the first two properties

E B(t)= I, O<=t <-1, k(t)>--_O, 0--<t<_--l,

they strike a familiar chord; these are just the defining characteristics of discrete
probability distributions. Therefore to find appropriate blending functions for computer
aided geometric design, we can look to classical discrete probability theory. Indeed
we already know that the blending functions for the Bezier curves are the Bernstein
polynomials and these polynomials represent the binomial distribution.

There are many classical discrete probability distributions which we could consider.
However here we shall restrict our attention to a particularly propitious collection of
distributions which arise from an urn model first introduced by G. Polya [3].

Polya’s urn. Consider an urn initially containing w white balls and b black balls.
One ball at a time is drawn at random from the urn and its color inspected. It is then
returned to the urn and a constant number c of balls of the same color are added to
the urn.

Let

w
w+b

-initial probability of drawing a white ball,

a----initial percentage of balls added to the urn.
w+b

If we hold a constant and allow to vary, we obtain a discrete probability distribution

D’(t) =probability of drawing exactly k white balls in the first n trials.

Notice that we get a different probability distribution D(t) for each distinct value of
a (see below). In particular, if a =0, then D(t) is just the binomial distribution
(sampling with replacement). From here on we shall assume that a is a fixed constant.

The functions D(t) have many properties which are desirable for computer aided
geometric design. Since they represent a probability distribution, it follows immediately
that

YD,(t)=I, 0_-<t-<l, D,(t)>-O, 0_-<t_-<l.

In addition, if initially there are no white balls in the urn, then we will never add any
white balls to the urn. Similarly, if initially there are only white balls in the urn, then
the urn will always contain only white balls. Therefore

{0’ k # O’ DT(1) {O’ k # n’
D(0)=

1, k=0, 1, k=n.

Also since white balls and black balls are treated identically, this urn model is symmetric
with respect to white and black. Therefore

probability of drawing exactly probability of drawing exactly
k white balls in the first n- k black balls in the first
n trials n trials

so

D(t)=D_k(1-t).
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By considering 2 Polya urns each with 2 colors, we get the 2-dimensional distri-
bution

Dj"(s, t) probability of drawing exactly j white balls in the
first m trials from urn 1 and exactly k white balls
in the first n trials from urn 2.

This distribution is just the product of the distribution for each individual urn. That is,

Djn(s, t)= D’(s)D’(t).
This urn model can also be extended to urns containing balls of many different

colors. After each pick, we still just return the selected ball along with c new balls of
the same color. Consider an urn which initially holds r red, w white, and b black balls,
and let

U
r+w+b

initial probability of drawing a red ball,

V
r+w+b

initial probability of drawing a white ball,

a
r+w+b

initial perentage of balls added to the urn.

Again if we hold a constant and allow u, v to vary, we obtain a discrete probability
distribution in two variables

Therefore

D(u, v) probability of drawing exactly red balls and
j white balls in the first n trials.

ZD’(u,v)=l, 0=<u+v=<l, D(u,v)>=O, 0<-u+v=<l.
i,j

Moreover if initially one color is absent from the urn, then this urn behaves exactly
like an urn with balls of only two colors. Therefore

O, O,
D(O, D(v), i=0,

0, jO,
D(u,O)= DT(u), j=O,

0, i+jn,
D(u,l-u)= D(u), i+j=n.

There is a recursion formula relating D’+l(t) to D’(t) and D’_(t). Indeed let

f(t) probability of failing to draw a white ball after
drawing exactly k white balls in the first n trials,

s(t) probability of succeeding to draw a white ball after
drawing exactly k white balls in the first n trials.

Then certainly

f(t) + s(t) 1.
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Moreover

D/l(t) probability of drawing exactly k white balls in the
first n + 1 trials

(probability of drawing exactly k white balls in the
first n trials)

(probability of failing to draw a white ball on the next trial)

+ (probability of drawing exactly k- 1 white balls in the
first n trials)

(probability of succeeding to draw a white ball on the
next trial)

SO

D,(t)f,(t)+ D,_l(t)s,-l(t)

D+l(t) f,(t)D’(t)+ s’_l(t)D’-l(t), f’( t) + s,( t) 1.

We can compute f’(t), s’(t) explicitly. After exactly k successes in the first n
trials there are w + kc white balls and w + b + nc total balls in the urn. Therefore

s,(t)
number of white balls
total number of balls

w+ kc
w+ b+ nc"

Dividing numerator and denominator by w + b, we get

t+ ka (1- t)+(n- k)a
f,(t) 1 s’(t)s( t)

1 + na 1 + na

Since by definition

D(t) 1 t, Dl(t) t,

it follows by induction on n that D(t) depends only on a and on t. In particular for
the binomial distribution

a=0, s,(t)=t, f,(t)=l-t, B’+l(t)=(1-t)B’(t)+tB’_l(t),
which is the standard recursion formula for the Bernstein polynomials.

Since s(t), f,(t), D(t), Dl(t) are all first degree polynomials in t, it again
follows easily by induction on n that D(t) is an nth degree polynomial in t. Therefore
certainly

D(t) is infinitely differentiable.

We can even derive an explicit expression for D,(t). There are () ways of selecting
exactly k white balls in the first n trials. To compute the probability of just one such
way, we must multiply together k success factors of type s(t) and n- k failure factors

L Lof type f(t) where for each L either si (t) or fj (t) appears but not both. Now the
denominators of s(t), f(t) are identical. Moreover must take on the values
0,. , k- 1; L-j must take on the values 0,. , n- k- 1; and L must take on the
values 0,. , n- 1. Therefore

D,(t)=(nk) t" [t+(k-1)a](1-t) [(1-t)+(n-k-1)a]
(l+a)... [l+(n-1)a]
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(For further details see [2].) When a 0, this formula reduces to the binomial distri-
bution

In our derivation of the explicit formula for D,(t) we observed that the prob-
abilities of any 2 distinct ways of selecting exactly k white balls in the first n trials are
identical. This critical observation has several important consequences. Let

Sn(t) a priori probability of selecting a white ball on the nth trial,

En(t) the expected number of white balls selected in the first n trials.

Then it is obvious from probabilistic considerations that

-1 (t),S(t)=Sk (t)D-1 E, (t) , kD(t), En(t)= Sk(t).
k=l

The first two formulas are just weighted averages, and the third formula just says
that the expectation is the sum of the a priori probabilities.

PROPOSITION 3.1. S(t) t, n _-> 1.

Proof. We shall use a simple counting argument. Let

A’(t) probability of selecting exactly k white balls in the
next n trials after selecting a white ball on the first
trial.

Since the probabilities of any 2 distinct ways of selecting exactly k white balls in the
first n trials are identical, it follows that

s’(t)D(t) probability of selecting exactly k white balls in
the first n trials and then selecting a white ball on
the (n + 1)st trial

Therefore,

=() probability of selecting, in one particular way,
exactly k + 1 white balls in the first n + 1 trials

probability of selecting a white ball on the first trial
and then selecting exactly k white balls in the next n
trials

k(t)

Sn+l(t)--E s’(t)D’(t)= E A’(t)= t.
k k

COROLLARY 3.1. En(t)= nt.
COROLLARY 3.2. kD’( t) nt.
Another consequence of the critical observation about the Polya distribution is

that it allows us to derive an explicit formula for D’(t) in terms of D+l(t) and Dk+l(t).
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LEMMA 3.1.

f’( t) D’( t)
(n + l- k) DT,+a(t).
(n+l)

Proof. As above

f(t)D(t) probability of selecting exactly k white balls in the
first n trials and then selecting a black ball on the
next trial.

Now there are a total of (,) ways of selecting exactly k white balls in n trials, and a
total of ("+1) ways of selecting exactly k white balls in n + 1 trials. Therefore since
each distinct way has exactly the same probability of occurring, it follows that

D’+l(t)= (n+l-k) D+I(/). !-]f’(t)DT,(t)

(n+1)k (n+l)

LEMMA 3.2.

s’( t) D’( t)
(k+l) ,,+

(n+l)
D+l(t)"

Proof. Again

sT,(t)D’(t) probability of selecting exactly k white balls in the
first n trials and then selecting a white ball on the
next trial.

[n+lNow there are (,) ways of selecting exactly k white balls in n trials, and k/lJ ways
of selecting exactly k + 1 white balls in n + 1 trials. Therefore, since each distinct way
has exactly the same probability of occurring, it follows that

sT,(t)DT,(t)

(n+1)k+1
COROLLARY 3.3.

D"+ (k + 1) r"+lrt).k+l(t)--(n+l)’k+l

DT,(t)
(n+l-k)
(n+l)

D’(t)+
(k + 1) rn+l[t)"
(n+l) ’k+l

Proof. This result follows immediately by simple addition from Lemmas 3.1,
3.2. l-I

The coefficients in the formula of the preceding corollary do not depend on the
value of a. This means that the formula for raising the degree of the Polya distributions
is identical to the formula for the binomial distribution. Geometrically this means that
the augmentation algorithm for the Polya curves is identical to the augmentation
algorithm for Bezier curves. Specifically if

k (n+l-k)
Q (n+ 1Pk-1 + (n + 1) P
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then for any Polya distribution the curve with control points Q0," ", Qn+l is identical
to the curve with control points P0,""", Pn.

Because of their similarity to the Bernstein polynomials, the polynomials
D(t),..., D,(t) satisfy Descartes’ law of signs in the interval (0, 1). However, since
our proof of this result is not based on probability theory, we shall defer it to the
Appendix. From the fact that these polynomials satisfy Descartes’ law of signs, we
also conclude that they are linearly independent and that they form a polynomial basis
for all nth degree polynomials in t.

We summarize our results in Table 2.

TABLE 2

Urn Formula

10.

probability distribution := ,Dk(t)=l, 0 <t <1
D,( t) >= O, 0=<t=l

adding balls only of the selected color =:> D(O)
f
/
O’ k O,

1, k=0,

0, k#n,
D’(1)=

1, k=n,

symmetry between white and black =, D(t)= D’_k(1--t)

extensions to multiple urns

extensions to urns with multiple colors

= D’"(s,t)= D’/’(s)D’(t)

D(O, v)= fO’ O,

D’(v), i=0,

o,.D.(u, O)= D, (u), j=O,

l_u)=/0, i+j# n,
D(u, D’(u), i+j= n.

relationship between first n and first n+l picks =:> D:+(t)=f,(t)D,(t)+s’_l(t)D,_l(t),
(recursion) f (t)+ s, (t)=

polynomial function =, D’(t) infinitely ditterentiable

expectation = , kD’( t) nt

raising degree D’(t)=[(n+ 1-k)/(n+ 1)]D,+’(t)
+[(k + 1)/(n + 1)]D,l(t)

similarity to Bernstein polynomials :=> {D,(t)} satisfy Descartes’ law of signs
in the interval (0, 1),

{DT,(t)} are a polynomial basis

Comparing Table 2 with Table 1, we see immediately that a curve

P( t) , D(t)Pk,

which uses one of Polya’s urn distributions {D,(t)} for its blending functions will
automatically have all of the following geometric properties: 1. well-defined, 2. convex
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hull, 3. smooth, 4. interpolates end points, 5. extends to surfaces (a. rectangular, b.
triangular), 6. symmetry, 7. geometric construction algorithm, 8. exactly reproduces
points and lines, 9. nondegenerate, 10. subdivision algorithm, 11. augmentation
algorithm and 12. variation diminishing.

Missing are only local control and an explicit subdivision algorithm.
We cannot hope for local control in the sense of 2.13 since the functions DT,(t)

do not have local support; even the classical Bezier curves fail to allow this kind of
local control. However for curves which admit a subdivision algorithm, we can achieve
a degree of local control by using the subdivision algorithm to isolate unsatisfactory
segments. Changes to control points will then have only a local effect though we may
lose some derivatives at the joints.

Since the functions {DT,(t)} form a polynomial basis, we know that there always
exist constants {D’k(r)} such that

D’(rt) Di’k(r)D’(t).

However to actually subdivide a specific curve, we need explicit formulas for the
constants {D’(r)}. We shall now show that, for the binomial distribution,

B’( r) Bi r).

PROPOSITION 3.2. The binomial distribution satisfies the identity

B’(rt) =2 B(r)B’(t).
k

Proof. This proof is based on Polya’s urn model (a 0) of the binomial distribution.
Consider two binomial urns: one with red and blue balls, the other with white and
black balls. Let

r probability of selecting a red ball from urn 1,

probability of selecting a white ball from urn 2.

red

blue

white

black

urn urn 2

FIG. 4. Super urn.

Place these two urns into a super urn. A selection from the super urn consists of
selecting one ball from each regular urn, inspecting the colors, and replacing the balls
(see Fig. 4). The super urn is also a binomial urn and

rt probability of selecting a red-white combination
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Therefore,

B’(rt) =probability of selecting exactly red-white
combinations in n trials- (probability of selecting exactly k white balls
k in n trials)

X (probability of selecting exactly red balls during
the k trials where the white balls were chosen)

Y’. Bk r)B,( t) [-I

When the small urns model the binomial distribution, then so does the large urn
since both small and large urns employ sampling with replacement. However when
the small urns model some other Polya distribution {D(t)} with a # 0, then the large
urn will no longer model this same distribution since the addition of new balls into
the two small urns has a very different effect on the composition of the super urn.
Therefore this identity is not generally valid for arbitrary Polya distributions. Indeed,
for arbitrary Polya distributions, we do not yet have explicit expressions for D"k(r).

For Bezier curves the subdivision algorithm is intimately related to the geometric
construction algorithm which generates the points {P(r)}. Indeed it is the points
{p0k(r)} which actually subdivide the Bezier curve at P(r) [7]. Since arbitrary Polya
distributions also give rise to a geometric construction algorithm, it may be that the
points {pok(r)} also subdivide these curves at P(r). As yet this is still an open question.

The Polya distribution has a free constant a. By varying this free constant, we
can alter the shape of our curves without moving our control points. We would like
to understand the geometric impact of increasing the value of a. Consider then what
happens in the limit when a is actually infinite. In this case after the first pick, we
must add an infinite number of balls of the selected color to the urn. Therefore, with
probability 1, all the balls selected after the first trial will be of the same color as the
ball selected on the first trial. Hence

lim D(t)
a--)

Thus,

D01(t) 1 t, k 0,
O, k#O,n,
V(t)=t, k=n.

lim P(t) = 1 t)Po + tPn.

Therefore the effect of increasing a from 0 to is simply to flatten a Bezier curve
into a straight line (see Fig. 5).

P2

FIG. 5. Polya curves ]’or different values of a (n 3).
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4. Other probabilistie models. The main theme of this paper is that the blending
functions of computer aided geometric design are discrete probability distributions.
Therefore if we know what properties we wish to build into our curves, we can construct
probabilistic models to generate the required blending functions.

Conversely, starting with a discrete probability distribution, we can study the
geometric properties of the curves that it generates. If these properties are sufficiently
interesting, then eventually applications may be found for these curves in computer
aided geometric design. For example, we could begin with the following variation of
Polya’s urn model.

Generalized Polya’s urn. Consider an urn containing w white balls and b black
balls. One ball at a time is drawn at random from the urn and its color inspected. It
is then returned to the urn and c balls of the same color and ca balls of the opposite
color are added to the urn.

Again this urn model gives rise to a collection of probability distributions D’(t).
However while some properties of the original Polya urns, like the symmetry between
white and black, are retained, other properties, like adding only balls of the selected
color, are abandoned. This change implies that the corresponding curves will no longer
pass through the designer’s end points. If, for some reason, the user wishes to relax
this end point condition, then this model may generate just the blending functions he
requires.

Or consider the classical Poisson model.
Poisson model. Certain events occur at random times. Their occurrences are such

that:
1. The number of events occurring in two disjoint time intervals is independent.
2. There is a fixed constant a such that when At is small, the probability of one

event occurring in time At is approximately aAt.
3. The probability of more than one event occurring in time At is negligible when

At is small.
For each fixed value of a, the Poisson model gives rise to a probability distibution

D(t) probability of k events occurring in the time interval (0, t).

It is a well-known fact [1] that, explicitly,

Dk(t)=e-
(at)k
k!

t>=O"

Moreover it is easy to show either by direct probabilistic arguments or from the explicit
formula for Dk(t) that the Poisson distribution has the following properties [1]:

1. E Dk(t)= 1, t=>0.
2. Dk(t)>=O, t>=O.
3. Dk(t) is infinitely differentiable.
4. Dk(O) {: kO,k=O.
5. Dk(r+ t)=i+=k Di(r)D(t).
6. kDk(t)-at (expectation).
7. {Dk(t)} are linearly independent.
8. {Dk(t)} satisfy Descartes’ law of signs in the interval (0,

Therefore curves

P( t) , Dk(t)Pk,

which use a Poisson distribution as blending functions automatically have the following
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geometric properties: 1. well-defined, 2. convex hull, 3. smooth, 4. interpolates initial
point, 5. extends to surfaces, 6. subdivision algorithm, 7. exactly reproduces points
and lines, 8. nondegenerate and 9. variation diminishing.

Since they require an infinite sequence of control points, Poisson curves can have
neither symmetry, nor a geometric construction algorithm, nor an augmentation
algorithm. Nor do the functions Dk(t) have local support. Hence there is no local
control in the sense of 2.13. However for N large and small, DN(t) is negligibly
small. Therefore if the points {Pk} are bounded, then the points {Pk}, k > N, have little
effect on the curve near 0. Also

(-1)j-k a, k<-j,

SO

P(J)(O) aJ (--1)J-k( )Pk
Therefore just like Bezier curves (see 2.13), the jth derivative of a Poisson curve at
t- 0 depends only on its first j / 1 control points.

We can use these formulas to calculate the curvature and the torsion of a Poisson
curve at t-0. For curvature we have

K(0)
IF’(0) x P"(0)l I(P,-Po) x

ip,(o)13 i(p,_po)13

and for torsion

P’(0) [P"(0) x P’"(0)] (P1-Po)" [(P:-P1) x (P3-P:)]
T(0) [P’(O)P"(O)I2 I(P- Po) x (P2- P)l2

Notice that the curvature depends only on the first three control points and the torsion
only on the first four; moreover both are independent of a. The comparable formulas
for Bezier curves (see 2.13) are

(n 1) I(Pa P0) x (P2- P1)I
K(0)

n I(P1- P0)] 3

(n 2) (P, P0)" [(P:- P1) (P3- P:)]
T(0)

n I(P1- Po) x (Pe- P1)I:
Therefore

lim Bezier curvature (0) Poisson curvature (0),

lim Bezier torsion (0)= Poisson torsion (0).

Poisson curves are actually limiting cases of Bezier curves. Indeed let n- o and
t- 0 in such a way that lim (nt) exists and is finite. Then it is a well-known fact [1] that

lim binomial distribution (t)= Poisson distribution
t0

lim (nt) ].
For this reason the Poisson distribution is often used to approximate the binomial
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distribution when n is large. Therefore it follows that

lim Bezier [Po,""", P,,](t)= Poisson [Po, P1,"" .][ lim (nt)].t0 t-O

Thus one possible application of Poisson curves could be as a quick approximation for
Bezier curves of high degree.

Poisson curves are different from the classical curves of computer aided geometric
design because they use an infinite number of control points. Clearly some truncation
will be required before these curves can be effectively employed. Therefore the
convergence properties of Poisson curves need to be carefully understood before they
can be applied directly to problems in computer aided geometric design.

5. Conclusions and questions. Probability theory is the key to deeper insight into
many of the curves and surfaces of computer aided geometric design. Many geometric
properties of these curves and surfaces are just reflections of corresponding probabilistic
properties of their blending functions. Thus rather than derive these geometric proper-
ties from explicit representations of the blending functions, we have tried to give
arguments based on their probabilistic interpretations. These arguments are simpler,
more general, more natural and more elegant. By adopting this high level perspective,
we have realized a deeper level of understanding.

Still, many questions remain. We must clarify the relationship between geometric
construction algorithms and subdivision algorithms. For curves P(t) which use one of
Polya’s urn distributions as blending functions, do the points {p0k(r)} always subdivide
the curve at P(r)? If not, can we indeed construct simple, general, subdivision
algorithms? How?

As yet, we have been unable to derive the variation diminishing property from
purely probabilistic considerations. Can this be done? We believe that the answer is
yes because Descartes’ law of signs can be interpreted as a statement about the
expectation of a sequence of scalars Co,’", c with respect to a discrete probability
distribution {D(t)}. However so far we have met with little success in this direction.

Differential conditions--tangents, curvature, torsion--still elude direct probabilis-
tic interpretations. Is there anything that probability theory can tell us about these
critical conditions?

We have shown that the classical expectation of a discrete distribution is related
to the geometric property of exactly reproducing straight lines. What is the geometric
significance of the variance, or of the standard deviation, cr of the higher order means
of a discrete distribution?

Laplace and Fourier transforms play a fundamental role in probability theory.
Do they also have an important role in computer aided geometric design?

Finally, we have looked only at discrete probability distributions. What precisely
is the role of continuous probability distributions in computer aided geometric design?

Appendix: Polya’s urn model and Descartes’ law of signs. In this appendix we
shall give an elementary proof of the fact that the discrete probability distributions
D)(t),..., DT,(t) generated by Polya’s urn model satisfy Descartes’ law of signs in
the interval (0, 1). It then follows automatically from Theorem 2.2 that curves which
use these polynomials as blending functions are necessarily variation diminishing.

To begin, recall that a collection of functions Fo(t),"’, Fn(t) is said to satisfy
Descartes’ law of signs in the interval (a, b) iff for every collection of constants Co," , cn

zeros in (a, b) [Y CkFk(t)]<=sign alternations of (Co,’", c).
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THEOREM A.1 (Descartes). The power functions 1, t,..., t" satisfy Descartes’
law of signs in the interval (0, oo).

Proof. See [12]. [3

LEMMA A.1. Let Po," Pn be a collection of positive constants, and let

Fk(t) =pkEk(t), k=0, 1,..., n.

Then Fo(t)," .,Fn(t) satisfy Descartes’ law of signs in the interval (a,b) iff
Eo(t), E(t) satisfy Descartes’ law of signs in the interval (a, b).

Proof. Suppose that the functions Eo(t),".., E,(t) satisfy Descartes’ law of signs
in the interval (a, b). Then

zeros in (a, b) [ CkFk(t)]=zeros in (a, b) [ CkPkEk(t)]

<= sign alternations (poCo, , pc)
sign alternations (Co,. , cn).

Therefore the functions Fo(t),’.., F(t) satisfy Descartes’ law of signs in the interval
(a,b).

Conversely if the functions Fo(t),’", F(t) satisfy Descartes’ law of signs in the
interval (a, b), then by what we have just proved the functions Eo(t),..., E(t) must
also satisfy Descartes’ law of signs in the interval (a, b) since

Eg(t) l---Fk(t).
Pk

LEMMA A.2. Let p, q be positive constants, and let

E(t), j k,
t)

pEk(t)+qEk+/-l(t), j= k.

If Eo(t),’" ",E(t) satisfy Descartes’ law of signs in the interval (a,b), then
Fo(t)," , F(t) satisfy Descartes’ law of signs in the interval (a, b).

Proof. To be specific, suppose that

Then by construction

where

Therefore since p, q > 0

Now if

then

Fk( t) pE( t) + qEk+l( t).

’, cF( t) ’, s]E( t),

c,
Sj 1pCk,

I Ck+ + qCk,

j#k,k+l,

j=k+l.

sgn (sj)= sgn (c), j#k+l, sgn (Sk+l)=sgn (Ck)or sgn (Ck+l).

sgn (s+1) sgn (Ck+1)

sign alternations (Sk, Sk+l, Sk+2) --sign alternations (Ck, Ck+l, Ck+2).
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On the other hand, if

then

sgn (Sk+I) sgn (Ck)

sign alternations (Sk, Sk+l, Sk/2)=sign alternations (Ck, Ck, Ck+2)

_-<sign alternations (Ck, Ck+l, Ck+2).

Therefore in general

sign alternations (So,. , sn) <----sign alternations (Co,. , cn).

Now suppose that the functions Eo(t),’", En(t) satisfy Descartes’ law of signs in the
interval (a, b). Then

zeros in (a, b) [ cjF(t)] zeros in (a, b) [Y, sjE(t)]
-<_ sign alternations (So,. ,
-<_ sign alternations (Co,. , cn).

Therefore the functions Fo(t),".., Fn(t) satisfy Descartes’ law of signs in the interval
(a, b). An exactly analogous argument works if

Fk t) peg t) + qEt-i t).

We now introduce the following notation:

BT(t) ( nk)tk(1- t) n-k, b’(t) tk(1-- t) n-k,

D,(t)=(nk) t. [t+(k-1)a](1-t) [(1-t)+(n-k-1)a]
(l+a)-.. [l+(n-1)a]

d’(t) t. [t +(k-1)a](1- t) [(1-t)+(n-k-1)a].

The polynomials B(t) are the Bernstein polynomials, and the polynomials D,(t) are
the polynomials which define the discrete probability ditributions generated by Polya’s
urn model (see 3). The functions b’(t),.d,(t) are just these same polynomials with
their constant coefficients stripped off. By Lemma A.1, to prove that the polynomials
B(t),... ,B",(t) (D(t),... ,D,(t)) satisfy Descartes’ law of signs in the interval
(0, 1), it is enough to prove that the polynomials b(t),..., b’(t) (d(t),..., d,(t))
satisfy Descartes’ law of signs in the interval (0, 1). This we now proceed to do.

THEOREM A.2 (Polya and Schoenberg). The Bernstein polynomials
B(t),. ., B",(t) satisfy Descartes’ law of signs in the interval (0, 1).

Proof. Since it is short, we repeat the proof given in [10]. By Lemma A.1, we
need only prove this result for the polynomials b(t),. , b,(t). Now let u t/(1 t).
Then by Theorem A.1

zeros in (0, 1) [ Ckb’(t)]=zeros in (0, 1)[Z cktk(1--t) n-k]
[, Ckt

k (1 t)
zeros in (0, 1)

(1-0

zeros in (0, ) [ CkU
k

_--< sign alternations (Co," , cn).
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Therefore the polynomials b(t),. , b(t) satisfy Descartes’ law of signs in the interval
(0,1). V!

THEOREM A.. Thepolynomials D)( t), , D,( t) which define the discrete proba-
bility distributions generated by Polya’s urn model satisfy Descartes’ law of signs in the
interval (0, 1).

Proof. By Lemma A.1 we need only prove this result for the polynomials
dg(t),..., d(t). Now we have just proved a special case of this result since Theorem
A.2 is the case where a 0. The idea of the general proof is to start with the collection
of functions bg(t),..., b,(t) (a =0), and step by step to transform these functions
into the functions dg(t),..., d,(t) (a>0) all the while retaining Descartes’ law of
signs. That is, we shall construct sequences of functions Fog(t),’’’, F,k(t) 0 <= k <= L
such that:

a. Foo(t), F,o(t)= b(t),. b,(t);
b. Fo(t)," F(t)= d(t),. d(t);
c. Fog(t),’", Fk(t) satisfy Descartes’ law of signs in the interval (0, 1).

We proceed as follows:
1. The first sequence is obtained from b(t),..., b",(t) by replacing one factor

of by (t+a) in the function b(t); thus

b(t), ] n,
Fl(t) l (t +. b,(t), j=n.

2. The second sequence is obtained from the first sequence by replacing one factor
of by (t+a) in the function b,_(t).

3. Continue in this fashion down to b(t), each time replacing one factor of by
(t + a); this procedure generates (n 1) sequences o functions.

4. Now return to [(t+a)/t]b(t) and change one factor of to (t+2a).
5. Continue in this fashion down to [(t + a)/t]b(t), each time changing one factor

of to (t/2a); this procedure generates (n-2) new sequences of functions.
6. Repeat this procedure for the terms (t+ 3a),. , (t+[n- 1]a).
7. The last step generates the sequences of functions Eo(t),’", E,(t) where

Ek(t)--t(t+a) (t+[k-1]a)(1-t) "-k.
Let us stop here for a moment and show that every sequence of functions which we
have generated so far satisfies Descartes’ law of signs in the interval (0, 1). The proof
is by induction. Certainly by Theorem A.2 the 0th sequence satisfies Descartes’ law
of signs in the interval (0, 1) since the 0th sequence is just b(t),..., b(t). Now
suppose that a sequence G0(t), , G, (t) satisfies Descartes’ law of signs in the interval
(0, 1), and consider the very next sequence Ho(t),’.., H(t). By construction if

Gk-l(t) t(t + a) (t +ja)tk-J-2(1 t) "-k*l,
Gk(t)= t(t+a) (t+ja)tk-j-l(1--t)n-k,

Gk+l(t) t(t + a) (t +]a)(t +[j+ 1]a)tk--l(1 t) n-k-l,
then

Hi(t) Gi(t), k,

Hk(t)= t(t+a) (t+ja)(t+[j+ l]a)tk--(1--t)n-k
Gk(t)+(j+ l)at(t+ a) (t+ja)tk--2(1--t) "-k.
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But notice that

Therefore

Gk(t)+ Gk-l(t)= t(t+ a) (t+ja)tk-J-2(1 t) n-k.

Hk(t) =[1 +(j+ 1)a]Gk(t)+(j+ 1)aGk-l(t).

Since by assumption a > 0 and G0(t)," , Gn(t) satisfy Descartes’ law of signs in the
interval (0, 1), it follows by Lemma A.2 that the functions H0(t)," , H, (t) also satisfy
Descartes’ law of signs in the interval (0, 1). Thus the property of satisfying Descartes’
law of signs in the interval (0, 1) propagates down to the last sequence E0(t)," , En (t).

Now apply the same construction to the factors (1- t). That is, starting with E0(t)
replace one factor of (1- t) by (1- + a). Continue this procedure down to En-2(t)
generating (n-l) new sequences. Then return to [(1-t+a)/(1-t)]Eo(t) and repeat
the preceeding construction for the terms (1 + 2a),. , (1 + n 1 ]a). The same
argument as before shows that each sequence along the way must satisfy Descartes’
law of signs in the interval (0, 1). But the last sequence is exactly d(t),..., d,(t).
This completes the proof, l-1

COROLLARY A.1. Every curve P(t)=Y D’(t)Pk, which uses a distribution gener-
ated by Polya’s urn model for blending functions, is variation diminishing.

Proof This result is an immediate consequence of Theorem A.3 and Theorem 2.2.
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A SIMPLE GAME WITH NO SYMMETRIC SOLUTION*

MOHAMED A. RABIES"

Abstract. This paper presents an n-person simple game in characteristic function form for which no
von Neumann-Morgenstern solution (stable set) exhibits the symmetry of the characteristic function, for
n=9.
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1. Introduction. The following basic question was raised by L. S. Shapley at the
Fourth International Workshop on Game Theory in 1978 [5]. Does every simple game
have a solution that retains the symmetry of the game?

In this paper we answer this question in the negative by exhibiting simple games
that have no symmetric solutions. These are either nonproper or nonstrong. It remains
an open question whether every simple, strong and proper game has a symmetric
solution.

Section 2 contains definitions. Section 3 describes the games and outlines the
proof of the nonsymmetry of their solutions.

2. Definitions. We describe a game by its characteristic function v, which is a
mapping from the set of subsets of the player set to the real numbers. A simple game
(see [8] and [9]) has a characteristic function that takes on only the values 0 (on losing
coalitions) and 1 (on winning ones).

We will consider games in which adding a player to a winning coalition preserves
the winning property, so that the characteristic function is monotone increasing. A
proper game does not have two disjoint winning coalitions. A strong game is one with
no two losing coalitions whose union is the entire player set.

The symmetry group of a game is the set of permutations of players that preserve
the characteristic function. An imputation is a nonnegative valued vector that sums to
one, whose components correspond to the players. An imputation Xdominates another
imputation Y, if X’s components are strictly greater than Y’s on a winning coalition.
A solution of a game is a set of imputations, no one dominating another, that among
them dominate all other imputations. The condition that no imputation of a solution
dominates another is called internal stability; that every other imputation is dominated
is called external stability. Some games have many solutions ([7], [9]) and some have
few ([2], [4]) or none at all ([3], [6]).

Every simple game has at least one solution, which we can obtain by taking all
imputations whose support is contained in some minimal winning coalition.

A symmetric solution is a solution that is fixed by the symmetry group of the game.

3. The example. We first present a simple and strong, but not proper nine-person
game that has no symmetric solution. This corresponds directly to a ten-person proper
but not strong game with the same properties.

* Received by the editors March 31, 1981, and in revised form September 15, 1983. This research was
supported in part by the Office of Naval Research under contract N00014-75-C-0678 NR 047-094 at
Cornell University.

" Sana’a University, Department of Mathematics, Faculty of Sciences, Sana’a, Yemen Arab Republic.
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We number the players 1,. , 9. In this game, all coalitions of three or more players
win except (1, 2, 3), (4, 5, 6) and (7, 8, 9).

If we add a tenth player and insist that the winning coalitions include him along
with the sets of three or more players as indicated among the nine, we obtain a proper
but not strong game with the same properties. (See Gillies [1].)

We now prove the nonexistence of a symmetric solution to these games.
THEOREM 1.. The nine-person game just described has no symmetric solution.
Proof. It is obvious that no imputation that dominates an image of itself under a

symmetry operation can belong to a symmetric solution without violating the internal
stability of that solution. This severely limits the form of "allowable imputations" that
can belong to such a solution, as follows:

1. No allowable imputation can take on two distinct values on each of (1, 2, 3),
(4, 5, 6) and (7, 8, 9). (Otherwise on the winning coalition consisting of the inverse
image of the larger of these values it dominates any imputation obtained by switching
those players with the inverse images of the smaller values.)

2. An allowable imputation that takes on two distinct values on two of (1, 2, 3),
(4, 5, 6) and (7, 8, 9) (say the first two) must have the form (a, b, b, c, b, b, b, b, b) up
to permutations.

From the previous step the allowed values are (a, b, c, d, e, f, g, g, g).
If the first three values were all distinct we would arrange to have a > b > c, d > e

and by permuting 3--) 2--) 1 3, and 5 4 5, arrange to obtain an imputation domi-
nated by the original one on (1, 2, 4). This limits the allowed form to (a, b, b, c, d, d,
e, e, e).

If b e, say b < e, we may permute (1, 2, 3) with (7, 8, 9) and 4 with 5, again
obtaining dominance on a winning coalition (8, 9, 4) or (8, 9, 5).

3. An allowed imputation that is constant on two of (1, 2, 3), (4, 5, 6) and (7, 8, 9)
takes the same value on both and therefore has the form (a, b, c, d, d, d, d, d, d) up
to permutations. Moreover all of a, b, c must be greater than d, or all less than d, or
one must equal d. These follow by arguments similar to those above, which we leave
to the reader.

A symmetric solution must therefore consist of imputations that, up to permuta-
tion, have the form (a, b, c, d, d, d, d, d, d), (a, b, b, c, b, b, b, b, b) or (a, b, c, b, b, b,
b,b,b).

Moreover, such a solution can contain imputations having only exactly one value
of d in the former form or b in the latter form, and if both forms were present these
would have to have the same value. Otherwise the solution would obviously lack
internal stability.

It is necessary that each of the following imputations be in or be dominated by
an imputation in such symmetric solution"

I=(,,-,-,-,-, 0,0,0)

II=(,,O,-,-, O,-,-,0)
III=(,-,-,-,-,-,-,-,-)
IV=(-},-,, ,-,-,-,-,0).
The choice - (imputation I) fails to be a solution since it does not dominate

imputation II. In order to dominate I then we must have a >- for some imputation
in the solution. To dominate III a solution of the first form would have to have -> d > -;
since, by the remarks above, a, b and c would all have to be larger than d the entries
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in this imputation could not possibly sum to one, so that the first form cannot
occur.

In either of the other two forms, domination of I requires a >-, of III requires
b > , and of IV requires b or c > . These requirements are incompatible with the
condition that a + c + 7b 1, which completes the proof.

Acknowledgments. The author would like to thank William Lucas for sugges-
tions and valuable comments, as well as Daniel Kleitman and W. T. Trotter for major
editorial assistance.
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DECOMPOSITION OF FUZZY MATRICES*

HIROSHI HASHIMOTO"

Abstract. A problem of decomposition of fuzzy rectangular matrices is examined and some properties
of decomposition are shown. Any fuzzy matrix can be factored into a product of a square matrix and a
rectangular matrix of the same dimension. This square matrix has reflexivity and transitivity. The decomposi-
tion of fuzzy matrices is closely related to fuzzy databases and fuzzy retrieval models.

1. Introduction. We consider decomposition of fuzzy rectangular matrices. It is
shown that any fuzzy matrix is factored into a product of a square matrix and a
rectangular matrix of the same dimension. This square matrix has reflexivity and
transitivity, so that it is a matrix which represents a preorder [2], [8]. The decomposition
of fuzzy matrices is closely related to fuzzy databases and fuzzy retrieval models.

2. Definitions. Some operations and notation are defined. For x, y in the interval
[0, 1 ], x + y, xy, x- y, x. y are defined as follows.

x + y max (x, y),

xy min (x, y),

{ ifx>y,
x-y

if x_<- y,

{lxifX>=Y,x,y=
if x<y.

Next we define some matrix operations on fuzzy matrices whose elements exist
in the interval [0, 1]. Let A=[ai] (ren), B=[bi] (ren), F=[fi] (nl), and
R =Iraqi (n n). Then the following operations are defined.

A’ [a] (the transpose of A).

A _-< B if and only if aq _-< b for all i, ].

AR -R-R’.

Furthermore some special types of fuzzy matrices are defined [2], [8]. A matrix
R is said to be transitive if R_-< R. A matrix R, all of whose diagonal elements are
one, is called reflexive. Conversely a matrix R, all of whose diagonal elements are
zero, is called irrefiexive. A matrix R is nilpotent if R -0 (0 is the zero matrix). We
deal only with fuzzy matrices.

3. Results. Using the operations defined above we construct a square matrix
which represents a hierarchy of rows of a given rectangular matrix. This matrix has

* Received by the editors November 24, 1982, and in revised form October 11, 1983.

" Faculty of Economics, Yamaguchi University, Yamaguchi City, 753 Japan.
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reflexivity and transitivity, and plays an important role in decomposition of the matrix.
We show some properties of the square matrix. Then we prove some theorems and
propositions on the decomposition of fuzzy matrices.

LEMMA 1. If A--[aij] is an m x n fuzzy matrix, then A,A’ is reflexive and
transitive.

Proof. Let S [sii] A A’. That is,

Clearly

Sq (aik*ajk).
k=l

sii 1-I aik * aik 1.
k=l

Thus S is reflexive.
Suppose that SilSlj C > 0 for some I. Then

Sit 1-I aik * alk >- c,
k=l

Slj I alk * ajk >= C.
k=l

If sij < c, then

aih aih and aih < C

for some h. Therefore since Sil C and Sli >= c we have

C aih alh >= aih,

which is a contradiction. Hence si => c, so that S is transitive.
Letting Ai be the ith row of A, if Ai >- A, then sii 1, where si is the (i, j) entry

of S A, A’. Hence the matrix S represents inclusion among the rows of A. In other
words, S gives the hierarchy of the rows of A. The hierarchy is reflexive and transitive.
This fact becomes clearer if A is Boolean [3].

A reflexive and transitive relation is called a preorder, which has some interesting
properties [2], [8]. If an n n fuzzy matrix R is reflexive and transitive, then as is
well-known R is idempotent, that is, R2= R.

PROPOSITION 1. Let S [sii] be an m m fuzzy matrix. Then the following condi-
tions are equivalent.

(1) The matrix S is reflexive and transitive.
(2) S,S’=S.

Proof. (1) implies (2). Suppose that

1-I (s s) c > 0.
k=l

Then by setting k j we have sij -> c. Next we show that S <= S, S’. Suppose that
sii c > 0. If sil < c and sit < Sit for some l, then

Si SiSjl CSjl CSil Sil
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so that Sil Sjl which is a contradiction. Hence

II (si * s) => c,
k=l

so that S _-< S, S’.
Equation (2) implies (1). This is clear from Lemma 1.
LEMMA 2. If A [a/j] is an m n fuzzy matrix, then

(A,A’)A=A.

Proof. Let B [bq] (A A’)A. That is,

b/j E l-I (all * akl)aki.
k=l /=1

By Lemma 1, A, A’ is reflexive, so that A <= B. We show that B =< A. Suppose that
bq > aq. Then

fi ail * ahl) > aij, ahj > a/j,
/=1

for some h. For l= j we have

aq ahj > aq,

so that aq >-ah, which is a contradiction. Hence bq <-aq. 71
In the language of information retrieval [5], [7], A is called a fuzzy term-document

matrix. Then A, A’ is considered to be a fuzzy term-term matrix which represents a
hierarchy of terms. However since A A’ is obtained by using A, if we multiply A A’
by A, any information is not added to A. That is, the product (A, A’)A is equal to A.

LFMMA 3. IfA [aq] is an m x n fuzzy matrix and S [sq] is an m x m transitive
matrix, then

SA=S(A-OA),

where 0 [q/j] is an m x m nilpotent matrix such that 0 <--S.
Proof. Let

B bq] SA, C=[cq]=S(A-OA).

That is

bq= Z Sikak, C/j= Y Sik akj--, qktatj
/=1 k=l I=1

Since it is clear that c/j <-b/j, we show that bq <= Cij. Suppose that b/j b > 0 and c/j < b.
Then

Sil(O b, al(o)j >= b

for some k l(0). Since bq > c/j, we have

., qt(o)la0 >---- at(o) >- b.
/=1

Thus

qt(o)t(1)>= b, at(1)j >-- b, Sl(o)l(1)>: b
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for some l(1). Therefore

Since b > cq, we have

Thus

for some /(2). Therefore

( > b.Sil(1 >=. b, al(1)j >- b, q(o)(1)

qt(llat. >= at( >= b.
/=1

ql(1)l(2) b, al().)] >- b, Sl(1)l(2) >-- b

Sil(2 > b, al(9.)j > b, ..(2) > b.t,//(0)/(2

By repeating the same argument

(m) > b.Sil(m >-- b, al(m)j >= b, ql(O)l(m)

This contradicts the fact that Q is nilpotent. Hence
Similarly, we obtain the following lemma.
LEMMA 4. If A is an m x n fuzzy matrix and R is an n x n transitive matrix, then

AR =(A-AP)R,

where P is an n x n nilpotent matrix such that P <-R.
The above lemma is very useful for retrieval models [5], [7]. That is, A is a

document-keyword matrix and the matrix R plays a role of a fuzzy thesaurus.
THEOREM 1. If A is an m x n fuzzy matrix, then

A=(A,A’)(A-OA),

where 0 is an m x rn nilpotent matrix such that 0 <= A, A’.
Proof. By Lemma 1, A, A’ is transitive. Therefore by Lemma 3

(A A’)A (A A’)(A- OA).

Using Lemma 2, we have

A (A A’)(A- QA). V1

The above theorem shows that any fuzzy matrix can be factored into a product
of two matrices. Decomposition of matrices is important to simplification of various
systems.

Similarly we obtain the following theorem.
THEOREM 2. If A is an m x n fuzzy matrix, then

A (A AP)(A’ A)’,

where P is an n x n nilpotent matrix such that P <- A’ A)’.
Since an irreflexive and transitive matrix is nilpotent, the following two corollaries

are obtained.
COROLLARY 1. If A is an m x n fuzzy matrix, then

A=(A,A’)(A-QA),

where Q is an m x m irreflexive and transitive matrix such that Q <-A, A’.
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COROLLARY 2. If A is an rn x n fuzzy matrix, then

A=(A-AP)(A’,A)’,

where P is an n n irreflexive and transitive matrix such that P <= (A’, A)’.
LEMMA 5. Let S =[sq] and O =[qq] be m m transitive matrices. If S <= Q, then

S-O’ is irreflexive and transitive.

Proof. Let H [hq] S- O’. That is,

hq sq-

Then

hii sii qii O,

so that H is irreflexive. Next suppose that

hikhki C > O.
Then there are two cases.

Case 1. sik c, sk > q, skj >= c.
Case 2. sk >- c, sk c, sk > qk.
Clearly so -> c. Suppose that qi >= c. In the first case

qki >= qkjqii >= C,

which is a contradiction. Furthermore, in the second case

qjk >= qiqik >= C,

which is a contradiction. Hence qi < c, so that hq >-c. That is, H is transitive.
By Lemma 5 we obtain the following lemma.
LEMMa 6. If S is an m m transitive matrices, then AS is irreflexive and transitive.
The operation/x is useful for a discussion of preferences and has some important

properties [4]. Now we obtain the following two corollaries by Theorem 1, Theorem
2, and Lemma 6.

COROLLARY 3. If A is an m n fuzzy matrix, then

A (A A’)(A- ASA),

where S A A’.
COROLLARY 4. If A is an m x n fuzzy matrix, then

A=(A-AR)(A’,A)’,

where R A A)’.
PROPOSITION 2. IfA is an m x n fuzzy matrix and F is an n x fuzzy matrix, then

AF=(A-AP)F,

where P is nilpotent and P <= F, F’.
Proof. By Lemma 4

By Lemma 2

Hence

(A-AP)(F , F’) A(F , F’).

(F*F’)F =F.

(A- AP)(F F’)F A(F , F’)F,
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so that

(A-AP)F AF. 3

PROPOSITION 3. IfA is an m x n fuzzy matrix and F is an n x fuzzy matrix, then

AF A(F- PF),

where P is nilpotent and P <= (A’ , A)’.
Using Proposition 2 and Proposition 3 we have the following two propositions,

respectively.
PROPOSITION 4. IfA is an m x n fuzzy matrix and F is an n x fuzzy matrix, then

AF=(A-AaR)F,

where R F F’.
PROPOSITION 5. IfA is an m x n fuzzy matrix and F is an n x fuzzy matrix, then

AF=A(F-ARF),

where R A A)’.
The following proposition is obvious, but it is useful for the decomposition of

fuzzy matrices.
PROPOSITON 6. Let A [aij] be an m n fuzzy matrix and let F [fj] be an n x

fuzzy matrix (n >- 2). If

E a,kfk >- a,pfpj

for all i, , then deleting both the pth column ofA and the pth row ofF does not change
AF.

Example 1. Let

0.6 0.5 0.110.1 0.2 0.2 0.1
0.2 0.4 0.6 0.3

We decompose A by Corollary 3. Then

S=A,A’
1
0.2
0.4

AS= [i.4
0.1

ASA= 0
0.1

0.2
0
0.4

0.2
0
0.4

A-ASA
0
0.1
0.2

0.6
0.2
0

0.1]0.1
1

0.1]0
0.1

0.5
0.2
0.6 0]0.1

0.3
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Thus A is decomposed as follows:

A=S(A-ASA)= 0.2 1 0.1 0.1 0.2 0.2 0.1
0.4 1 1 0.2 0 0.6 0.3

Using Proposition 6 (p 2) we have

1 0.1] [0 0.6 0.5
A= 0.2 0.1

0.2 0 0.6
0.4 1

4. Concluding remarks. Sanchez [6] introduced a matrix operation equivalent to
in order to solve fuzzy equations. He showed some interesting properties of the

operation. It is an important matter to solve fuzzy equations in the fields such as fuzzy
control [1 ].

Decomposition of rectangular fuzzy matrices may be useful for decomposition of
fuzzy databases. By the decomposition we can know a hierarchy of keys or attributes.
Decomposition of fuzzy matrices is closely related to reduction of fuzzy retrieval models.
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COMPLEXITY AND STABILITY IN COMPARTMENTAL MODELS*

GILBERT G. WALTERt

Abstract. Compartmental models, by which flows through various systems can be studied, have a dual
aspect: one structural and the other dynamic. The structural leads to a directed graph and may be analyzed
by means of graph theory. The dynamic leads to a system of differential equations which are usually linear.
The coefficient matrix in this case has a special form, that of the negative transpose of an M-matrix in which
the off diagonal elements are nonnegative and the columns add up to zero. Hence the eigenvalues have a

nonpositive real part.
If the digraph is weakly connected, the differential equation has a stable equilibrium solution; if it is

unilaterally connected, the solution is unique; if it is strongly connected, the solution is feasible as well. It
is possible to define various indices of stability which may then be shown to be related to indices of complexity
of the structure. However, it is also possible, by redirecting the flows, to show that a given model can be
reduced to a mammillary system with the same equilibrium solution. Hence any index of stability based on
the equilibrium solution has no relation to a complexity index based on the number of arcs per vertex.
Other stability indices, however, increase with increasing complexity.

1. Introduction. Compartmental models are used for the analysis and simulation
of systems arising in a number of diverse disciplines such as ecology, economics,
physiology, genetics, psychology, and chemistry. We shall be motivated mainly by
applications to ecology although our results could be used in these other disciplines
as well. While they are not the only models used in ecology, many of the others, such
as Lotka-Volterra equations, Markov chains, Leslie matrices and even logistic
equations can be interpreted as special cases of compartmental models.

The question with which we shall be concerned is the relation between the
complexity and stability of ecosystems. The conventional wisdom has been that more
complex systems are more stable. However, May [8] showed that for certain models,
the opposite can be true. We shall interpret this question in terms of compartmental
models with linear donor controlled flows. Some of the results which we present have
appeared in different form elsewhere [11], [12], [13], [14], [15], [16], [17].

The construction of a compartmental model is straightforward and highly intuitive.
The ecosystem (or any system) is partitioned into homogeneous compartments and
the flow of nutrients or energy (or of money, goods, electrons, radioactive tracers,
etc.) traced between them.

In order to keep the discussion general we shall refer to the flow of material
between compartments with the understanding that it could be any of those. Similarly
we shall be concerned as well with the level of material in each compartment. The
compartments are represented by boxes and the flow by arrows. (See Fig. 1.)

This representation is the graphical or structural aspect of the compartmental
model. Some information can already by gleaned from it at this stage. The theory of
directed graphs may be applied by interpreting the compartments as vertices and the
flows as arcs. However, in order to simulate or analyze a system, the model must be
quantified. This is done by studying the rate of change of the level xi of the ith
compartment in time. The flow between the ith and the jth compartment, designated
fj, is a rate, measured in quantity.of material per unit time.

* Received by the editors July 1, 1983, and in revised form September 27, 1983. This paper was

presented at SIAM 1983 National Meeting, June 1983, Denver, Colorado under the title, Stability and
structure of compartmental models.

t Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
53201.
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fPH

I,

fHC

fCD

FIG. 1. The flow of nutrients through a simple ecosystem. The nutrient input (fi) is taken up by plants
(P) some of which are eaten by herbivores (H) which in turn are eaten by carnivores C). Part of the nutrients

from each compartment flows to the detritivores D) which in turn make the nutrient available to the plants.

A differential equation describing the behavior of xi may be obtained by equating
the time rate of change of xi to the difference between the flow rates coming in and
those going out of the ith compartment, i.e.

dxi= fki--fij, i=l,2,...,n.(1.1)
dt k=O j=O

The subscript 0 denotes flows coming from or going to the outside of the system. The
f0 may be constant or variable in time and they may be and usually are, functionally
dependent on the x’s.

The most widely used assumption, in particular in physiology and medicine, is
that the functional form of the ]], the flow rate, is

(1.2) fij=aijxi, i=l,2,...,n, ]=0,1,...,n.

Very often, particularly in ecosystems, the use of the derivative is inappropriate
and a finite difference should be used instead. This happens, e.g. if diurnal data are
used. Then the equation (1.1) is replaced by

Axi fki fi, i= 1, 2,’’’, n,(1.3)
h k=0 i=0

where h is the time step and )i are the flow rates averaged over the time h. If
the equation (1.1) is written with the flow rates of (1.2), and if there are no flows
to or from the outside (i.e. the system is closed), then it can be expressed in matrix
form as

(1.4) d__X= AX
dt

where -A 7- is a singular M matrix. Similarly if the time step h in (1.3) is sufficiently
small, and the fj given by (1.2), it becomes

(1.5) AX hAX.

If, furthermore, the levels are normalized and Xk X(kh), then (1.5) becomes

(1.6) X+I PXk (I + hA)Xk
where P is a stochastic matrix. Thus we obtain a Markov chain version of the model.

The structure of a closed compartmental model can be represented by a directed
graph in which the compartments are vertices and the flows arcs. For example, Fig.
1, without the flow in, has the directed graph given in Fig. 2.
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P C

D
FIG. 2. The digraph of the compartmental model of Fig. 1.

In this work we first ( 2) present some results that are straightforward or well
known regarding the relation between the structure and the stability of the model. In

3, we study various measures of complexity and in 4 some measures of stability.
Finally in 5 we compare them to each other and study the effect on them of
transformations of the model.

2. Some basic properties. The results presented in this section are either well
known or not very complicated. We first observe that because of the nature of the
matrix A in (1.4), namely that the columns sum to zero, that the main diagonal
elements are nonpositive and that the off diagonal elements nonnegative, its eigen-
values, if not zero, must have a negative real part. This is a consequence of Gershgorin’s
theorem (see [7, p. 146] or [3]). Hence the solution to the differential equation
approaches an equilibrium solution X as , at least if the rank of A n 1. Even
if the rank <n- 1, the same conclusion follows (see [3, p. 45]). Moreover the equili-
brium solution X-> 0 if the initial vector is.

From the standpoint of ecosystems an important question is the determination of
which compartments will be zero and which will be positive ultimately. The answer
depends on the structure of the digraph.

A digraph (V, A) is classified as weakly connected, unilaterally connected, or
strongly connected if there exists respectively a complete semi-path, a complete path,
or a complete closed path (see [9, Chap. 2]). These are illustrated in Fig. 3.

2 1, "=2 1- 2

3 3 3

(a) (b) (c)

FIG. 3. Digraphs which are weakly connected (a), unilaterally connected (b), and strongly connected (c).

In the weakly connected case the equilibrium solution X depends on Xo and
will always have at least one empty compartment. This is clear in the case of Fig. 3(a)
since compartment 2 will ultimately empty out. In this case the matrix has the form

(2.1a) A= 0 -a-b 0
0 b 0

and there are two linearly independent equilibrium solutions.
In the unilaterally connected case the equilibrium solution depends only on the

magnitude of Xo. It will again have at least one compartment which ultimately will
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empty out. The matrix for the example in Fig. 3(b) has the form

(2.1b) A a 0
b 0

whence it follows that X= a[0, 1, 0] r.
For strongly connected digraphs the X is positive and again depends only on the

magnitude of Xo. The matrix looks like

The statements in the general cases are most easily proved using the Markov chain
version of the equations (1.6). The three cases lead to respectively, (a) an absorbing
Markov chain with multiple absorbing states, (b) an absorbing chain with one absorbing
state, and (c) a regular chain. The conclusions are then straightforward. (See [9], [11],
[].)

One could also use properties of M-matrices to reach the same conclusion
(See [3].)

3. Complexity. A recurring problem in ecology is the relation between the com-
plexity of an ecosystem and its stability. Most ecologists assumed the two concepts
went together, i.e. greater complexity was associated with greater stability. However
May [_8] in his 1973 monograph challenged this assumption and indeed showed that
for Lotka-Volterra models of ecosystems, the opposite is sometimes true. However
he did not consider compartmental models and used only the number of nonzero flows
as an indicator of complexity. For compartmental models another approach, which
appears in [16], is possible.

This alternate approach uses a family of complexity indices F which are similar
to diversity indices and some of which are based on information theory [10]. It uses
the Markov chain model (1.6) but takes the limit as h 0 to avoid dependence on the
time step.

DEFINITION 3.1 [16]. Let p be an element of the transition matrix P I + hA.
The weakness of p will be a monotone function of the form

(3.1)
w(p)=(p-"-l)/a, 0<a<-l, 0<p<=l,

w0(p) -log p, 0 < p <- 1.

DEFINITION 3.2 [16]. The a-complexity index, F, of a compartmental model, is
given by

(3.2) F lim ’ Pij

i=1 h-,O hw,,(h)

where the inner sum is taken over all such that pj 0.
Most of the properties of these indices are easily derived and may be found in

[16]. They are:
(i) F0 TrA,
(ii) F1 =number of arcs in the digraph,
(iii) F, EjEa-"), 0 < a < 1,
(iv) F.<=Fo ,O<a<l.
(v) F. <_--m Y X where {X} are the eigenvalues of A and m is the minimum

nonzero flow rate.
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3.1. Two reduction algorithms [15] [16]. It is possible to simplify a given compart-
mental model by reducing it to a mammillary system in a number of ways. We mention
two of them here, one of which leaves F0 invariant and the other of which leaves the
equilibrium solution X invariant. We shall assume that the digraph of our model is
in the form of an advanced rosette initially, i.e. is strongly connected and has a central
vertex lying on all cycles (simple closed paths). Most strongly connected ecosystem
models have this form. See Fig. 4.

4 3
FIG. 4. An advanced rosette digraph.

We number the vertices such that the central vertex is numbered 1 and the others
follow in such a way that the matrix A has the form

(3.3) A

all a12 a13 a14 aln

a21 a22 a23 a24 a2n

a31 0 a33 a34 a3n

a.1 0 0 0

That is, if we cross off the first row and column, the remaining matrix is upper triangular.
DEFINIn:ION 3.3. Let A be the matrix of a compartmental model whose digraph

is an advanced rosette. Let the digraph be modified by redirecting the arc (i, j) from
j to 1, 1 j 1. If B is the matrix corresponding to a sequence of such modifications,
then B is a O-reduction of A (or of the digraph or of the compartmental model).

For example, Fig. 4 may be changed to Fig. 5 by two such modifications.

4
FIG. 5. Modification to Fig. 4 by redirecting arc (3,2) to (3, 1) and (4,2) to (4, 1).

The effect on the matrix A is to replace aj, j <i by 0 and to add aj to all in the
latter’s position. Clearly the trace of A is invariant under this procedure and hence
F0 remains the same.

The other reduction procedure involves the augmented matrix used to find the
equilibrium solution whose (l’) length is 1:

(3.4) Aa

1 1 1 1 1

a21 a a23 azn 0

la 0 a a3n 0

ka,,1 0 0 ann 0

The effect of a single 0-reduction on Aa is to replace element ai, 1 < < j by 0.
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DEFINITION 3.4. An oo-reduction of Aa (or of the digraph or the compartmental
model) is a matrix Ba obtained from A, by sequence of elementary row operations
each of which eliminates an element a, 1 <i< j_-< n.

This reduction corresponds to the same redirection of an arc of the digraph with
the additional change of a flow rate from vertex 1 to the vertex from which the arc
was removed.

The ultimate form obtained by either reduction is an advanced rosette all of whose
cycles are of length 2. Such a digraph corresponds to a mammillary system. The digraph
of Fig. 5 corresponds to such a system. In both types of reduction, we obtain a matrix
of the form

(3.5) B

1 1 1 1 1

a& a22 0 0 0

aa 0 a33 0 0
0 0

a,1 0 0 a,, 0

where the first column changes for c-reduction but not for 0-reduction. Clearly the
equilibrium solution is invariant under D-reduction. We summarize in

PROPOSITION 3.1. Let Ba be obtained from Aa by a O-reduction and Ca by an
o-reduction. Let W be the first component of the equilibrium solution. Then

(i) Wl(Ba) Wl(Aa)= wl(fa)
(ii) Fo(Ba)=Fo(A,)<=Fo(C,),
(iii) FI(Ba)<-FI(Ao)>-_FI(Ca),

with equality holding in each case only if Aa is the matrix of mammillary system.
Another operation on the system is a redistribution which consists of transferring

part of a higher flow rate to a lower rate from the same vertex. That is, if aij < akj, it
replaces the former by aii + h and the latter by aki-h for h sufficiently small.

PROPOSITION 3.2. Let B be obtained from A by a sequence of redistributions. Then

r(B) >- r(A)

for any 0 <-_ a <= 1.

4. Stability indices. All of our compartmental models are stable as we observed
earlier. However some will recover more rapidly from a perturbation than others. A
stability index should measure this rapidity in some way, but should be independent
of the initial values X0. We shall restrict ourselves to strongly connected models and
consider three indices"

(i) r,,- aiAi, ai>0, Eai--1,
i=2

(4.1)
(ii) p-l__lim hTr E (P’- W),

hO t=l

(iii) m W-1 =mean first passage time.

The first is merely a convex combination of the nonzero eigenvalues A2, A3,
An. The second, a resilience index, is based on the total deviation from equilibrium
throughout the history of the regular Markov chain"

(4.2) R Y’. (P’- W).
t=l
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Here W is the matrix all of whose columns are Xo normalized to length 1, and
P I + hA is the transition matrix. The index p combines the elements of R and gets
rid of the time step by taking the limit.

The third index, the mean first passage from a central compartment as in an
advanced rosette, back to itself again is also related to R ([6, p. 79]). Indeed,

(4.3) M (ERa + E R W-
is the matrix of mean first passage times. Here Re and We are the diagonal matrices
which agree with R and W on the main diagonal and E is composed of l’s. The index
m is just the element in the upper left-hand corner of M.

It can be shown [12] that

--1(4.4) p A
i=2

The index m, on the other hand, does not have such a simple relation to the
eigenvalues. For an advanced rosette it is given by [14]

(4.5) m H A/a.
i=2

It can also be expressed in units of the turnover time of the first compartment. In
these units m is exactly the mean residence time [2], [4], [15].. Complexity vs. stability. If m is taken as the measure of stability, then m is
invariant under the m-reduction algorithm by Proposition 3.1. However Fo decreases.
Similarly if the 0-reduction algorithm is used, m increases but F0 remains the same.
Hence it appears that complexity and stability are independent if the former is interpreted
as m and the latter as Fo.

If is taken to be the measure of stability, then for each F we have

(5.1) F < (-E h)x-N -E N g..
(min g)-

Hence greater complexity leads to greater stability under this interpretation.
The same is true for the index p provided the spread of the eigenvalues is not

too great. Both F0 and F1 are proportional to minus the sum of the eigenvalues and
hence the greatest contribution to them is from the eigenvalue with the largest negative
real part. p-1 on the other hand depends primarily on the eigenvalue with smallest
negative real part. Thus Fo or F1 and p vary together provided the ratio between the
smallest and largest eigenvalue does not change. However it can change considerably
for models with the same complexity index. Consider the two digraphs (weighted) of
Fig. 6. Both have the same complexity indices and are advanced rosettes. Their matrices
are

A 0 -1 B= 0 -1

2 0 2 0

Their nonzero eigenvalues are respectively

7 4-J- 7 1
A=--+forA and A=--+-forB.

2 2 2 2
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1 1
2 --1 2 1

3 3

FIG. 6. Two models with the same complexity indices but different eigenvalues.

Hence the spread of the eigenvalues of A is x/]- while that of B is 1. The resilience
indices are

p(A) =-87, p(B) =.
Thus no conclusion in general about the relation between complexity and/9 is possible.
What is needed is some structural criterion for the spread of the eigenvalues. This
appears as yet not to have been done.
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NONNEGATIVE SOLUTIONS OF A QUADRATIC MATRIX
EQUATION ARISING FROM COMPARISON THEOREMS IN

ORDINARY DIFFERENTIAL EQUATIONS*

G. J. BUTLER?, CHARLES R. JOHNSON:I: AND H. WOLKOWICZ

Abstract. We study the quadratic matrix equation

X "1"/3X -[ yA O,

where A is a given elementwise nonnegative (resp. positive semi-definite) matrix and the solution X is
required to be an elementwise nonnegative (resp. positive semi-definite) matrix. When/3 =-1 and y 1,
our results may be used, for example, to obtain a simple nonoscillation criterion for the matrix differential
equation

Y"(t)+Q(t)Y(t)=O,

where Y and Q are matrix-valued functions and denotes differentiation. This generalizes a result of Hille
for the scalar case. Extensions are given when A and X are nonnegative with respect to more general cone
orderings.

AMS(MOS) subject classification. 15A24

1. Introduction. In this paper we characterize the existence of solutions of the
quadratic matrix equation

(1.1) X2+X+yA=O,

where 2’ and/3 are given real scalars and A is a given "nonnegative" n n matrix.
We first consider the case when 3,>0, fl <0 and A is either Hermitian positive
semi-definite or elementwise nonnegative. The solution X is then restricted to be
Hermitian or elementwise nonnegative, respectively. In these cases we completely
characterize the existence of a solution in terms of the spectrum of A; see 2.

In 3 we use the notion of a positivity cone K, see [9], to unify and extend the
results of 2. Thus, in the case that 3’ > 0, we characterize the existence of nonnegative
or M-matrix (with respect to K) solutions of (1.1) when A is nonnegative (with respect
to K).

The problem of the existence of solutions of (1.1) arises in the context of
comparison theorems for two matrix-valued ordinary differential equations. Consider
the equation

(1.2) Y"(t)+O(t)Y(t)=O.

Here Y and 0 are continuous n n matrix-valued functions and denotes differenti-
ation. Such equations arise both in the self-adjoint case (in the study of Hamiltonian

* Received by the editors February 22, 1983, and in revised form October 13, 1983.

" Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1. The
research of this author was supported in part by the Natural Sciences and Engineering Research Council
of Canada under grant A-8130.

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742.
The work of this author was supported by Air Force Wright Aeronautical Laboratories contract F-33615-81-
K-3224.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1. The
research of this author was supported in part by the Natural Sciences and Engineering Research Council
of Canada under grant A-3388. Some of this research was carried out while this author was on leave at

the Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742.

47



48 G.J. BUTLER, CHARLES R. JOHNSON AND H. WOLKOWICZ

systems, for example [7], [8]) and in the nonself-adjoint case [1], [5]. See also the
references in [5]. A solution Y(t) of (1.2) is said to be nonoscillatory if for some to
it is nonsingular for all => to. In that case we may form the so-called Riccati equation

(1.3) Z’(t) + Z2(t) + Q(t) 0, -> to
where Z(t)= Y’(t)Y-l(t).

Of interest are comparison theorems between two equations of the form (1.2)
with different coefficients. Thus we consider also the equations

(1.2)1

(1.3)

Y"(t)+Ql(t)Y(t)=O,

Z’(t) + Z2(t) + Ql(t) 0.

In the scalar case (n 1), the classical Sturm comparison theorem yields the result
that if (1.2) has a nonoscillatory solution (and therefore (1.3) has a solution on some
interval [to, oe)) and if Q(t)>= Ql(t) for all t, then (1.2)1 will have a nonoscillatory
solution (and (1.3)1 will have a solution on [to, oo)). There are many other comparison
theorems in the scalar case (see [12], for example).

The extension of comparison theorems to the general matrix case requires some
kind of ordering on the coetticient matrices Q(t), Q1 (t); hence some form of positivity
must be defined. Positive semi-definite is the appropriate concept for studying self-
adjoint equations; positive cone versions of positivity are a suitable choice for nonself-
adjoint equations.

The idea behind comparison theorems is that the oscillatory or nonoscillatory
character of an equation (1.2)1 may be determined by comparison with some equation
(1.2) whose behavior is known.

Here we shall confine ourselves to obtaining a simple nonoscillation criterion for
(1.2)1, which is a generalization of a well-known result of Hille [10] in the scalar case.

Suppose that

P(t) lim O(s) ds
r--

and
T

Pl(t) lim QI(S) ds
Too

both exist, and are finite, and that

(1.4) P(t) ->_ IPl(t)l-> 0 for all t,

in the sense that P(t)-[Pi(t)l has nonnegative elements, and where IPi(t)[ is the matrix
whose elements are the absolute values of those of Pi(t).

Under these assumptions, it was shown in [5] that if (1.3) has a positive solution
Z(t) on [to, oc), then (1.3)1 has a positive solution Zl(t), where O<-_Zi(t)<-Z(t), >- to.
(This is a generalization of the Hille-Wintner theorem in the scalar case [10], [12]).

To apply this result, we look for a suitable candidate for Q(t).
If Q(t)= t-2A, where A is a constant n n matrix, we can try to find a solution

of (1.3) of the form Z(t)= t-ix, where X is a constant n x n matrix. This leads to
the quadratic matrix equation

(1.5) X2-X+A -0.

To use the comparison theorem quoted above we require that A and X are positive.
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Then the solvability of (1.5) reduces to that of (1.1) with/3 =-1, 3, 1. Let p(A) be
the spectral radius of A. Theorem 2.3 of 2 will show that (1.5) has a nonnegative
solution X if and only if

(1.6) p (A) < 1/4, or p (A) 1/4 and the eigenvalues
of A which have modulus 1/4 have degree equal to 1,

where the degree is the size of the largest Jordan block. Denoting the set of nonnegative
matrices A satisfying (1.6) by s4, we have:

TI-IFORFM 1.1. Let Oa(t) be continuous, such that

Ol(S) ds

for all sufficiently large t, for some A s4.
Then (1.2)1 has a nonoscillatory solution Y1 whose associated Riccati variable Z1

satisfies [Zl(t)l -< t-ix, sufficiently large, whereX is the unique positive solution of (1.5).
In the scalar case, A can be any constant -<, and we have Hille’s result.

2. Existence of solutions. By using the substitution X =-/3 Y, we may consider
the equation

(2.1) xe-X+A=O
rather than (1.1), and this we choose to do.

We answer the following two questions concerning existence of solutions:
1. A is given Hermitian, positive semi-definite (psd) and we require X to be

Hermitian;
2. A is given real and nonnegative (elementwise) and we require X to be real

and nonnegative.
The Hermitian case essentially reduces to a scalar problem, and we have:
THEOREM 2.1. Suppose that A is a given Hermitian matrix. Then (2.1) has a

Hermitian solution X if and only if
(2.2) r(A) (-, 1/4]

where or(A) is the spectrum of A.
Proof. Since A X-X is a polynomial in X, A commutes with any solution X

and so A and X can be simultaneously diagonalized by some unitary matrix U. Thus
X is a Hermitian solution of (2.1) if and only if

(2.3) D2-D+A =0

has a solution, where D UXU* and A UAU* are the diagonal matrices of eigen-
values of X and A, respectively. Thus the diagonal elements satisfy

d- di + Ai =0, i= 1,. , n.

Since di 1/2(1 +/1-4Ai) is real if and only if 1-4A->_ 0, the result follows.
COROLLARY 2.1. Let A be psd. Then (2.1) has a Hermitian solution X if and only

if r(A) [0, 1/4], and in this case r(X) [0, 1 ], i.e. all Hermitian solutions are psd.
Proof. The result follows since we need 1+/1-4Ai_->0 for all i.
Now we consider the case that 0 A => 0 elementwise, and we seek X => 0 (element-

wise) to solve (2.1). The solution of this problem again rests upon the spectrum of A.
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If X solves (2.1), then

SO

(2.4)

where

(2.5)

0 Xz-X+A (X-1/2I)Z-I + A,

S=(I-4A)/.

(2.6)

SO

If S should admit a series expansion, then

1 1 y (_1) (4A)i,X ---I-i-- i=0

(2.7) X=- 2 (-1) (4A) ,
i=1

choosing the negative sign in (2.6), so that X _-> 0. This series will converge if 4p < 1
and diverge if 4p > 1.

Now consider the following iterative scheme"

(2.8) XI=A, Xn+I=A+X2, n= l,2,

If X, converges to X as n c, we shall have X A + X2; clearly X _-> 0, and so will
be a nonnegative solution of (2.1). The iterative scheme has the following properties.

LEMMA 2.1. Suppose thatX >- 0 solves (2.1). Then the sequence of iterates in (2.8)
satisfies
(2.9) OXnXn+IX n=l,2,...,

and

(2.10) S, -<_ X, <= $2--1, n 1, 2,. ,
where Sk denotes the partial sum of degree k of the series in (2.7).

Proof. XI A <-_ A +X2 X, and

X =A<-_A+A2 =Xz=A+X<=A+XZ=X,
i.e. (2.9) holds for n 1. Assume that (2.9) holds for a particular value of n. Then

Xn+l-Xn-(X2n-X2n_l)O

and similarly, X-X,+I >= O. Thus (2.9) follows by induction.
To obtain (2.10), observe that the power series X defined by (2.7) formally satisfies

(2.11) X X2+A.

Denote the partial sum of degree k of the formal series for X2 by Tk. Since X has
no constant term, formally squaring the power series shows that T,+a -<_ 82,, n 1, 2, .

From (2.11), we have Sn+l T,+I -- A, and so

(2.12) S,+I<-S2,+A, n=1,2,....

Again, we see that T2---> $22--1, and so

(2.13) $2- --> $22--1+ A, n 1, 2,. ..
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Since $1= Se0=XI=A, a simple induction argument with (2.12) and (2.13) gives
(2.10), which completes the proof of the lemma.

In fact, by considering the case when A is a scalar, we see that the infinite series,
obtained by expanding the iteration (2.8), must be the same as (2.7).

Now we can obtain the following existence result.
THEOREM 2.3. (i) 4p < 1 implies that there is a nonnegative solution to (2.1).
(ii) 4/9 > 1 implies that there is no nonnegative solution to (2.1).
(iii) If 4p 1, then (2.1) has a nonnegative solution if and only if the eigenvalues

of A which are equal to the spectral radius in modulus, have degree 1, that is,

(2.14) has degree 1.

Proof. If 4p < 1, the nonnegative solution X is given explicitly by (2.7).
Now suppose that 4p > 1 and that X->0 is a solution of (2.1). By (2.9) of Lemma

2.1, the iterates of (2.8) are monotone increasing and bounded above by X. Without
loss of generality, we may assume that Xn- X, X a positive solution of (2.1). But
then (2.10) of Lemma 2.1 shows that X satisfies (2.6), which will be a divergent power
series when 4p < 1. This is a contradiction and gives (ii).

Finally suppose that 4p 1. Suppose that (2.14) holds, and let

(2.15) A pjp-1

where J is the Jordan canonical form of A. Convergence of the power series in (2.7)
depends only on the individual blocks of J. Since these blocks have spectral radius less
than or equal to 1/4, with equality only if they have degree 1, the power series converges
and yields a nonnegative solution to (2.1).

Conversely, suppose that X=>0 is a solution of (2.1) and that (2.14) fails to hold.
First assume that there is exactly one defective Jordan block corresponding to an
eigenvalue equal to p. X satisfies (2.4) and S satisfies (2.5). This contradicts the
criterion in [2] for the existence of a square root of a singular matrix, which states
that the defective Jordan blocks must come in pairs. This then implies that the series
in (2.7) diverges if J is replaced by a single defective Jordan block . Since the
convergence of the series in (2.7) depends only on the individual Jordan blocks, it
follows that A cannot have any defective blocks corresponding to an eigenvalue equal
to p. (We have already seen that the existence of a positive solution of (2.1) implies
convergence of the series in (2.7) as the limit of the iterates Xn of (2.8).)

The result now follows, since [/il--P implies that the degree of Ai, i.e. the size of
the largest block in the Jordan canonical form of A that contains Ai, is not larger than
the degree of the eigenvalue equal to p, see e.g. [6]. Thus there can be no defective
blocks, and (2.14) must hold.

The above results are related to the notion of an M-matrix. Recall that A is an
M-matrix if A=rI-P, where P=>0 and p(P)<=r. If p(P)=r, then A is a singular
M-matrix. Note that if A is an M-matrix then A has the Z-matrix sign pattern, i.e.

aj =< 0 if j. If A is an invertible M-matrix, then A-l=> 0 and moreover, A has a
square root A1/2 which is also an M-matrix. See e.g. [3]. The M-matrix property
arises in (2.5), for if 4p< 1, then S2 is an invertible M-matrix and so has a square
root S which is also an M-matrix. This implies that X 1/2(-/31+ S)=> 0. Our proofs
yield the following for singular M-matrices.

COrOLLARY 2.1. The (singular) M-matrix pI-A has a square root if and only
if (2.4) holds.
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The series (2.6) yields two solutions to (2.1). Choosing the negative sign yields

>-0.
i=1

The second solution is

Thus X2 I- P, where P-> 0, and so is a Z-matrix. But, if p < 1/4, then p(P) < 1 which
implies that X2 is in fact an M-matrix. The case p is similar. In fact, we have a
nonnegative solution if and only if we have an M-matrix solution. For if X is an
M-matrix solution, then X 1/2(I-S) with p(S)<_-1, see (2.4). But then 1/2(I-S) is a
nonnegative solution.

3. Extension to positivity cones. The notion of a positivity cone was introduced
in [9] to give a unified treatment of results on M-matrices and positive definite matrices.
We now extend our results to such cones. Following [9], we define K to be a positivity
cone of matrices if K is a pointed, closed, convex cone, i.e. if K fq-K {0}, K+Kc K
and hK K, for all h >-O, and if

(3.1) P K implies pi K, O, 1, 2," .
The cones K1, of all nonnegative (elementwise) matrices, and K2, the cone of positive
semi-definite Hermitian matrices to which we addressed ourselves in 2, are examples
of positivity cones, as is K1 fq K2. Additional examples are given in [9].

We let K denote a positivity cone and partially order C with respect to K, i.e.
P-> 0 if P K. Associated with K are the sets

(3.2)

(3.3)

Z ={A C"": A=sI-P, sR,PK},

M {A Z: Re A -> 0, for all eigenvalues A of A}.

Corresponding to K1 and K2 above, Z Z is the set of Z-matrices, M M1 is the set
of M-matrices, Z Z2 is the set of Hermitian matrices and M M2 is the set of positive
semi-definite matrices.

We would like to unify our results from 2 as well as extend them to general
positivity cones. We shall require the series solution defined by (2.6) and a result
corresponding to Lemma 2.1 concerning the iterative scheme (2.8). For the lemma to
hold in the new partial order, we need an additional condition, (3.4) below.

LEMMA 3.1. Lemma 2.1 holds if the partial order induced by a positivity cone K
is closed under commuting products, i.e. K satisfies
(3.4) B1, B2E K, BIB2=B2BI=BIB2EK.
(this is condition (2.4) in [9]).

Proof. Since A K and (3.1) holds for a positivity cone, it follows inductively that
the iterates X of (2.8) are in K and are polynomials in A with nonnegative coefficients.
Thus we have

(3.5) 2Xn+l Xn (X2n- Xn_l) (Xn Xn_l)(Xn "Jf" Xn_l)

since the two factors on the right-hand side commute. It follows inductively from (3.5)
thatO<=Xn<=Xn+l,n=l,2,’".
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Now suppose that X -> 0 solves (2.1). Then X X2 + A, so

X2 X3 +AX X3+XA,
so X commutes with A. Since the Xn are polynomials in A, it follows that X commutes
with each Xn. It is now easy to show that X, <=X for all n, and we have (2.9) ot
Lemma 2.1.

The proof of (2.10) proceeds as before.
We remark that K1 and K2 are both positivity cones that satisfy (3.4).
Next we prove the following result which includes a generalization of Theorem

2.3 to positivity cones satisfying (3.4).
THEOREM 3.1. Let K be a positivity cone satisfying (3.4) and let A>=O (with

respect to K). Then (2.1) has a solution X K if and only if
(3.6) 4p<-1,

with (2.13) holding if 4p 1.
Proof If 4p < 1, then the series in (2.7) converges to X, which is a solution to

(2.1). From the definition of the positivity cone,=o (-1)(a2)(4A) e -K. Thus X _>- 0.
If 4p 1 and (2.3) holds, then we still obtain convergence. (See the argument in the
proof of Theorem 2.3.) Conversely, suppose that X solves (2.1) and X _-> 0. To complete
the proof we need only show that the existence of a solution X_-> 0 of (2.1) implies
that the series in (2.7) converges. First we show that the order interval [0, X]=
{ Y: 0 =< Y _-< X} is compact. Suppose not. Then there is a sequence { Y,} [0, X] with
Y, oo. We may assume that Y,/IIY, II YK. But then (X- Y,)/IIY, IIK, and

upon taking the limit as n - oo, we find that Y a K, a contradiction, since K is pointed.
It follows that [0, X] is compact. Using Lemma 3.1, we deduce that X, - Y, a solution
of (2.1), which implies that the series in (2.7) converges.

Note that an M-matrix solution (with respect to K) is obtained by using the
positive sign in the expansion (2.6).
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Abstract. We aim at a uniform approach to results concerning the existence of kernels of graphs and
introduce new results in the bipartite case. The Galois connection based on the function which assigns to
a vertex set the set of its nonpredecessors is investigated using a special fixpoint theorem; it is illustrated
by the notions of retardation and expansiveness. The related topic of solutions of games is mentioned, and
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1. Introduction. Research on kernels originated from the theory of games and
economic behaviour. Among those who contributed in the early years were Zermelo,
K6nig, Kalmfir, Max Euwe, former world chess champion, and yon Neumann.

Our approach is to introduce relational algebra into the study of kernels and to
apply the by now well developed theory of lattice antimorphisms. As our first tool we
recall basic concepts of relational algebra which are easily understood if they are
interpreted in terms of Boolean (n n)-matrices. The basis is formed by a complete
atomistic Boolean algebra with respect to v (join), ^ (meet), (complement) and c

(inclusion). If we additionally define composition of relations (Boolean matrix multipli-
cation), identity relation L transposition , zero relation 0, and universal relation L,
we arrive at a relational algebra. In the sequel we proceed by algebraic methods, i.e.,
we rely on lattice formulas and identities for relations like

P(Ov R) PQ v PR v-distributivity),

P(Q^R)cPQ^PR

PO R :>pT 0
PQ ^ R (P ^ RoT)(Q ^ pTR)

^-subdistributivity),

(Schr6der rule),

(Dedekind rule),

R # 00LRL L (Tarski rule).

The transitive closure of a relation R is defined as the union of its powers R/ := R v R 2 v
R3v whereas R* := I v R/ is called the reflexive transitive closure. Familiar
notions are symmetry (R R T), irreflexivity (R [) and transitivity (R 2 R or
R+R).

Now we pass to graph terminology: An arbitrary relation B on a set V gives rise
to a graph, more precisely, a directed 1-graph with associated relation B and vertex
set V, denoted by (V, B). Boolean vectors are considered as representing sets of
vertices. In particular, vertices x, y V are treated as special Boolean vectors. Note
that in this case x By means that there is an arc from x to y. The zero vector,
representin the empty subset of vertices, is always denoted by the same symbol 0, as

* Received by the editors May 26, 1982, and in revised form October 5, 1983.
t Institut fiir Informatik, Technische Universitit Miinchen, D-8000 Miinchen2, Bundesrepublik

Deutschland.
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is the zero relation; similarly we use L for the full subset V of vertices and the universal
relation.

If the rules of the following theorem are considered as matrix identities, the
assertion is obvious. Our formal proof, see [48], depends on injectivity (xx r c I) and
row-constancy (x xL) of the relation x 0 which represents a single vertex.

PROPOSITION 1. For arbitrary relations R, S and vertices x, y the following holds:

i) /x=Rx; ii) xcRycaxyrCR; iii) (R^S)x=Rx^Sx.

Proof i) Applying monotonicity and Schr6der’s rule, we .get

XX
T RT:=> xxTR T I ca xTR T xTR T CaX Rx.

For the opposite inclusion, we show L LxL Lx (R v R)x Rx v Rx Ca Rx Rx.
ii) From left to right" x c Ry =, xyT RyyT R. Conversely,

xy T R Ca xT yT Ca Tx c y Ca

_
y ,

and therefore by (i) Ry c $, i.e., x Ry.
iii) Applying Dedekind’s rule, ^-subdistributivity is tightened for an injective x:

Rx ^ Sx (R ^ SxxT)(x ^ R TSx) (R ^ S)x.

In a graph G (V, B), the vector BL corresponds to the set of terminal vertices.
The relation B* comprises all the pairs of vertices for which there exists a path
(repetition of arcs and vertices not excluded) from the first vertex to the second one;
it is called the teachability of G" The relation B represents the arcs of G, and B
represents reachability along paths of length n. This makes related notions precisely
definable: loopfreeness (B .), circuitfreeness (acyclicity) (B+ [) and strong con-
nectedness B* L).

Finiteness (or finite order) of a graph is declared via V. A graph is of finite outdegree
if every vertex has a finite number of successors B TX. More subtle notions are defined
by calling

G progressively bounded’Ca sup BiL L,
i>=l

G progressively finite Ca (x Bx :=> x 0).

The bounded progress condition means that for every vertex x there is a natural
number h(x) which bounds the lengths of all paths starting from x. The condition of
finite progress was studied by von Neumann [32, Chap. XII] in the transposed form
of finite regress.

From every vertex of a set x fulfilling x Bx there starts a path of infinite length
because x Bx guarantees a successor in x for every vertex of x. Therefore G is
progressively finite if[ there are no infinite paths.

For further illustrations regarding a loopfree relation B, we consider the implication
for finite progress in the equivalent form x 0 => x ^ Bx O. Call a vertex m a maximum
of the vertex set x if m belongs to x and if no vertex y exists in x with m By. Then
the set x ^ Bx describes the maxima of x. Therefore, G is progressively finite if[ every
nonempty set of vertices possesses maxima.

Obviously, in a progressively finite graph B*B L is valid, i.e., from every vertex
a terminal vertex can be reached. The concepts of bounded and finite progress coincide
in graphs of finite outdegree ([27], K6nig’s lemma).

As a second tool, we introduce a special fixpoint consideration exhibiting the
lattice-theoretical facet of the problem of existence of kernels. Consider an antitone
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function f with f(0)= L on a complete lattice with least and greatest elements 0 and
L. Antitony is equivalent to either of the "antimorphism properties"

f (supx)i=>l c inf f(x),
i>--I supf(x)cf(infx),

il /el

A fixpoint of f is a fixpoint of re. Due to Tarski’s theorem the isotone function fe has
indeed fixpoints in a complete lattice. Note that 0 is a fixpoint of f2 iff f(L)-0.

We introduce the sets of pre- and post-fixpoints of f by V := {x: x cf(x)},
V := {x: f(x) x}. (The subscripts mnemonically refer to "stable" and "absorbant".)
Because of antitony of f

f(V) V, f(Va)c V and fe(V) V, f(V) V
hold. If x is a fixpoint of f and z is an element with x z f(z) then z f(z) f(x) x
follows, i.e. z x. Analogously, f(z) z x implies z x. This means that a fixpoint
of f is maximal in V and is minimal in Va. From y x V follows y V since
y c x f(x) c f(y). Similarly, y x Va implies y Va.

The determination of a fixpoint x of an antitone function f with f(0)= L is
supported by the fundamental iterations

s0 := 0, z0 := L,

s+ := f(s), z+ := f(z)
for which a straightforward induction reveals the inclusions (i_-> O)

This gives rise to defining the iterative bounds of the set of fixpoints of f

S := sup Si; Z := inf Zi,
il i->_l

fulfilling S c Z and [(Z) f(S).
This process has been considered in different notations by many authors of graph

and game theory. Formulations using pseudo-Boolean programming or Boolean
matrices or a remoteness function are known; sometimes [23] this process is traced
back even to Steinhaus. The first precise presentation, however, can be found in von
Neumann-Morgenstern [32].

The effectiveness of the iteration heavily depends on the value f(L); in particular,
it is completely useless if f(L)=0, since f(L)=0 :> S =0, Z L.

PROPOSITION 2i. Let f be a function on a complete lattice fulfilling f(O)= L and
the antimorphism properties. Then the iterative bounds of fixpoints satisfy

S f(Z) f(S) Z.

If equality holds in the first antimorphism property we hae: f(S)= Z. If the lattice is

finite we have: S f(Z), f(S) Z.
Proof. We apply, e.g., the second antimorphism property

S=sups=supf(z)=
i>=O i>=O Zi)-’f(Z).

In a finite lattice there exists an integer n with S s S.+l, Z z Z.+l and therefore
f(Z) f(z.)= s.+, S holds. [3
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If the gap between the sequences si and zi closes, the coinciding bound S Z is
a uniquely determined fixpoint.

We now introduce similar constructions concerning ],2, Vr := {x: x c f2(x)}, Ve :=
{X: f2(x)c X} where the subscripts associate with "retarding" and "expansive." From
isotony of ],2 we deduce that Ve and Vr are closed under inf, sup respectively: Consider
Y V On the one hand inf {],2( y): y y} = inf Y follows from f2(y) = y for all y Y,
and on the other hand f2 (inf Y) inf {f2( y): y y} holds, because inf Y y for all
y Y implies f2 (inf Y) c f2(y) for all y Y. Both inclusions result in inf Y Ve.
Analogously, Y Vr :=> sup Y Vr is shown.

A transfinite generalization of the iteration for si and zi suggests the definition of
the descriptive bounds of the set of fixpoints of f

" := inf Ve, r := sup V.
The preceding remark reveals " Ve, r V, Because of f2(Ve) Ve, ],2(Vr) Vr, even

=f(), =f()

hold. More precisely, as a consequence of Tarski’s fixpoint theorem sr is the least
fixpoint of f2 and r the greatest one. The following result is closely related to ideas
of Roth [40], [41] and Blair-Roth [7].

PROPOSITION 2ii. Let f be an antitone function with f(O) L on a complete lattice.
Then the iterative and descriptive bounds of fixpoints satisfy

S c f(er) c er f() c Z.

If the lattice is finite we have: S , r Z.
Proof. The extremal properties reveal " c r, and in connection with f(Vr) c Ve

and f(Ve) C V, the inclusions ’c f(), f(’)c r follow. From src f(r) we deduce
f(sr) f2(r) o’, i.e. f(’) r. Applying f we get f2() sr f(r)" For every x Vr an
induction yields x c zi for every and therefore x c Z. In particular, rc Z holds.
Following the same pattern, S c x for every x Ve implies S c st. In a finite lattice
S f(Z), f(S)= Z hold. Applying f we get f2(S)= S, f2(Z)= Z establishing that S, Z
are fixpoints of f2; therefore r Z, " S.

2. Kernels of graphs. A kernel of a graph combines the divergent properties of
stability and absorption, i.e. a set x of vertices is a kernel if there are no arcs inside
the set x but from each vertex not belonging to x there exists an arc leading into x.

DEFINITION 3. In a graph with associated relation B we call a set of vertices

x stable

x absorbant 2 Bx,

x kernel :=>

Often, the transposed notions "dominance" (2 Brx) and "solution" (2 B rx)
are used. The concept of a kernel occurs even in KSnig [28] where it is termed
"pointbasis of the second kind." Then "basis" is a kernel of B*. To indicate related
phenomena, see [24], [29], [60], [33], we mention further: "semi-kernel" (Brx
2) and "quasi-kernel" (Bx c 2 c Bx v B2x). Chvital and Lovsz have shown that every
loopfree graph has a quasi-kernel. A "k-kernel" or "k-basis" is a kernel of B v v
B k. In [57], [8] "mini-maximal kernels" are studied: kernels which are in addition
stable sets of maximum cardinality and absorbant sets of minimum cardinality. In [61
the concept is extended to the field of hypergraphs.
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Stability does not depend on the "direction" of edges. This is obvious; formally
it corresponds to an application of Schr6der’s law" Bx e BTx c . Absorption of
a set is independent from the existence of loops.

The lattice-theoretical background of the problem of the existence of a kernel is
the question of fixpoints of the function f(x)= Bx. Since f is antitone, we may apply
the theorems of the preceding section. Specific properties of the function defined here
will then reveal further results.

A reformulation of a result of 1 reads

x kernel ==> x maximal stable and minimal absorbant set.

The statements of the following theorem give several well-known conditions to ensure
that this implication holds in the reverse direction. Nevertheless we have included a
formal proof.

THEOREM 4. i) Every symmetric and loopfree graph has a kernel. Kernels are
exactly the maximal stable sets. ii) Every transitive graph withB*- L which condition
is fulfilled e.g. by finite loopfree graphs or progressively finite graphs) has exactly one
kernel. The kernel is the set BL of terminal vertices which in addition is the least absorbant
set.

Proof. i) Let x be a maximal stable set. Assume Bx g and let v c Bx ^ be an
arbitrary vertex. We show B(x v v)c x v v in contradiction to the maximality of x,
thus refuting the assumption BxY," (1) Bx$; (2) Bx vBx; (3) Bvc$,
applying Schr6der’s rule and symmetry of B; (4) Bv , may be deduced from
vv 7- I ; by Proposition 1 and loopfreeness.

ii) Transitivity implies L B*B (I v B)BL BL v BBL, i.e. BL BBL, and
therefore BL BBL because BL BBL generally holds. Finally, an arbitrary absorbant
set y necessarily fulfills BI

Part (ii) assures the existence of a basis of a finite graph without loops or a graph
with finite progress. This has been the starting point in the original proof of Richardson’s
theorem [36].

Applying the results of Proposition 2i and ii concerning iterative and descriptive
bounds for the function f(x)= Bx, we obtain

S BZc Bo’=c o’=Bc BS=Z.

If a kernel x exists, we may additionally insert " x o-. Note, that the asymmetric
occurrence of the equality BS Z is a result of v-distributivity which gives the
strengthened antimorphism property

f (sup Xi) B sup X sup Bxi inf Bxi inf f(xi).
i>=l i>--I il i>--I i>=l

Fig. 1 shows an example with S BZ.
PROPOSITION 5. Ill an arbitrary graph with associated relation B and iterative

bounds S and Z we have

sup BiL , v S.
i_>_0

In particular S Z holds for progressively bounded graphs.
Proof. We remember the sequences si and zi and use an inductive argument. The

assumption zi si v B2L implies s+l = z v B2i+1L : z s+l v B2i+lL Si+l z+ v
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B2i+2L : ,zi+ Si+ V B2(i+I)L. Using the equivalent inclusions B2iL 2;i v Si, we get

sup BhL sup B2iL sup z---r v sup s ,, v S.
h_->o -o o >-o

Combining this with the result of Proposition 2i we get Corollary 6.
COROLLARY 6. A progressively bounded graph has exactly one kernel The kernel

is determined by the iterative bounds S Z.
This argument does not apply to the progressively finite case as is shown in

Fig. 1.

x y 2 3 4 5

fO 0 0 L 0 L 0

L 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 L 0 0 0 0

0 0 0 L 0 0 0

0 0 0 0 L 0 0

0 0 0 0 0 L 0

B S Z

FIG. 1. Progressively finite, but not progressively bounded graph.

The existence of kernels can also be shown in the case of progressively finite graphs;
however, by inherently nonconstructive methods. We are looking for a graph-theo-
retical interpretation of the properties f2(x)c x and x c f2(x) in the special case of
the function f(x) Bx.

DEZIN:ON 7. In a graph with associated relation B we call a set of vertices

x retarding ":> BBx , B7"x Bx;

x expansive ": BBx.

The two definitions of retardation are equivalent because of Schr6der’s rule. Notice:
Expansiveness does not allow similar equivalences. A set is retarding if its successor
set is contained in its predecessor set; it is expansive if its complement consists only
of predecessors of the complement of its predecessors. A "subsolution" [40], [42] is
a stable, retarding and expansive set with respect to B. Figure 2 compares the
phenomenology of these notions with stability and absorption. The set 0 is always
retarding, while L is always expansive.
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1 2 3
1, 2} stable, not retarding

{3, 4, 5, 6} absorbant, not expansive

6 1, 2, 4, 6} retarding, not stable
{1, 5, 6} expansive, not absorbant

FIG. 2. Retarding and expansive sets.

The sets si and S of the iteration are retarding as is r, similarly zi, Z and " are
expansive. A kernel has all of the four properties. Using the second characterization
of retardation, we will derive an implication.

THEOREM 8. In a progressively finite graph we have

x retarding x stable.

Proof. Consider y := x ^ Bx. Applying the Dedekind rule, we get

y c (B ^ xx7‘)(x ^ BT‘x) B(x ^ BT"x) c B(x ^ Bx) By,

and therefore y 0, i.e. Bx .
Now, the following result is established by combining Proposition 2ii (Br r)

and Theorem 8 (Br ); this is the onlymbut decisive!muse of Theorem 8.
COROIIAR 9. A progressively finite graph has exactly one kernel The kernel is

determined by the descriptive bounds
The work of von Neumann comprehends most of the preceding results about

kernels (solutions) and stable sets.
Next, we try to get rid of the assumption of progressive finiteness by taking circuits

into consideration. As a first attempt, we exclude odd circuits, i.e. circuits of odd
length, and for simplicity we restrict ourselves to a strongly connected graph G with
set of vertices V, IV > 1. Obviously, G is a bipartite graph, i.e. V w v
are two complementary kernels. This result was mentioned in [1],[30]; we give a
formal proof as presented in [47].

THEOREM 10. A strongly connected graph without odd circuits and with more than
one vertex has at least two kernels which are complementary to each other

Proof. Let G (V, B). With the abbreviation D:--(B2)* we write

G strongly connected :> L B* D v BD D BD,

G without odd circuits :> BD BDD [ (BD) 7- 10.

Combining both assumptions, we get (BD) 7‘ BD, and BD E3. Each column of
D is a kernel. If VI > 1 there are two kinds of columns corresponding to the vertices
of a bipartition.

Richardson who carried on the work of yon Neumann succeeded, see [36], without
assuming the condition of strong connectedness, however, introducing a restriction to
some finiteness conditions.

THEOREM 11. A finite graph (or a graph of finite progress or of finite outdegree)
without odd circuits has at least one kernel.

An idea of a proof is contained in the subsequent considerations.
Figure 3 indicates a backward procedure supporting the construction of a kernel.

A graph (odd circuits not necessarily excluded!) is drawn above the irreflexive part of
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FIG. 3. Backward construction searching for a kernel.

its reduction; the terminal components, vertices resp. are separated. Consider the
following iterative algorithm"

1. Find kernels in the terminal strong components of G and mark the vertices of
these kernels;

2. G := subgraph of (3 generated from the vertices that neither belong to a
terminal strong component of G nor have an arc leading into the kernels just established
by 1;

3. If G no longer contains vertices then stop else goto 1.
If it is successful, it ends with a kernel whose vertices are marked. Clearly, the algorithm
is not straightforward (because of multiple choice of kernels in the strong components),
and, in general the search is not successful. But in the special case of graphs without
odd circuits success is more likely, because Theorem 10 guarantees that whatever
strong component we may encounter, a kernel in that component does exist. However,
the algorithm might still not exhaust the whole graph. If we assume the irreflexive
part of the reduced graph to be progressively bounded, the algorithm will succeed in
exhausting.

The computational complexity of finding a kernel has been investigated by Chvital
and Fraenkel. In [19] NP-completeness has been shown even if the problem is restricted
to planar graphs.

Richardson examines his proof and reveals special conditions under which the
occurrence of odd circuits does not invalidate success. A step in this direction is due
to Romanowicz who gives an algorithm-independent device" he admits odd circuits in
which at least one arc has an arc in opposite direction which, in turn, does not lie on
an odd circuit. Dually, one may admit odd circuits each of which contains at least one
vertex x such that Bx BT"x. This means that the set of predecessors of x coincides
with the set of successors of x.
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In particular, Theorem 11 applies to bipartite graphs. However, we show a stronger
result without any assumption concerning finiteness.

THEOREM 12. If G V, B) is a bipartited graph with bipartition V w v v, then
the following holds:

i) G has two distinguished (not necessarily distinct) kernels determined by the
descriptive bounds:

O" :-- (WA O’) V (CA ’), #’ :-- (WA ’) V (CA O’).

ii) An arbitrary kernel x is limited by these kernels as"

Proof. i) We use the formula B(w ^ x)= ( ^ Bx), generally valid in a bipartition,
and the equations in Proposition 2ii

Btr’= B(w Atr) V B(O A ’)=( A Btr) v (w A B’)

=( A )v (w A ) ( V ) A (WV ) ’.

By analogy we get B"= ".
ii) From ff c tr follows

O"A"--I-(WAO’)V(eA’)]AI-(WA’)V(I’AO’)]

[(W A O’) A (W A ’)] V [(I’ A ’) A (l’ A O’)]

=(w A A ’)V (e A " A )=r A =’.
r’v ’= r is derived analogously. [3

Note that in finite or progressively bounded graphs descriptive and iterative limits
coincide. The proof of (ii) also works if tr’, ’ are defined involving the iterative limits
$ and Z instead of tr and r, thus establishing different (weaker, but constructive) limits
of an arbitrary kernel. Clearly, these constructions need not be kernels in general. An
example is supplied by a slight modification of the graph of Fig. 1. The early versions
of this result go back to Str/Shlein ([53], also [55]) where finite bipartite graphs in
connection with combinatorial games are studied. Roth [44] calls the bipartite case
asymmetric.

3. Solutions of games. The games we are now going to discuss, are finite two-
player games with perfect information with alternate moves and with the last player
losing. This essentially restricts us to games played on a board, like chess, and Nim-like
games. Zermelo, K6nig [27], Kalmir and Euwe have contributed to the investigation
of chess. The game of Nim was fitted into mathematics by Bouton and Wythoff. Nim
has a progressively bounded game graph. Every combinatorial game possesses at least
a description by a bipartite game graph.

Subsequently, qualifications of loss, win, or draw for a player are used only in
connection with positions in which it is this player’s turn to move. In this sense, the
knowledge of a kernel provides a player in positions outside the kernel at least with
a strategy for avoiding loss: Move into the kernel! In the case of a progressively finite
game graph the kernel is additionally good enough to assure win. If no kernels exist
the advice Move into the set S! may lead to success in specific positions.

If the graph is not necessarily progressively finite we consider a bipartite descrip-
tion. For describing chess we apply Theorem 12 w :white, black) with distinguished
kernels

S’=(wAS) v(IAZ), S"=(WAZ) V(IAS).
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In terms of games we can say that S’ determines loss of w or nonwin of and that
S" determines loss of or nonwin of w. The intersection of these kernels comprises
loss, the symmetric difference draw. The knowledge of these kernels enables w to
avoid loss, but only knowledge of their partition by the sequences si and Z enables w
to achieve win by the strategy: Move from si into z!

In the past, refined versions of the fundamental iteration were applied to practical
problems. A survey of the activities in chess is given, e.g., in [12]. The table in Fig. 4
concentrates the complete analysis of some chess endings carried out in Munich. The
results concerning the first 5 games have been evaluated in the years 1967-1969 in
connection with the doctoral thesis [53] on an/kEG-Telefunken computer TR4 while
the last two games have been investigated later with adequate machine power. The
win prediction number has been defined differently according to different games: in
(3)-(5) as number of moves to force win by the capture of the black king (mate+ 1)
or piece; in (1), (2), (6) and (7) as number of moves to force win by mate or the
capture of a black man. The first and third endgames are exhibited in [56].

Endgame

1. wR
2. wO
3. wR:bB
4. wR:bN
5. wQ:bR
6. wO bO
7. wO: bR + bP(d2)

Greatest win
prediction number

16
10
18
27
31
10
29

Number
(reduced by symmetries) Example

of positions with greatest
win prediction number

121

28
2
4
5

10

w Ka Rb2, b Kc3.
w Ka 10b2, b Ke6.
w Ka4 Rc3, b Ka7 Ba6.
wKdl Rhl, bKbl Ng4.
w Ka Qa4, b Kf3 Re 1.
wKel Qgl, bKbl Qal.
w Kh8 Qa4, b Kf8 Rf2 Pd2.

FIG. 4. Some chess endings with no more than 5 men.
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A PERTURBATION RESULT FOR LINEAR CONTROL PROBLEMS*

DANIEL BOLEY

Abstract. In this paper we will discuss some problems in computing the controllable (reachable) space
for a linear system and give some perturbation analysis results that are significant for a popular algorithm
used to compute that space, herein called the Staircase Algorithm.
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1. Introduction. In this paper we will discuss some numerical problems in comput-
ing the controllable (reachable) space for a linear system

(1) Yc Ax + Bu.

In this paper we confine our attention to the case where A, B are constant matrices,
and x, u are vector functions of time. Under these conditions controllable and reachable
are equivalent. One classic algebraic definition of the controllable space Sc is

(2) Sc=span[B AB AZB An-IB]

[1]. But numerical methods based on computing this matrix are very unstable. In [2],
[9] and [4] it is pointed out that using (2) directly to compute the space Sc can be
much more unstable than using a method based on orthogonal similarity transforma-
tions of A. To illustrate the pitfalls in (2) consider the system of the form (1) with

A=diag(32 16 8 -64 -32 4 2 -2 -4 -8 16),

and B equal to the vector,

10-14-
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10-14
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0.187
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-1.119
0.070
10-14
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We see that dim Sc 8, but if we compute the singular values of the matrix in (2) we
obtain

lO+sx

1.31 10
2.39 10-4

4.28 10-9

3.1210-1

3.88 10-12

2.4410-13

4.9110-14

4.95 10-15

3.75 10-18

5.36 10-z8

0.0

which, depending on the choice of relative zero tolerance, would imply that dim Sc
could have any value in the range 2 to 9. Further examples are given in [9] and [4].

In this paper we will indicate a more robust approach ( 2) and give a limited
sensitivity analysis of the problem ( 3-4). We then show how to apply the sensitivity
analysis to this approach ( 5), give some bounds for the numerical errors committed
by the algorithm ( 6), and indicate where the limitations of the analysis may lie ( 7).
We finally give the results of some numerical experiments ( 8) and some concluding
remarks ( 9).

2. The method. A more stable method than using (2) is the so-called Staircase
Algorithm using orthogonal transformations. It has been described in detail in many
different places (e.g. [2], [4], [9], [10]) so that it suffices to give here only a short
description. Briefly, this method consists of applying a series of orthogonal similarity
transformations O to (1) to obtain a system

(3) 2= QTAQz + QTBu

where we have z QTx, QrQ I, and the matrices A’= QAQ, B’= QB are in a
special reduced form:

(3a) A, lAbia a2]A2_I’

with AI block upper Hessenberg [2], [4]. The transformation O [O1 02] can be
partitioned as in (3a), where O1 is an orthogonal basis for the controllable space Sc.
In the single input case, the method just reduces B to a multiple of el (1, 0,. , 0)r,
and AI is upper Hessenberg. The first subdiagonal element A’+I, of the resulting A’,
which is zero, indicates the dimension r of the space Sc. The multiple input case
proceeds in an analogous manner; in this case AI is reduced to a block upper
Hessenberg form.

3. Sensitivity analysis, preliminaries. To understand the numerical properties of
the Staircase Algorithm, one must observe that any random perturbation to the
coefficients of (1) will tend to make (1) completely controllable [5, p. 100]. Hence we
must be very careful in how we define a reasonable or robust answer. Our aim in this
paper is two-fold: 1. to say what a robust answer might be and 2. to give a bound on
the numerical errors committed by the Staircase Algorithm.
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Since we are applying only orthogonal transformations to our original system (1),
the resulting computed system

(4a) . QT(A + eE)Qz + QT(B + eF)u

will be exactly equivalent to a slightly perturbed system (1)"

(4b) (A + eE)x + (B + eF)u

where E, F are matrices with 2-norm of order min (1, IIAII / IIBII), n is the order of
the system, and e is the appropriate computer precision [6]. In other words, our
algorithm does the equivalent of perturbing the coefficients by small multiples of e;
these perturbations we will call e-perturbations.

By robust, we mean that the computed rank of the controllable space is insensitive
to e-perturbations in A, B, for some appropriate e. To be robust in this sense, for a
completely controllable system, the system must remain controllable after any such
e-perturbations to the original coefficients. For a system only partially controllable,
the controllable part must remain controllable after any such perturbations. To be
precise, we define the robust controllable space to be that space achieving the minimum
in

e-rank min dim Sc(A + AA, B + AB),

where the minimum is taken over IIAAI[--< ellAll, and IlzXBII--< ellB[[.
The first question to address is to determine whether or not the prospective

controllable space obtained after application of a computational procedure is robust
in that sense. We will address that question for the particular case of the Staircase
Algorithm, giving a posteriori bounds. We will defer for the moment the question of
finding a bound for the numerical errors in the computed basis for the controllable
space S from e-perturbations.

4. Sensitivity theorem. Given the previous discussion, we have the following
limited sensitivity theorem for the single input case.

THEOREM 1. Let
A be upper Hessenberg, n n,
B be of the form (b, 0,..., O)T, an n-vector.

if
IIAII2+IIBII2=<1/4 and Ibaa21a3z...a,,_al>ae fore<J,

then

the system (1) is completely controllable (i.e. S R) and there is no system of
the form (4b) with IIEII2 1, Ilfl12 1 which yields an S of smaller dimension.

Proof. We have the following bound on the eigenvalues of A:

for any eigenvalue , of A. If we perturb A slightly to obtain A + eE, IIEII2 < 1, then
we have the following bound:

for any eigenvalue A of A + eE.
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Let

(5) G [B hI-A]0 0

be an (n + 1) x (n + 1) upper triangular matrix. It suffices to show that G is nonsingular
and remains so under any such e-perturbation of A, B, and h <= 1/4+ e [8, Thm 2.4-9].
With a suitable use of the triangular inequality, we see (with e =< 1/4)

(6) [[Gll2<= 1

for any eigenvalue h of A + eE. Since G is upper triangular, we may obtain the inequality

(7) e

where G UEVr is the singular value decomposition of G. Here U, V are orthogonal,
E diag (rl," , o’n/l) where

From (7) we have a bound on the smallest singular value of G:

(8)

Hence one would have to perturb G by a matrix of norm at least e to make it singular.

5. Applying the theorem. To see how to apply the theorem to a given system
that may not be completely controllable, consider the computed transformed single
input system (4a). We apply the theorem to the controllable part of (4a)

(9a) .41 (AI + EI)ZI+(B + eF’l)U,

where AI + eE’ is r x r, Z is an r-vector, and r is the dimension of the computed
controllable space Sc. Denote

(9b) = IIAI + 8,E11112 + IIB’ + 8,F1[[2
If : < , then the quantity

(9c) /zs Ib, a21 a,-,I
is a lower bound on the size of the perturbations needed to obtain a space Sc of smaller
dimension. If the system (9a) does not satisfy < 1/4, then we must scale (9a) by a factor
of sc in order to apply the theorem, so that the measure becomes

(9d)
1

p.s=-lb,a2 ar,r-ll.

In the block case, we define/zs to be the product of the smallest singular values
for each sub-diagonal block corresponding to the elements bl, a21,’", ar,r--1 that
appear in (9c). These blocks will be rectangular of nonincreasing sizes. Detailed
description of the block Staircase Algorithm can be found in [2], [4], [9], or [10]. This
definition is not based on a specific proven result, but was used as an experimental
extension to the definition for the single input case. The experimental behavior of the
two definitions were very similar.

6. Error bounds. Once we have an indication that the computed orthogonal basis
Q1 for the controllable space Sc is robust, we may consider only perturbations that do
not change the dimension of the controllable space. We consider the transformations
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Q [Q1 Q2], Q 4- AQ [Q14- AQ1 Q2 + A Q2] obtained using the Staircase Algorithm
from the original system (1) and the perturbed system (4b), where we assume the
perturbation applied is such that dim Q1 dim Q1 + AQ1. We want to find a bound
on ]tan4l, where I ,1 is the largest angle (in the sense of [3]) between the spaces
span (Q1) and span (Q1 + AQ1). We can give an idea of r/by observing that Sc can be
thought of as the smallest invariant subspace of the transformation A that contains
the vectors B. Hence, we can estimate r/ with a closely related quantity
where 0 is the largest angle between the computed space span (QI+ AQ1) and the
nearest invariant subspace of A.

To give a bound for z, we need to define some additional quantities: we define
the notation

sep (M, N) T-IIx
where M, N are some given matrices and T is a matrix operator defined by

T(X) MX-XN,

henceforth called the Lyapunov operator. If Ax, A2 denote the controllable, uncon-
trollable parts of A’ QrAQ in the system (3a) obtained when (1) is put into canonical
form, then/ is defined as

6 sep A l, A’z2) e.

If A is perturbed by a matrix of norm less than e, and assuming e is small enough
to satisfy 4e(llAzll+ e)-<_ [sep (A’ll, A’Ez)-e]2, then we may apply [3, Thm 4.11] to
obtain the bound

(10) ’<2

Note this does not give a complete answer, since the invariant subspace of A nearest
to span (O1 + AO1) may not contain the vectors B at all. However, since $c span (O1)
is an invariant subspace of A, z must be a lower bound for r/. Hence if z is large, our
original problem must be ill-posed in that small e-perturbations in A, B result in large
changes to the resulting controllable space. We must point out that (10) may give an
extremely poor estimate for ’, especially if the two parts All, A22 have eigenvalues
that coincide exactly or approximately, resulting in infinite or almost infinite values
for 8.

7. Limitations. In applying theorem 1, there are several limitations that should
be mentioned. The most obvious is that with the required scaling IIAII + Ilnll--<-, for
large systems, it is easy to obtain small values of/zs even for reasonably well-conditioned
systems (here we mean systems with a reasonably well-conditioned eigenvector matrix).
This property shows up in the numerical experiments.

In the block case (multiple inputs), we defined/zs as the product of the smallest
singular values, one per subdiagonal block. Since typically there are fewer blocks than
there would be in the single input case (for systems of comparable size), the above
limitation may not be as acute in the multiple input case.

8. Numerical experiments. We ran two general sets of tests. First we ran one
with a sequence of matrices with increasingly worse conditioning,.in the sense of the
eigenvector matrices. Second we ran one with increasing sizes.

To construct the examples with increasing ill-conditioning, we took a single
example in canonical form (already split) with A diag (-5 -4 -3 -2 -1
1 2 3 4 5 6) and B a random 11 4 matrix with 4 rows all zeros. We then applied
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a series of random similarity transformations, progressively more and more badly-
conditioned.

We constructed the examples of increasing size similarly: by starting with systems
in canonical form and applying similarity transformations to them. In this case, A
diag (ml,"’’, ran), where n =size of A, and mi is a random set of distinct integers
chosen from -n -< mi =< + n, and B (1 0 1 0 .) T (one column only). The examples
in Table 2b were constructed as in Table 2a, except that the similarity transformations
were especially constructed to have a 2-norm condition number of 100 in all cases.

The values of 1! were obtained by estimating the condition number (in the sense
of solving linear equations) of the Lyapunov operator using the computed AI, A2.
The estimate was obtained using a method adapted from that described in [7] for
estimating condition numbers of general linear maps.

The computations for Tables 1, 2a, were carried out in double precision on an
IBM 370/168, which has a precision of about 10-15. Since the basis of the Staircase
Algorithm is searching for a small sub-diagonal block in the transformed matrix A’,
the decision as to when a block is small (or rank deficient) is critical to the success of
the algorithm. We chose experimentally to use the square root of the machine precision,
specifically 10-7, as the zero tolerance. The computations for Table 2b were carried

TABLE
Increasingly worse conditioning, size 11 x 11.

IIAIlo s 1/3

13.05 2.09 10-4 7.09
200.7 5.43 10-5 11.97

5751 3.63 x 10-4 9.73 x 104
8424 1.76 10-4 4.03 x 105

size

4
8

16
24
32
40
48

TABLE 2a
Increasing sizes, all single input.

IIAIt s 1/3

51.7 2.72x 10-2 2.59
158.6 7.23x 10-12 5.03
3190 8.08 x 10-21 115.0
793.1 2.18x10-31 28.4
970.7 1.73 x 10-54 48.1
5709 9.21X 10-49 53.8
5269 1.82 x 10-58 50.6

secs

.01

.01

.03

.08

.17

.32

.54

TABLE 2b
Increasing sizes, all single input (second set, run on VAX).

size IIAII ms 1/3

4 791.5 2.30 10-4 62.4
8 373.4 1.4810-8 611

16 246.7 3.77x 10-15 159
24 772.4 5.30 x 10-25 196
32 1578 8.46 10-38 1008
40 2781 7.09 10-41 2787
48 2274 2.70 10-47 607
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out on a VAX 11/780 running UNIX. Since numbers less than 10-38 cannot be
represented on a VAX, the entries in the table that were that small were recomputed
by hand (the computer generated zeros).

Since the example in Table 1 had multiple inputs, and the example in Table 2
had only a single input, the number of sub-diagonal blocks in example 2 was much
greater for comparable size; hence the estimate/zs was much smaller. Clearly, though
the estimate is of some use for smaller systems, for larger systems a more precise
measure must be computed. We will discuss possibilities in this regard in a future palSer.

To obtain an estimate on the bound r/of the errors in the computed controllable
space So, recall formula (10) to note that one must multiply the 1! 6 column by e, in
this case, 10-7 We find that this estimate is small, indicating small errors, except in
cases where we specifically built the test case to be badly-conditioned.

As is evident from these tables, the rank determination was not sensitive to
conditioning per se as much as it was to size. Just the opposite was true for the bounds
on the possible subspace perturbations (the 1/6 column).

9. Concluding remarks. This algorithm provides a stable way to compute the
controllable space and is a first attempt at giving an estimate of the rank-robustness
of this problem. It is always better than using (2), since the singular values of the
matrix in (2) are unchanged by orthogonal similarity transformations. We would obtain
the same set of singular values whether we use the original system (1) or the transformed
system (3) in canonical form. The example mentioned in the introduction illustrates
that (2) is an example of a procedure which can introduce ill-conditioning not present
in the original problem. On the other hand, the Staircase Algorithm is an example of
a method that is robust in the sense that, though it might fail on certain problems, it
does not add ill-conditioning not present in the original problem and will provide flags
/zs, - to signal a possible failure.
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BOUNDS FOR CUBE COLORING*

BARTON R. PLUMSTEAD] AND JOAN B. PLUMSTEAD:

Abstract. An n-cube is properly colored if each vertex having an even number of ones is colored white
and each vertex having an odd number of ones is colored black. This paper considers programs that color
the n-cube with a coloring operation that in one step colors all uncolored vertices of a subcube either all
black or all white and leaves previously colored vertices as before. An upper bound of 1.06(5) steps and
a lower bound of (1.5) steps for coloring the n-cube are proved. There are relationships between this
model of computation and both width-two branching programs and depth 3 circuits for parity.

AMS(MOS) subject classification. 68-05

Introduction. An n-cube is the set of all 2 n-dimensional binary vectors. The
cube is said to be properly colored if each vector with an even number of ones is colored
white and each vector with an odd number of ones is colored black. The set of vectors
defined by fixing 0 <= k <- n components of the vectors is called a subcube. In our model,
each primitive step of an algorithm to color the n-cube consists of specifying a single
subcube and coloring it black or white. Thus, an algorithm for coloring an n-cube can
be given as a sequence of ordered pairs, specifying which subcube is colored and what
color it is given. Initially, no vectors are colored, and once a vector has been given a
color, it keeps that color even if it is an element of a subcube colored by a later step.
Figure 1 shows a simple algorithm for coloring an n-cube:

for each vector x with an even number of ones do
color x white

color the entire cube black.

FIG. 1. Straightforward coloring algorithm.

This algorithm is obviously correct and takes 2n-1+ 1 steps.
In the first section, this trivial upper bound is improved to 1.06(/)" steps, and

in the second section a lower bound of (1.5)" steps is proved. For comparison, note
that ,ff is approximately 1.709. We discuss some possibilities for narrowing this gap
between the two bounds in the third section. Finally, in the fourth section, we discuss
the relationships between this problem and other models of computation, specifically
width-two branching programs and bounded depth circuits.

We introduce some notation for describing algorithms which color n-cubes. We
will use a ? in a particular component to indicate that the component is not fixed (i.e.
it can take on both 0 and 1 as values). If every component of a subcube is fixed, we
call that subcube a vector. A subcube is even if it is a vector and it has an even number
of ones, and odd if it is a vector and it has an odd number of ones. If C is a subcube
of an n-cube and D is a subcube of an m-cube, then CD denotes the subcube of the
(n + m)-cube defined by letting the first n components correspond to the components
in C and the last m correspond to D. Similarly, if C1, C2," , Ck are subcubes of the
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m-cube, C C2 Ck is a subcube of the km-cube. An algorithm to color the n-cube
will be written (C1, al); (C2, a2);" (Cs, as), where Ci is the subcube colored at step
i, and ai is the color it is given. In constructing an algorithm Q, the statement Q A
will mean that initially Q contains no steps. Then Q Q; (C, a) will add one step to
O, and in that step the subcube C will be given the color a.

1. Upper bounds. One can improve upon the straightforward algorithm for
coloring the n-cube by using the algorithm in Fig. 2. Suppose n km where k and m
are both integers. Then each subcube C can be written as CIC2"’" Ck, where each
C is a subcube of the m-cube.

for j:=0 to k do
for each C such that j of the Ci’s are {?}’

and k-j of the Ci’s are even do
begin

if j is even then color C white
else color C black

end
end

FIG. 2. The k-parts coloring algorithm.

For example, if this were run on the 4-cube, with k 2 it would perform the following
steps:

j=0) Color (0000), (0011), (1100), and (1111) white.

j 1) Color (00??), and (11 ??) black.
Color (??00), and (??11) black.

j 2)Color (????) white.

The 2-parts coloring algorithm was discovered by Maria Klawe. Notice that the
algorithm in Fig. 1 is the k-parts algorithm for k 1.

THEORFM 1. If n =km where k and m are both integers, the k-parts coloring
algorithm colors the n-cube in (2’-1 + 1) k steps.

Proof. It is easy to show by induction that when j=j’, this algorithm colors
exactly those vectors y= YY2""Yk such that j’ of the y’s are odd and k-j’ are
even, where each Yie{0, 1}". If j’ is even, there are an even number of odd
subvectors, so the vector is even and the algorithm correctly colors it white. If j’ is
odd, the number of odd subvectors is odd, making the vector odd, and the algorithm
correctly colors the vector black. Thus the algorithm is correct. The number of steps

k k m-1 k-j (2m-1 kused is j=o (j) (2 + 1) steps.
When m 3 the k-parts algorithm requires only (.ff)n steps, which is less than

what the algorithm uses when m 2 or m- 4. Generalizing the method used in the
k-parts algorithm, we can obtain the following theorem:

THEOREM 2. If an n-cube can be colored in Sn steps and an m-cube in Sm steps,
then an n / m)-cube can be colored in S. Sm steps.

Proof Suppose algorithm P colors the n-cube in S steps and algorithm Pm colors
the m-cube in S, steps. Then P has the form (C, al); (C2, a2); (Csn, asn), where
Ci is the subcube colored at step i, and a is the color the subcube is given. Similarly,
P,, can be written as (D, b); (D2, b2); (Dsm, bsm), where the D’s are subcubes
and the b’s colors. Consider the following algorithm.
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O<-A
for i:= 1 to Sn do
begin

for j := 1 to S, do
begin

if ai bj then O - Q; CiDj, white)
else Q - Q; CiDj, black)

end
end

For each step in Pn, Q does S,, steps, so this algorithm does S,. S,, steps. Consider
an arbitrary vector y{0, 1}/". One can write y as YlY2 where Yl{0, 1}" and

Y2 {0, 1}. Suppose y was first colored at step in P and Y2 at step j in P. Then
y Ci, D, for i’< i, or i’= and j’< j. Hence, in Q, y is first colored when CiD is
colored. If a b th Yl and Y2 are either both even or both odd, so y is even and
is thus colored correctly. If ai bj then one of Yl and Y2 is even and the other odd,
so y is odd and is colored correctly. Thus the algorithm is correct, fi

As mentioned earlier, when n0 mod 3, theorem 1 gives an upper bound of
(). Since the 2-cube can be colored in threz steps and the 4-cube in nine eps,
Theorems 1 and 2 give us upper bounds of 9(5)n-4 when n 1 mod 3, and 3(5)-2
when n 2 mod 3. Thus 1.06() is an upper bound for the cube coloring problem.

2. An exponential lower bound. We next turn our attention to proving an
exponential lower bound for coloring the n-cube. Suppose that any algorithm for
coloring the n-cube requires at least S steps and let n be greater than 1. We will
show that S S_ by looking at an arbitrary algorithm P for coloring the n-cube.
Suppose P requires s steps. Then P has the form (C1, al); (C2, a2); (C, a), where
Ci is the subcube colored at step i, and ai is the color it is given. Look at the first

1C’component of Ci. It is either 0, 1, or ?, so Ci can be written as OCi, i, or ?Ci,

where C is a subcube of the n- 1-cube. Let P0 and P1 be the algorithms defined by
the subsequences of P which include exactly those steps for which the first component
of C is a 0 or a 1, respectively. More formally, P0 and P1 can be defined as in Fig. 3.

fori:=l tosdo
begin

if Ci xC[ then Px Px; (Ci, ai)
end

FIG. 3. Algorithm Px.

Similarly, let P(P) be the algorithms defined by the subsequences of P which include
exactly those steps for which the first component of Ci is a 0 or a ? (1 or ?). Then
we have Fig. 4.

PA
fori:=l tosdo
begin

if C xC[ or C ?C[ then P P; (C, ai)
end

FIG. 4. Algorithm P.
Let IPI denote the length of P (the number of steps P uses). Then Iel leVI + [PI

IPI+IP01, First we note that P and P can both be easily modified to color the
(n-1)-cube. For P one can simply strip off the first component of every subcube
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used, and for P’[ one can simply strip off the first component and switch all the colors.
Thus IPI--> Sn-, + max

Next we will show that IPol+ IPll _-> Sn-1. Consider the algorithm in Fig. 5.

Q-A
for i:- to s do
begin

if Ci .9C then
if Ci =0C then Q-Q" (C, ai)
else if ai white then Q Q; (C, black)

else Q Q; (C, white)
end

FIG. 5. Algorithm Q.

THEOREM 3. Algorithm Q colors the n 1)-cube.
Proof. Consider a vector y in the (n- 1)-cube, and look at the first time that 0y

or ly was colored in algorithm P. Say this occurred in step i. Then y C for any j < i.
If Ci OCI, then since y has the same parity as 0y, y is colored correctly. Similarly,
if Ci 1CI, then since y has the opposite parity of ly, y is colored correctly. If
then P colors 0y and ly the same color, but we assumed that P was correct, so this
cannot happen. Thus Q correctly colors the (n-1)-cube.

Obviously, the number of steps in Q is IPol + IPll. Hence, max ([P0], IPll)>---S,-1
and IPI->-S_. Since $1 2 and $2 3, we have proved the following lower bound:

THEOREM 4. Any algorithm which colors the n-cube has length at least 2() "-1.

3. Open problems. Since the upper and lower bounds proven here do not meet,
at least one of them is not tight. Which one? In the algorithms given for the upper
bound, if a subcube C is specified and the first component o C is fixed, then the
second and third components are also fixed. Suppose that for some optimal algorithm
P for coloring the n-cube, there exist j and k where 1 =< j, k =< n such that whenever
a subcube C is specified and the jth component is fixed, the kth component is also
fixed. Given this assumption, it is not difficult to prove a better lower bound. One can
always renumber the components, so there exists an algorithm P’ such that whenever
the first component is fixed, the second is also. If one defines P0 and P from algorithm
P’ as they were defined in the proof of Theorem 4, then we have
S-1 + max (IPol, IPI). If a subcube Ci specified in P’ is in Po or P1, it can be written
as 00C, 01C’ 10C’i, , or 11Ci, where C is a subcube of the (n-2)-cube. Consider
algorithms Qo and Q which are defined in Fig. 6.

Q0-A

for i:= to s do
begin

if C ?C then
if Ci OOC then Qo Qo; (C, ai)
if C 10C then

if a white then Qo Q0; (C, black)
else Qo Q0; (C, white)

if C 01C then
if a white then Q Q" (C, black)

else Q Qa; (C, white)
if C 11C then Qa Qa; (C, ai)

end

FIG. 6. Algorithms Qo and Q1.
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An argument similar to that in Theorem 3 shows that the algorithms Qo and Q1 each color
the (n 2)-cube. Obviously Q01 /IQI IP01 / IPI. Hence max (IP01, IPI) ->- s,_., so

and thus Sn>=on+2/45, where q=(1 +/)/2.
One can use a similar argument to show that if, in an optimal algorithm P for

coloring the n-cube, whenever the first component is fixed, the second and third are
also fixed, then Sn => Sn-1 + 2Sn-3, so S,, is (1.6956").

4. Related models of computation. The problem of finding a good (i.e., exponen-
tial) lower bound for the number of colors in an n-cube has been proposed in [BDFP]
in relation to branching programs and striped cubes. Branching programs are studied
to develop techniques for proving lower bounds for storage space. In [BDFP] they
look at lower bounds on the length of width-two branching programs (W2-programs)
for computing certain Boolean functions. An arbitrary W2-program can be decomposed
as a sequence of strict width-two branching programs. It is shown in [BDFP] that if
there is a strict width-two branching program for computing f, a Boolean function of
n variables, then f-(x) is the disjoint union of no more than 4.2/2- 2 striped cubes,
where a striped cube is the subset of a subcube obtained by specifying the parity of
some set of components. One can look at algorithms, called P-programs, which are
sequences of ordered pairs, specifying which striped cube is colored and which color
it is given. If a P-program colors f-l(0) white and f-(1) black, we say it computes f.
For example, the parity function can be computed with a P-program of length 2.
Consider the algorithm in Fig. 1. Since the set of vectors with an even number of ones
is a striped cube, it can be colored in one step, and the remainder can be colored in
one more step. If the shortest P-program for computing some function f requires
Cp(f) steps, then Cp(f)/(4.2n/2- 2) is a lower bound on the length of any W2-program
for computing f. Thus one could look at P-programs in trying to prove lower bounds
for W2-programs. The problem of finding a natural function f and a nonpolynomial
lower bound on the length of the W2-program for computing f was open at the time
this work was done.

In order to gain insight into this problem, we looked at the parity function in a
more restricted model. We call a P-program which only uses subcubes, rather than
the more general striped cubes a restricted P-program. We prove a lower bound of
(1.5) steps to color the n-cube, and thus on the length of one of these restricted
P-programs for computing the parity function. After these results were obtained,
James Shearer IS] showed that the function f(x, x2,’", xn), which is 1 if and only
if x + x2 +" + x, 0 mod 3, requires a P-program of length exponential in n. Interest-
ingly, (1.5)" comes into his result also.

The problem of computing the parity function has also been considered with
Boolean circuits of constant depth. In [FSSa], it is shown that constant depth Boolean
circuits for parity require more than a polynomial number of gates. In [FSSb], this is
improved to 12(n cg2") for depth 3 circuits. It seems likely that a significantly larger
lower bound is possible. The parity function is important in this situation as other
problems such as multiplication and transitive closure are at least as difficult as parity.
In addition, sufficiently large lower bounds for constant depth parity circuits would
show the existence of an oracle A separating PSPACEA from the relativized Meyer-
Stockmeyer hierarchy 12 /P,A.

In fact, there are more direct connections between depth 3 circuits and our model
of computation. Consider programs which first color no more than 2"-(2"-a/f(n))
vectors black, then have a sequence of steps in which subcubes are colored white, and
finally have one last black coloring step. If any such program which properly colors
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the n-cube contains at least f(n) white coloring steps, then any depth 3 parity circuit
must contain more than f(n) gates. One sees this by looking at a 3 level and-or-and
circuit. If the circuit outputs a 1 for vectors with even parity and a 0 for vectors with
odd parity, then every or-gate must output a 1 on every even vector, and at least one
or-gate must output a 0 on any given odd vector. At least one or-gate must output a
0 for at last an average number of odds, namely 2’-l/f(n) odds. The correspondence
stated above follows when one views the bottom level of and-gates as subcubes
corresponding to the white coloring steps.

Our model of computation may be considered as a restricted class of circuits,
namely those circuits in which only the rightmost gate on any level may have nonliteral
inputs.
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RANKING THE VERTICES OF A PAIRED COMPARISON DIGRAPH*

MIKIO KANO AND AKIO SAKAMOTO$

Abstract. A paired comparison digraph D (V, A) is a weighted digraph in which the sum of the
weights of arcs, if any, joining two distinct vertices is exactly one; otherwise, there exist no arcs joining
them. A one-to-one mapping a from V onto 1, 2, , V[} is called a ranking of D. We define the backward
arcs and the backward length of a. An optimal ranking of D is a ranking whose backward length is minimum
among those of all rankings of D. Our method of ranking the vertices of D is one that makes use of these
optimal rankings. For certain classes of paired comparison digraphs, we show that the optimal rankings
can be explicitly computed.

AMS(MOS) subject classifications. 05C20, 05C99

1. Introduction. Consider a weighted digraph in which every arc vw has a weight
e(vw). We shall be concerned with a paired comparison digraph (PCD) which is defined
to be a weighted digraph satisfying the following conditions (see Fig. 1)."

(i) 0 < e(vw) =< for every arc vw;
(ii) e(vw)+e(wv)= if both vw and wv are arcs;
(iii) e(vw)= if vw is an arc but wv is not.

A digraph D can be considered as a PCD ifwe set the weight ofevery arc ofD as follows:
(i) e(vw)=0.5 if both vw and wv are the arcs;
(ii) e(vw)= if vw is an arc but wv is not.

Throughout this paper, we regard a digraph as a PCD in this way. In particular, a
tournament, in which every two vertices are joined by exactly one arc, is a PCD.

a b

d c
FIG. 1. A paired comparison digraph.

A digraph D is a natural way of representing the results of paired experiments;
that is, if v is superior to w (v defeats w), then vw is an arc of D but wv is not; if v
is equivalent to w (game ends in a draw), then both vw and wv are arcs of D; and if
v and w are not compared (game is not played), then there are no arcs joining v and
w. Furthermore, we may interpret the weight e(vw) of an arc vw in a PCD as the rate
with which certain consumers prefer v to w in a paired comparison test (with which
v defeats w).

We now explain the method of ranking the vertices which will be discussed in
this paper. Let D be a PCD with n vertices. A ranking a of D is a one-to-one mapping
from the set of vertices of D onto the set of integers {1, 2,..., n}. For a ranking

* Received by the editors January 27, 1983, and in final revised form October 17, 1983.
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the image a(v) of a vertex v is called the rank of v defined by a, and an arc vw such
that a (w) < a (v) is called a backward arc of a. We write B(a) for the set of backward
arcs of a, and define the backward length of a, denoted by [[B(a)[[, as follows:

[IB( )II= Y
vwB(a)

Then the backward length of a ranking a can be considered as the value of unreason-
ableness of a. On the other hand, an arc xy with a(x) < a(y) and e(xy) represents
only that a player x with higher rank defeats a player y with lower rank.

For example, let a be a ranking of a PCD in Fig. with a(a)= 1, a(b)=3,
a(c)=4, and a(d)=2, then it follows that B(a)={da, ba, cd, cb} and
11+0.3 2+l2+0.6l=4.2(seeFig. 2).

a b c

FIG. 2. A ranking a.

A ranking a of D is said to be optimal if the backward length of a is minimum
among those of all rankings of D. For a vertex v of D, the average of the ranks defined
by the optimal rankings of D is called the proper rank of v. Our method of ranking
the vertices of D is one that makes use of these proper ranks which depend on the
optimal rankings of D. Therefore our ranking procedure can be applied to every PCD,
and we shall show that this method has reasonable properties.

There are several methods of ranking the vertices of a tournament. One approach
is to compute the scores, which are the numbers of games won by each player, and
compare them. In [8], this ranking method is called the "points system" and character-
ized by a set of axioms. Another ranking is obtained by making use of the maximum
positive eigenvalue and its positive eigenvector, due to Perron and Frobenius, of the
adjacency matrix of a tournament (e.g., Wei [9] and Kendall [6], [2, p. 185], Moon
and Pullman [7], Berge [1, p. 74]). It follows in the former that the ranks of players
whose scores are the same are not distinguished. On the other hand, the latter may
discriminate the ranks of those. In many tournaments, these two methods give similar
rankings provided the ranks of players having the same score are ignored. We show,
however, an example of a tournament in which the vertex, whose rank is determined
to be the first by the latter method, does not have a maximum score. It is given in Fig.
3. The maximum positive eigenvalue and its positive eigenvector of the adjacency
matrix of this tournament are approximately 3.174 and [.165, .157, .180, .130, .119,
.083, .083, .083] respectively. Thus the ranking of the vertices is in the order of c, a,
b, d, e,. .. However, the scores of a and b are both five and that of c is four.

Note that the ranking methods mentioned above are only for a tournament. On
the other hand, our aim in this paper is to consider a ranking procedure applicable to
every PCD, including tournaments as a special case.

For a ranking a of a PCD D, we can define the forward arcs of a and its forward
length similarly. A ranking a of D is defined to be forward optimal if its forward
length is maximum among those of all rankings of D. The forward optimal rankings
may be applied to rank vertices of D. But if we regard D as the results of games, then
this ranking method seems not as natural as the backward case discussed in the present
paper. However, the ranking method with forward length has different properties and
may be useful for another application [4].
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b

d

FIG. 3. A tournament. Numbers denote the scores.

2. Notation and preliminary results. For finite sets X and Y, we denote the number
of elements in X by Ixl or {x x), and denote X U Y by X + Y if it is a disjoint
union. A digraph is said to be asymmetric if every two vertices are joined by at most
one arc, and is said to be complete if every two vertices are joined by at least one arc.
A complete asymmetric digraph is called a tournament. We say that a digraph is acyclic
if it contains no oriented cycles.

Let D=(V, A) bea PCD with n vertices. We define five functions; g: V V-> [0, 1],
/x: V V--> {0, 1}, r+ and r-: V--> [0, n-1], and d*: V--> {0, 1,2,... ,n-l} as follows:

e(vw)>O
e( vw)

0

if vw is an arc of D,
otherwise,

 (vw) e(vw) + g(wv),

tr+(v)= E g(vx) and tr-(v)= Y g(xv),
xV xV

d*(v) n- -(r+(v) +tr-(v))= n- E tx(vx).

It is obvious that if v and w are compared, then /z(vw)= 1; otherwise, /z(vw)=0.
d*(v) is the number of vertices which are not compared with v. Since we may regard
o’+(v) as a generalized score of v, we call r+(v) the positive score (or briefly score) of
v and r-(v) the negative score of v. Note that if D i an asymmetric digraph, then
the positive and negative scores of v are the out-degree and in-degree of v, respectively.

We put the symbol of the digraph, say D, as a subscript of an appropriate function
if necessary. For example, we write o’9(v).

If a is a ranking of D with a(v) for <- <- n, then we write a [Vl, v2,. Vn].
The vertex whose rank defined by a ranking a is k is denoted by a-(k). We denote
the set of optimal rankings of D by OR (D). The backward length of an optimal
ranking of D is called the optimal backward length of D and denoted by l(D). Then
we have

l(D)=min{llB(a)ll} and OR(D)={alIIB(a)II=I(D)}.
Note that if H is a subdigraph of D with V(H)= V(D), then l(H)<=l(D) since
B,(a)

_
Bo(a) for every a.
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Remark 2.1. A PCD D is acyclic if and only if/(D) =0.

Proof. The remark follows from the fact that an acyclic digraph contains at least
one vertex of in-degree zero and that a subdigraph of an acyclic digraph is also acyclic.

Remark 2.2. The optimal backward length of a PCD D is the sum of those of
the strongly connected components of D.

Proof. This remark can be proved similarly to Remark 2.1 by regarding each
strongly connected component of D as a vertex of an acyclic digraph.

Let a be a ranking of a PCD D and let m and k be integers such that -< k < k + m -<

n, where n is the number of vertices of D. Then we define a ranking re k. by

k {k+m ifv=a-(k),
a,(v) k if v a-(k + m),

a (v) otherwise.

LEMMA 2.3. Let a be a ranking of a PCD with n vertices. If a(v)= k and a(w)=
k / m, then

[IB(ak,,)[[-[IB(a)ll=m(tr+(v)-cr+(w)+ {l(WZ)-I(VZ)})a(z)>k+m

+ , {a(y)-k}{tz(wy)-I(vy)}
k<a(y)<k+m

=m(o’-(w)-cr-(v)+ {tx(vx)-tx(wx)})a(x)<k

+ E {(k+m)-a(Y)}{tx(vY)-tx(wY)}.
k<a(y)<k+m

Proof. By the definition, the backward length of a is expressed as

IIn()ll= E (yx)(y)-
a(x)<a(y)

where the summation is over all pairs of vertices x and y satisfying a(x)< a(y). Let
X={x Vla(x)<k}, Y={y VIk<a(y)<k+m}, Z={zV]k+m<re(z)}, and
B={stB(a)l{s t}fq{v, w} }. Then we have

Iln()ll- Y [(vx){k- (x)} / g(wx){(k + m)- re(x)}]
xX

+ E [g(yv){a(y)-k}+g(wy){(k+m)-a(y)}]
yY

+ E [g(zv){a(z)-k}+g(zw){a(z)-(k+m)}]
zGl

+mg(wv)+ E g(st){a(s)-a(t)}.
stB

Moreover, II (  )ll is obtained from the above equation only by interchanging v and
w. Hence we have

[[B(ak)ll- I[B(a)ll m( E {g(vx)- g(wx)} + Y {g(vy)- g(wy)}
\xX y Y

+ E {(zw)- (zv)} + (vw)- (wv)]
zl /

+ E {a(y)-kI{(wy)-i(vy)}.
yeY
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On the other hand, it follows that

r+(v)-tr+(w) 2 {g(vx)-g(wx)}+ E {g(vy)-g(wy)}
xX y Y

+ y {(vz)- (wz)} + (vw)- (wv).
zl

These equations lead to the first equation of the lemma. The second one is obtained
similarly by considering cr-(w)-tr-(v).

3. Complete PCD and semicomplete PCD. We begin with the following lemma
which gives us the backward length of any ranking of a complete PCD.

LEMMA 3.1. Let K be a complete PCD with n vertices and let a be any ranking of
K. Then

[IB()II- Y +(v)(v)-n(n- ).
tGV

Proof We prove the equation by induction on n. The basis, n l, is obvious.
Suppose that the equation holds for n k, and let n k + 1. Let x be the vertex such
that a(x)= n, and put W= V(K)\{x}. By the induction hypothesis on K-x, we have

IIBK()II- Y {’(v)-gK(VX)}a())-k(k2-1) + E gK(XV){n--o(v)}.
W W

Since gn(xv)+ gn(vx)= 1, the last term can be expanded as follows;

E ,,(xv){n-(v)}=n E ,,(xv)+ E {,,(vx)-I(v)
W W W

=trz(x)n+ E gK(VX)a(v)-1/2k(k+l).

Thus we obtain

IIB()II-- 2 (v)(v) +r:(x)n-k(k + 1)(k +2)
vW

E O’( (/3) O (/3) - i1 irl2- 1).
V(K)

This completes the proof.
By Lemma 3.1, the optimal rankings, the proper ranks, and the optimal backward

length of a complete PCD are easily obtained as the following theorem. Remember
that the proper rank of v, denoted by 7r(v), is defined by

E (v).7r(v) IOR (D)I OR(O
THEOREM 3.2. Let K be a complete PCD with n.vertices. Then
(1) A ranking a-- [Vl,/-)2, On] ofK is optimal if and only if o’+(v)>=r+(v)>-_

..>_r+(v,).
(2) 7r(v)=sc+1/2(r/+l) where = {x Vlr+(x)>r+(v)} and

r+(y) o-+(v)}.
(3) l(K)=Eovr+(v)a(v)-kn(n- l) where creOR(K).
Proof (1) Let a [Vl, v2," ", v,] be any optimal ranking of K. If r+(

for some i<j, then, by Lemma 2.3, we have liB(-,)[I-IIn()ll-
(j- i)[r+(vi)-r+(vj)]< 0 as tx(xy) for all vertices x and y, which is a contradiction.
Thus r+(vl)>-r+(v2)>-..- >= tr+(v,). On the other hand, let/3 =[wl, w,..., w,] be
a ranking which satisfies the condition o’+(w) _>- r+(wz) ->. => r+(w,). Then, we have
liB(a)[[ 11B(/3)11 by Lemma 3.1. Hence/3 OR (K).
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(2) Put {ye VIo’+(y)=o’+(v)}={v=yl,y2,’’’,yn} and IOR(K)I=r. Then it
follows from (1) that {a(y,), a(y2),"" ", a(yn)}={:+l, :+2,’.., :+rt} for all a e
OR (K) and (v)= (yl) (Y2) (yn). Hence we have

(0) (Yl) + (Yz) +’’" + (Y,)

r i=1 OR(K) r

=EE (+i)=E{+( +1)}= +( +1).

Hence (v)=+( +1).
Statement (3) follows at once from Lemma 3.1.
Consider, for example, a tournament T in Fig. 4. By Theorem 3.2, we have the

following: OR (T): { :Ivy, re,..., v7]lv,:a, {v2, {b, c}, {v4, v6}= {< e,f},
and v7 g}, [OR (T)[ 12, w(a)= 1, (b)= (c)= 2.5, (d)= (e)= (f)= 5, (g)=
7, and l(T) 7.

9 b

2

2
FIG. 4. A tournament T. Numbers denote the scores.

If two vertices v and w in a PCD D are not compared (i.e., tx(vw)=0), then the
unordered pair {v, w} is called an uncompared pair of D. We write U(D) for the set
of uncompared pairs of D. If {v, w} U(D), then Dvw denotes the PCD obtained from
D by adding a new arc vw of weight one, that is, Dvw=(V(D),A(D)+vw). If {x,y}
is another uncompared pair of D, then Dvw,xy is the PCD obtained from Dvw by adding
a new arc xy of weight one. A complete PCD obtained from D by adding exactly one
of arcs vw and wv for each {v, w} U(D) is called a completeness of D. A completeness
K of D with l(K)= l(D) is called a normal completeness of D, and the set of normal
completenesses of D is denoted by NC (D). Note that we can easily see the existence
of a normal completeness of D as follows: Let a OR (D). For every {v, w} U(D),
we add a new arc xy to D such that {x, y} {v, w} and c(x) < a(y). Then the resulting
complete PCD is a normal completeness of D.

A semicomplete PCD is a PCD in which d*(v) is either zero or one for every
vertex v. Then a semicomplete digraph is regarded as the result of an incomplete
tournament in which each player has not played at most one game. The optimal
rankings and the proper ranks of a semicomplete PCD are obtained by the next theorem.
We shall prove it in the next section.

THEOREM 3.3. Let D be a semicomplete PCD. Then
(l) The set of optimal rankings of D is the disjoint union of the sets of optimal
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rankings of normal completenesses of D, that is,

0R (D) Y 0R (K) (disjoint union).
KNC (D)

(2) A completeness K ofD is normal ifand only ifK satisfies thefollowing conditions:
(i) if cr(v)>cr(w) for {v, w} U(D), then vwA(K), and
(ii) /fcr(v) o’S(w) for {v, w} U(D), then A(K) contains exactly one of arcs

vw and wv.
In particular, itfollows that INC (D)I 2 where r= # {{v, w} U(D)lcr(v)= cr,(w)}.

(3) For each vertex v of D,

,,(v).ro(v)- INC (O)[

For example, let D be a semicomplete PCD as in Fig. 5. Then the normal
completenesses of D are Kl and K_ shown in Fig. 6. Hence OR(D)=
OR(K,)+OR(K_)={a=[x,, x=, X3, C, d]l{x,, x=, x3}--{a b, e}}+{fl=[y,, Y2, Y3,

a, d]l{y,, y, Y3} {b, c, e}}.

e b
)12.5 .5

d 1.5
D

FIG. 5. A semicomplete PCD D.

a 2.5 a 1.5

e b e b
2.5 2.5 2.5 2.5

2.5-.5 c d K,d
K

FIG. 6. The normal completenesses of D.

4. Optimal rankings. In this section we shall investigate optimal rankings of a
PCD and prove Theorem 3.3.

LEMMA 4.1. Let D be a PCD and {v, w} U(D). Then the following statements

), (2), and (3) are equivalent:
(1) l(Dvw) < l(Dwv).
(2) a(v) < a(w) for all a OR (D).
(3) OR (D)=OR (Dw) and l(D)= l(Dow).



86 MIKIO KANO AND AKIO SAKAMOTO

Moreover, the next statements (4), (5), and (6) are also equivalent:
(4) l(Dvw)= l(Owo).
(5) There exist two optimal rankings a and of D such that a(v)< a(w) and

/3(w) < t(v).
(6) OR (D)=OR (Dw) +OR (Dw) and/(D)= l(Dow)= l(Dw).
Proof. (1) implies (2): Suppose l(Dw)<l(Dw). Assume that there exists a

OR (D) such that a (w) < a (v). Then we have

l(D) IIBo(,)ll Ilno()ll >-- l(Dw,) > l(Dow).

Since D is a subdigraph of Dvw, it is clear that l(D)N l(D,w). This contradicts the
above inequality. Thus re(v)< re(w) for all c e OR (D).

(2) implies (3): Let a OR (D). Since a(v)< a(w), we have

I(D) >-_ l(D) --IIBo()ll- IIBoow()ll -> l(Dw),

which implies that l(D) l(Dvw) and a e OR (Dow), in particular, OR (D)
_
OR (Dw).

Conversely, we suppose/3 e OR (Dw). Then

l(D)- l(Do)- n,ow(t)II->-II Bo(t)II >-- I(D).

Therefore/3 e OR (D), and thus OR (D)
_
OR (Dvw).

We prove later that (3) implies (1).
(4) implies (5): Let l(Dw)= l(Dwv). Without loss of generality, we may assume

that there is a’eOR(D) such that a’(v)<a’(w). We shall derive a contradiction
assuming that a(v)< a(w) for all a e OR (D). Then we may assume /(D)= l(Dow)
l(Dwo) since (2) implies (3). Let 7eOR(Dwo). If y(v)< ),(w), then we have

I(D) l(Dw,)= IIBDo(T)II- IIBo(T)II / T(w)-T(v)> Ilno(T)ll->- I(D).

This is a contradiction, and thus T(w)< T(v). Hence

I(D)- l(Dw)= Ilnowo()ll IIBo()ll,

which claims yOR(D). This contradicts the assumption that a(v)<a(w) for all
c OR (D).

(5) implies (6): Let OR (D) be partitioned into two subsets

OR={tOR(D)la(v)<a(w)} and OR2={a. OR(D)la(w)<a(v)}.

We shall prove that if there exists a OR (D) satisfying a(v) < a(w), then OR (Dw)
ORl and l(D)= l(Dow). Let a ORl. Then we have

l(D,w) >- l(D) IIBD()II--IlUDo()ll l(Dow),

which implies that I(D) l(Dvw) and a OR (D). In particular OR (Dw) ORl. On
the other hand, let/3 OR (Dow). Then

I(D) l(Dw)= IlBDow(fl)l[ >- IIBo(/)ll -> l(D),

which means that/3 e OR (D) and/3(v) </3(w). Therefore we have/3 e OR and thus
OR (Dow)___ OR1. This completes the proof of OR (Dye)= OR. Therefore, (6) holds.

(6) implies (4): This is immediate.
(3) implies (1): Let us assume l(Dow)>-_ l(Dw). Then we have l(Dvw) l(Dw)

l(D) since l(Dw) >-/(D)= l(Dvw). Hence (4) holds and thus (6) follows, which is
contrary to (3). Therefore (3) implies (1).
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LEMMA 4.2. Let D be a PCD and {v, w} U(D). Then we have the following:
(1) /(D)=min {/(Dvw), l(Dwv)}.

(2)
R (Dw)

OR(D)= R (Dw)
R(Dw)+OR(Dw,)

ifl(D,,w)<l(Dwv),
ifl(Dw)>l(Dwo),
ifl(Dw)=l(Dwo).

(3) If l(D)=l(Dvw), then OR(D)D_OR(Dw) and c(v)<t(w) for every
OR (Dw).

Proof. These statements are easy consequences of Lemma 4.1.
Note that there exist D and Dow such that l(D) < l(Dow) and OR (D)

_
OR (Dvw).

Therefore, l(D) < l(Dw) implies neither OR (D) OR (Dow) nor OR(D)
OR (Dow) -G. Furthermore, OR (D)

_
OR (Do) does not imply l(D)- l(Dow). For

example, let T be the tournament in Fig. 4 and D be the semicomplete PCD which
is obtained from T by deleting the arc ad. Then it follows from Theorems 3.2 and 3.3
that I(D)=I(T)=7<I(Dda)= 10 and OR(D)OR(Dda).

Remember that NC (D) denotes the set of normal completenesses K of D, which
satisfy l(K)- l(D).

THEOREM 4.3. Let D be a PCD. If NC (D)= {KI, K2," ’’, Kr}, then OR (D)
OR (K) +OR (K) +... +OR (Kr).

Proof. Let {a, b} and {c, d} be uncompared pairs of D. Then it follows from
Lemma 4.2 that

OR (D)= Y OR (Dvw)= Y OR (Dw,xy) (disjoint union),

where the first summation is over Dow such that {v, w} {a, b} and l(Dow) l(D), and
the second summation is over Dvw,xy such that {v, w}={a, b}, {x,y}={c, d}, and
l(Dow,xy) l(D). By repeating this procedure, we obtain the theorem.

We now give a result which shows a virtue of our method. For example, statement
(1) of the following theorem tells us that v is stronger than w if the score of v is greater
than that of w even though w wins all unplayed d*(w) games, that is, if tr+(v)>
+(w)+d*(w).

THEOREM 4.4. Let D be a PCD and v and w be two vertices of D. Then:
(1) If (vw)=l and r/(v)>r/(w)+d*(w). then a(v)<a(w) for every

OR(D).
(2) If (vw) =O and r+(v) > r+(w) +d*(w)- l, then c(v)<c(w) for every

0R (D). In particular, 0R (D) 0R (Dow).
(3) If r+(v) > r+(w) and (x Vl(vx) 1) {y vIl(wy 1}, then a(v) <

a(w) for every a OR (D).
Proof. We first prove (1). By Theorem 3.2, we may assume D is not complete. By

Theorem 4.3, every optimal ranking a of D is one of a certain normal completeness
+K of D. Since o’;:(w) -<_ try(w) + d*o(w) < trD(V) <= trK(V), it follows from Theorem 3.2

that a(v)<a(w). Hence (1) follows.
We next prove (2). It follows from Lemma 4.2 that every optimal ranking a of

D is one of a certain PCD H which is obtained from D by adding exactly one of the
arcs xy and yx for each {x,y} U(D)\{{v, w}}, and satisfies l(H)=l(D). Suppose
a(w)=k<a(v)=k+m. Since [d,H(VX)"-ld,H(WX)"- for every vertex x (#v, w), we

k +have by Lemma 2.3 that IIn,()ll-IIn,()ll-m{;,(w)-,(v)<O as
try(w) + d*o(w) < try(v) <- try(v). This is contrary to a e OR (H). Consequently,

Statement (3) can be proved similarly by Lemma 2.3.
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In order to prove Theorem 3.3 we require the following lemma.
LEMMA 4.5. Let v and w be vertices of a PCD D. Then:
(1) Ifcr+(v)> o’+(w), a*(v)=a*(w)= 1, and/x(vw) 0, then a(v)< a(w) for all

a OR (D). In particular, OR (D)=OR (Dvw) and I(D) l(Dvw).
(2) Ifr+(v)= r+(w), d*(v) d*(w) 1, (vw)=0, and a(v)= k < a(w) k + m

for a 0R (D), then a 0R (D). In particular, 0R (D) 0R (Dow) +0R (Dwo) and
l(D)=l(Dw)=l(Dwo).

Proof. Statement (1) is a corollary of (3) in Theorem 4.4. By Lemma 2.3 we have
IIn()ll- IIn()ll =0, and thus (2) follows from Lemma 4.1.

Proofof Theorem 3.3. Statement (1) follows at once from Theorem 4.3. Statement
(2) is an easy consequence of Lemma 4.5. We now prove (3). Let K and K’ be any

/ /
two normal completenesses of D. If {v, w} U(D), then we have {r:(v), o’K(w)}
{O’K,(V), r:,(W)} by (2). Hence {v V(K)lrr(v)= t}= {v V(K’)Ir:,(v)= t}for
every positive real number t, and thus it follows from Theorem 3.2 that IOR (K)I
IOR (K’)[. By Theorem 4.3 we have

E (v)7rD(V) IOR (D)I

2 E (v)
INC (D)I" IOR (K)Ic()

--INC(D)IK IOR(K)I (v) --INC(D)I EK r(v).
5. 2-semieomlflete asymmetric digraphs. A 2-semicomplete PCD is a PCD in which

d*(v) is less than or equal to two for every vertex v. Then a 2-semicomplete asymmetric
digraph may represent the result of an incomplete tournament in which no game ended
in a draw and each player has not played at most two games. We show some theorems
by which we can obtain the optimal rankings of a 2-semicomplete asymmetric digraph.
We omit, however, their proofs because they are rather complicated and long. Slightly
generalized results of these theorems together with their complete proofs will be found
in [5].

For a PCD D, we write (V(D), U(D)) for the graph whose vertex set is V(D)
and whose edge set is the set U(D) of uncompared pairs of D. It is clear that if D is
a 2-semicomplete PCD, then each component of (V(D), U(D)) with more than one
vertex is either a path or a cycle. A sequence [Vl, v2," ", ;Or] of vertices of a PCD D
is called an uncompared path of D if [Vl, v2," ", Vr] is the sequence of vertices of a
path from v to Vr in (V(D), U(D)). Similarly, an uncompared cycle Ivy, v2,’", Vr]
with r vertices of D can be defined.

Let D be a 2-semicomplete asymmetric digraph and [v, w] be an uncompared
path of D such that d*(v)= and d*(w)= or 2. Then we have by Theorem 4.4 that
if r+(v)> r+(w)+ 1, then OR (D)=OR (Dow) and if r+(v)< r+(w), then OR (D)=
OR (Dwv). Hence we may restrict ourselves to the case that r/(v) cr/(w) or r/(v)
o-+(w) +1.

TZORZM 5.1. Let D be a 2-sernicomplete asymmetric digraph and [v, w=
w w_ , w, u] r >= 1) be an uncompared path with d*( v) 1. Suppose r+( w)
o’+(w2) o’+(w) for some integer t. Then the following statements hold:

(1) If r+(v)= + and r+(u)>= + 1, then

J’OR (Dow) +OR (Dw) ifr is even,
OR

0R (Dw) otherwise.
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then
(2) If r+(v) + and r+(u)<= t- or/fo’+(v) + 1, cr+(u) and d*(u) 1,

OR Dow) ifr is even,
OR (/9)

0R (Dow) +0R (Dw) otherwise.

(3) If r+ v and r+ u >- + 1, then

OR (D) {OR (Owo) fis even,
OR (Dw) +OR (Dow) otherwise.

(4) If cr+(v) and r+(u)<= t- or if cr+(v)=r+(u) and d*(u) 1, then

OR (Dw) +OR (Dw) ifris even,
OR (D)

0R (Dw) otherwise.

THEOREM 5.2. Let D be a 2-semicomplete asymmetric digraph and Iv, w, u] be an

uncompared path with d*(v) d*(u) 2 or an uncompared cycle of D. Then
(1) if tr+(v)+l<=tr+(w)>-tr+(u)+l, then OR(D)=OR(Dw)=OR(Dw,w,,)

and
(2) if tr+(v)>=tr+(w)+l <=r+(u), then OR(D)=OR(Dow)=OR(Dow,,w).
THEOREM 5.3. Let D be a 2-semicomplete asymmetric digraph and [v v, w

v, v3, , v] r >= 3) be an uncompared cycle ofD. Ifevery vertex v has the same score,
then OR (D)=OR (Dw) +OR (Dw).

Let D be a 2-semicomplete asymmetric digraph and C be any uncompared cycle
of D. Then, we may assume that the length of C is greater than three by Theorems
5.2 and 5.3, and so we can take an uncompared path [x, Vl, v,. , Vr, y] (r >--2) such
that r+(x) < cr+(v) cr+(v2) cr+(vr) > cr+(y) by the above two theorems. In this
case, we can use the following theorem or Theorem 4.4.

THEORWM 5.4. Let D be a 2-semicomplete asymmetric digraph and Ix, v v, w
v2, v3," ", vr, y] (r>--2) be an uncompared path of D. Suppose o’+(x) t- 1, o-+(v)
o-+(v2) r+( v)-- and cr+(y)= t- for some integer t. Then

fOR (Dow) +OR (Dw) ifris even,
OR (D)

0R (Do) otherwise.

6. Ranking-equal PCD and NP-hardness. A PCD is said to be balanced if cr+(v)
cr-(v) for every vertex v, and is said to be ranking equal if the proper ranks of all
vertices are the same, that is, (v)= (I vI / 1)/2 for every vertex v. For a ranking a of
a PCD with n vertices, we define the reversed ranking of a to be a ranki.ng such
that c (v) n + a (v) for each vertex v.

THEOREM 6.1. Let D be a PCD with at least one arc. Then every ranking ofD is

optimal if and only if D is balanced and complete.
Proof If D is a balanced complete PCD, then every ranking of D is optimal by

Theorem 3.2. Conversely, we suppose that every ranking of D is optimal. Put n vI.
For every two distinct vertices v and w, let us consider a ranking a such that a(v)=
and a(w)= 2. By Lemma 2.3 we have IIn(’,)ll- IIn()ll--,-(w)-,-(v). Since a and

eel are both optimal, we have cr-(v)= cr-(w). Similarly, considering a ranking/3 such
that /3(v)=n-1 and /3(w)=n, we obtain r+(w)=r+(v). Hence there exist two
constants 6 and 6’ such that r+(v)=6 and r-(v)=6’ for every vertex v. Since
r+(v)= cr-(v), we have 6’ and conclude that D is balanced. We next prove

D is complete. We may clearly assume n -> 3. For every three distinct vertices u, v, and
w, let us consider a ranking c such that a(u)= l, a(v)= 2, and c(w)= 3. By Lemma
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2.3, IIB()II-IIB()ll---(w)--(v) +(vu)-(wu). Since IIB(,=)ll--IIB()ll and
g-(w) -(v), we have g(vu)= g(wu). Therefore g(xy) is constant (i.e., g(xy)=
or 0) for every two veices x and y. Since D has at least one arc, we conclude that
D is complete.

LEMMA 6.2. Let a be a ranking of a PCD D (V, A). en

A V

Proo Since B(a)=AkB(a) and a(v)-(w)=a(w)-a(v), we have

IlB(a)ll-llB(a)[[= E (vw){a(v)-a(w)}- E (vw){a(v)-a(w)}
vwB(a) uwB()

E (VW){(V)--(W)} E (VW){(V)--(W)}
vwA v,w V

TOM 6.3. A PCD D is ranking equal if and only if the reversed ranking of
every optimal ranking ofD is also optima[

Proo We first suppose D= (V, A) is ranking equal. Since (v)= (w) for every
two veices v and w, it follows that

2 (v)= E (w).
aOR (D) aeOR (D)

Hence we have the following equation by Lemma 6.2

0= e(vw)[ {a(v)-a(w)}]uwA aOR (D)

Since B() N IB() for every e OR (D), we obtain IIB()ll IIB()ll. Hence
is also optimal.

We next suppose that is optimal for every OR(D). Then we have the
following equation for any vertex v of D.

E (v)= E a(v).7r(v)
IOR (D)[ OR(D [OR (D)[ OR(D

Hence we have

27r(v)=lOR(D) {a(v)+a(v)}=]OR(m)lY(n+l)=n+l,
where n is the number of vertices of D. Therefore r(v)=(n+l)/2 and thus D is
ranking equal.

COROLLARY 6.4. IfD is a balanced PCD, then D is ranking equal.
Proof By Lemma 6.2, c OR (D) for all a OR (D). Hence the corollary follows

from the above theorem.
The converse statement of this corollary is not true. A counterexample of the

converse statement is obtained easily in the following way: Let D be a balanced PCD
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and vw be an arc of D. We often obtain a nonbalanced ranking-equal PCD D’ form
D by changing the weights of vw (and wv if it exists) as follows; eo,(vw)= go(vw)+6
and eo,(wv)= go(wv)- 6 where 6 is a sufficiently small positive real number. Further-
more, there exists a counterexample even if we restrict a PCD to a digraph. It is shown
in Fig. 7. It is verified to be ranking equal by using a computer. We have, however,
no counterexample in the case of an asymmetric digraph.

FIG. 7. An example of a nonbalanced ranking-equal digraph.

THEOREM 6.5. A problem of finding the optimal backward length for a PCD is

NP-hard.
Proof. The following problem, called "simple optimal linear arrangement", is

NP-complete [3].
Input: Graph G=(V(G), E(G)) and positive integer k.
Property: There is a ranking a such that

{v,w}E(G)

For a graph G given as the input for "simple optimal linear arrangement," let
D=(V(D),A(D)) where V(D)=V(G), A(D)={vw, wvl{v,w}E(G)}, and the
weight of each arc is 0.5. Then we have

E Ic(v)-,(w)l=2 E
v,w} E G) BD(

Therefore, there exists a ranking a which satisfies the property of "simple optimal
linear arrangement" with integer k if and only if there exists a ranking a such that
IIBo(a)l <- k/2. That is, "simple optimal linear arrangement" is polynomial reducible
to the problem of finding the optimal backward length. Hence the theorem is proved.

7. Concluding remarks. We have proposed a new method of ranking the vertices
of a paired comparison digraph. This method can be applied not only to a tournament
but also to every digraph. Some good properties of the method are given in Remark
2.1, Theorems 3.2 and 4.4, and Corollary 6.4. The basic idea of proof technique is
indicated in Lemmas 2.3 and 4.2. However, a problem of finding the optimal backward
length of a PCD is NP-hard as seen in Theorem 6.5.

It seems to be dangerous to decide the ranks of participants taken in a round-robin
tournament if a lot of games are unplayed because of accidents or the like. We can
fortunately obtain the optimal rankings of a PCD D by Lemma 4.2 and Theorems 3.2
and 4.3 if the number of uncompared pairs of D, which corresponds to the number
of unplayed games, is small. The optimal rankings of the example given in Fig. 7 are
obtained by a computer in this way. We have shown in Theorem 3.3 that if d*(v),
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which corresponds to the number of games which have not been played by v, is less
than or equal to one for every vertex v of a PCD D, then it is easy to obtain the
optimal rankings of D. Furthermore, if D is an asymmetric digraph in which d*(v) is
less than or equal to two, then we can get the optimal rankings of D by theorems in 5.
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Abstract. Consider 2n beads of k colors arranged on a necklace, using 2ai beads of color i. A bisection
is a set of disjoint strings ("intervals") of beads whose union captures half the beads of each color. We
prove that any arrangement with k colors has a bisection using at most [k/2 intervals. In addition, if k is

odd, an endpoint of one interval can be specified arbitrarily. The result is best possible. For fixed k, there
is a polynomial-time algorithm to find such a bisection; it runs in O(n k-2) for k -> 3. We consider continuous
and linear versions of the problem and use them to obtain applications in geometry, VLSI circuit design,
and orthogonal functions.
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1. Introduction. Consider necklaces formed using two colors of beads. If an even
number of each color is used, it is easy to show that a single interval can be chosen
that will capture exactly half the beads of each color. Start with any interval capturing
half the total number of beads. If it is short in color A and has too much of color B,
then the complementary interval is imbalanced the other way. Sliding from an interval
to its complement one bead at a time changes the imbalance by at most one bead at
a time, so there must be some intermediate stage where the colors are in balance, i.e.
where the interval contains half of each color.

A natural generalization of this problem arose in the study of VLSI circuit design.
Bhatt and Leiserson [1] asked the corresponding question for 3-color necklaces, i.e.
whether it is always possible to chose two intervals that together capture half the beads
of each color. In this paper we prove that this is true, and in fact we obtain the best
possible result for the general case of k colors. In order to do this, we prove a stronger
result about continuously integrable functions on the circle. The continuous result has
several geometric applications, and the discrete result has an application to "graph
separators."

First we state the discrete result. Suppose 2n beads of k colors are placed around
a circle, using 2ai beads of color i; such a configuration is called a necklace or discrete
coloring. A bisection of a coloring is a set of nonoverlapping intervals on the circle
whose union contains exactly half of each color. The size of the bisection is the number
of intervals used. We prove the following theorem.

THEOREM 1. Every necklace with k colors of beads has a bisection using no more
than [k/2 intervals. No smaller size suffices for all arrangements of k colors. If k is
odd, this size suffices even if one of the intervals is required to end between a specified
pair of beads.

Of course, corresponding to this extremal problem, there is an optimization
problem. Given a particular arrangement of beads, what is the bisection of smallest
size? The complexity of this problem is open; it may be NP-complete. When the
number of colors in the arrangement is bounded by k, the proof of Theorem 1 leads
to an efficient algorithm to find a bisection of size at most [k/2]. Its running time is
bounded by a polynomial in 2n, the number of beads in the arrangement. After time
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of Technology, Cambridge, Massachusetts, June 27-29, 1983.
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O(n) for preprocessing, the algorithm runs in O(nk-2) if k >=3. In particular, it is
linear if k 3.

The direct proof given above for the 2-color case becomes increasingly ugly as
the number of color increases, because no longer does the imbalance in the captured
colors change by "at most one" when the parameters describing the choice of intervals
change by one. We initially obtained the proof for k =< 4 by this direct method, but
here we will present only a more elegant approach that works equally well for arbitrarily
many colors. This proof uses a natural extension to a continuous problem. Paint the
perimeter of the circle with various colors. The colors no longer need be restricted to
disjoint intervals; instead, they may "mix." We require only that each color have a
continuously integrable density function (i.e., the cumulative distribution is continuous),
and that the densities of the various colors sum to 1 at each point. (Note that some
"densities" may actually be negative.) We call such a painting a circle coloring. Bisection
is defined as before. The previous result holds again in the continuous case.

THEOREM 2. Every circle coloring with k colors has a bisection using at most k/2
intervals. When k is odd, one endpoint of one interval may be chosen arbitrarily. No
smaller size suffices for all circle colorings with k colors.

The proof uses methods from topology. An appropriate parameter space is defined
to describe the possible placements of [k/2] intervals, and the cumulative density
functions map this space continuously into a (k-1)-hyperplane. The coordinates of
the hyperplane sum to , ai, and the "target point" (al,"" ,an) corresponds to
capturing half of each color. Any inverse image of this point is a bisection. To show
that this inverse image is nonempty, we want to show that the target point is "inside"
the image of the boundary and apply continuity. In topological terms, "inside" is
related to winding number; we show that if the boundary of the parameter space does
not hit the target point, then it maps to a surface that has odd winding number relative
to the target point. This odd parity follows by induction on the number of colors; we
construct a problem with fewer colors in which the winding number of the boundary
has the same parity. For example, a problem with fewer colors could be obtained by
amalgamating the last two colors. That this all works depends heavily on a simple fact
used in the 2-color argument mentioned at the beginning. The complement of a set
of [k/2] disjoint intervals on the circle is also a set of [k/2] disjoint intervals on the
circle, and it captures a complementary amount of each color. In particular, the
complement of a bisection is also a bisection.

There are several applications of both the discrete and the continuous result. The
continuous result can be viewed as a version applicable in projective space of the
"intermediate value theorem" of single-variable calculus. In the four-color case, the
continuous result implies that for any (directed) closed curve in R3, there are two
equal and opposite chords that together cut off half the length of the curve. In R2,
this can be strengthened to obtain a rectangle, or right angle subtended at any point
using two other points on the curve, etc. These arguments lead to a proof of an old
geometry conjecture for the special case of "Nice curves" in R2. The conjecture is
that any closed curve in R2 contains four points that determine a square. The conditions
and proof are similar to those of Jerrard [4] (see also [5]). The unproved case is that
of nondifferentiable curves, for which these methods are less well suited.

The discrete result applies to "separators," a construct used in VLSI design theory
[6]. For present purposes, the following definition suffices. An f(n)-separator of a
graph on n vertices recursively splits its nodes into two parts having sizes [n/2J and
In/2], with at most f(n) edges between them. Roughly speaking, if the nodes of a
graph with an f(n)-separator are colored arbitrarily with up to k colors, where
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f(n) > cn, then the discrete bisection result implies that the graph has an O(kf(n))-
separator that splits each of the colors in half when it separates the vertices. This uses
a restatement of Theorem 1 for the problem of bisecting "opened necklaces." Suppose
beads of k colors are arranged on a line segment. Then intervals for a bisection can
be obtained by making at most k cuts. In this version it is not necessary to distinguish
between odd and even k, since the endpoint of the segment, which corresponds to the
opening of the necklace, serves as the arbitrary prescribed cut if k is odd. Unfortunately,
no proof for this cleaner formulation is known that does not use the circle coloring result.

2. Discrete from continuous. In this section we show that Theorem 2 implies
Theorem 1. We begin by noting that some arrangements using k colors require the
full [k!2] intervals. (This example also provides the lower bound for the continuous
problem.) Arrange the beads so that the beads of each color appear contiguously.
Since no bisection can include all the beads of a color or exclude them all, there must
be at least one "cut" (a switch between inclusion and exclusion) among the beads of
each color. With at least k switches between beads chosen and beads omitted, the
beads chosen must be separated into at least [k/2] intervals.

Now, suppose that Theorem 2 holds. We can turn a necklace of 2n beads into a
circle coloring by partitioning the circle into 2n equal segments ("units") and coloring
them with k pure colors corresponding to the order of beads on the necklace. Theorem
2 guarantees a bisection with at most k/2 intervals, but the endpoints of the intervals
(the cuts) need not occur at endpoints of the 2n units. Using induction on the number
of these bad cuts, this can be corrected to obtain a bisection for the discrete problem.
If there are no bad cuts, we are finished. Otherwise, suppose there is a cut inside a
unit of color i, which is used on 2ai units around the circle. Since the continuous
bisection captures altogether an integral amount ai of color i, there must be another
bad cut in a unit of color i. At any cut within color i, the interval on one side contributes
to the amount if color captured, and the interval on the other side does not. Move
the two bad cuts, by the same amount, so as to shrink the interval contributing to
color at one of them and expand the interval contributing to color at the other,
until one of the cuts reaches the endpoint of a unit or another bad cut. This produces
a bisection with fewer bad cuts.

The same argument can be used to treat necklaces where the number of beads
of a color need not be even. Apply the continuous result and transform the resulting
bisection as above. Cuts will occur only at endpoints of units except that a color
contributing an odd number of beads will have one unit with a cut at its midpoint.
That cut can be moved a half unit in either direction to obtain the following result,
where we broaden the definition of discrete bisection to mean a choice of beads
capturing [2a/2] or [2ai/2J beads of color i.

THEOREM 3. Every necklace with k colors of beads has a discrete bisection using
no more than k/2] intervals. No smaller size suffices for all arrangements of k colors.
If k is odd, one cut can be specified arbitrarily. Any pattern of [2a/2]’s and [2ai/2J’s
can be specified for the bead colors used an odd number of times.

3. The parameter space. In this section we specify the parameters used to describe
a choice of intervals and obtain properties of the parameter space that will be important
in the proof. For ease of discussion, we refer to any choice of intervals that together
capture half the total length as a snare; if it consists of at most j disjoint intervals, we
call it a j-snare. In the discrete case, length is measured by number of beads. In the
continuous case, we measure length by integrating the densities,with the total amount
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of color being 2ai. In either case, the total length is 2 ai; let L a. A snare
captures the points contained in its intervals.

Given a coloring, specify an arbitrary point P on the circle as a reference point.
In the discrete case, P must lie between two units. The intervals are determined by
the cuts made between them, so we could specify the intervals by measuring the
distances from P to those cuts. However, it will be more convenient to organize the
parameters into simplices.

Henceforth let m k!2 ], and restrict attention to m-snares. Since the comple-
ment of any bisection with m intervals is also a bisection with m intervals, the parameter
space need only describe at least one m-snare from every complementary pair. In fact,
our parameter space Bk contains points describing all m-snares for which P is not an
interior point of a (captured) interval. Given this, the parameters describing such a
snare are easily computed. Moving in a counterclockwise direction, let Y0 be the
distance from P to the first beginning of an interval in the snare. Continuing counter-
clockwise, let x be the length of the ith interval in the snare, and let y be the length
of the gap between the ith and (i+ 1)th intervals, with y, the length between the ruth
and P. If the snare has less than rn intervals, this description still works, by setting
leftover parameters to 0. Note that x yi L.

As noted above, a bisection of size m exists if and only if there is one where P
is not an interior point of an interval. Thus, the parameter space in which we look for
bisections can be described as Bk X Y, where X and Y are simplices whose
coordinates sum to L, representing the choices for $ and y. However, for odd k we
claim that one cut can be made arbitrarily. We choose this to be the reference point
P. By setting Y0 =0, we obtain all snares in which the first interval starts at P. The
snares in which the last interval ends at P have y, 0 and possibly yo> 0; we ignore
these since they are complements of those with Y0 0. Thus, when k is odd we drop
Yo, so that X and Y are both m-parameter, (m-1)-dimensional simplices. If k is
even, X is (rn- 1)-dimensional and Y is m-dimensional. In either case, Bk is (k- 1)-
dimensional; it has k + 1 parameters, restricted by the two sum relations x Y y L.

Let Ak be a (k-1)-dimensional hyperplane of k-tuples whose coordinates sum
to L. Let f’Bk Ak be the function whose value on a particular snare gives the amount
of each color captured. In the discrete case, this counts the captured beads; in the
continuous case, it integrates the density functions over the intervals of the snare.
Given a coloring with total amount 2ai of color i, the point of interest is
(al,""", ak); we want to insure that is in the image of f. We say that two points
b, b’ are antipodal in Ak if / 2a-/’. Expressing this as/- i a-/’, note that for
antipodal points any excess for b in a color becomes a deficiency of the same size for
b’ in that color. In particular, points of Bk that describe complementary snares map
to antipodal points of Ak under f.

For purposes of the proof, consider now the continuous case; we will return to
the discrete case to discuss algorithms. Geometrically, a direct way to show that is
hit by f would be to study the image of the boundary of Bk, and attempt to use the
Borsuk-Ulam theorem regarding antipodal maps. Intuitively, one wants to show that
f(OBk) "surrounds" 4, so that must lie "inside" f(OBk), in which case continuity
implies ti f(Bk).

We claim the points of f(cgBk) come in antipodal pairs, with each pair the image
of points in OBk describing complementary snares. If all the points of OBk could be
paired up this way, then the Borsuk-Ulam theorem could be applied to get the desired
result. Unfortunately, not all of OBk participates, so this theorem cannot be used
directly. This problem arises because (m-1)-snares have many descriptions in the
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parameter space. Another map could be introduced to "collapse" the poorly-behaved
part of the parameter space and then apply the Borsuk-Ulam theorem; this approach
works but leads to very tedious and technical arguments, so we omit it. The inductive
proof presented in the next section circumvents the difficulty, using arguments like
those used to prove the Borsuk-Ulam theorem. Before embarking on that, we pause
to obtain properties of the parameter space and the map f that will be useful in the
proof.

We need to study the boundary of Bk. The boundary points are those where at
least one of the parameters in the simplices X or Y is 0. We will break the boundary
into four pieces, a "front face" B/, a "back face" B-, and two other parts C and D,
depending on which of the parameters reaches an extreme value. In general, if x 0,
one of the intervals in the corresponding snare vanishes and two of the gaps merge.
Similarly, if y =0 for 1 =<i< m, one of the gaps vanishes and two of the intervals
merge. In either case, the snare actually uses at most m-1 intervals. Conversely,
describing a snare with less than m intervals requires one of these parameters to be
0; all (m- 1)-snares are described by points in 0B. For even values of k, the parts C
and D will contain the points that describe (m- 1)-snares; for odd k they will describe
(m-1)-snares with a restricted endpoint, at P. B/ and B- allow more freedom; for
even k their points describe m-snares with a restricted endpoint, and for odd k they
describe all (m 1) -snares.

Since C and D describe snares with less freedom, it comes as no surprise that
their images have smaller dimension than the rest of the boundary. In fact, we will
show that they do not contribute anything to image of the boundary; i.e. f(gB)=
f(B/) t_J f(B-). This justifies the terms "front face" and "back face". In relation to
the preceding topological motivation, it is important that we can in this sense throw
away C and D, because these are the parts of 8B that do not participate in the pairing
of points with antipodal images.

To define B/, B-, C, D, we consider two cases. First suppose k is even, so that
Y has points Y=Y0,’",Y,,. Let B+={(;y)’y0=0}, B-={(;)7)’y,,=0}, C=
0X Y, and D X x 0 Y-(B+t.J B-). Since B+ and B- consist of the points of Bk
with Y0 =0 or y, =0, they describe all m-snares in which the first or last interval
(which may be empty if Xl =0 or x, =0) begins or ends at P. C and D describe
(m 1) -snares. Note that OBk B/ t3 B- t3 C D.

Next, suppose that k is odd, so that Y {(Yl, Y,)}. Let B+= {($; )7): xl 0},
B-={($; 37)" y, =0}, C=(OXx Y)-B+, and D=(XbY)-B-. This time B/ and
B- describe (m-1)-snares that do not or do capture P. C and D describe (m-
1)-snares where the first or last interval (which my be empty if Xl =0 or Xm =0)
begins or ends at P. Again, OBk B/ t_J B- t.J C U D.

LEMMA 1. Let f" Bk Ak be a circle coloring, and assume that dim f(S) <= dim S
for any S c Bk. Then the pieces B/, B-, C, D of the boundary ofBk satisfy the following
properties.

(a) B/ is naturally isomorphic to Bk-1.
(b) The points of B/ and B- come in pairs with antipodal images.
(c) f(OBk)=f(B+)t_J f(B-), and in fact f(C) f(D)c f(B+)fq f(B-).
(d) dim (f(C) t_J f(D)) <= dim Ak 2.
Proof. We consider the even and odd cases separately. Keep in mind that when

k is odd $ and y have the same number of components, but when k is even )7 has one
more component than $.

Assume k is even. (a) is trivial, since deleting the fixed value Yo =0 makes B/

precisely the parameter space Bk-i for a problem with one less color. B- is a translate
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of Bk_1. For (b), note that f(X; Yo,’", Ym-1, 0)=2ti-f(yo,’’’, Y,-I; 0, X), since
these points from B- and B/ describe complementary snares.

(c) and (d) rest on the fact that an (m-1)-snare has many descriptions in
any one of the gaps or intervals could be the one that collapses. In particular, it has
a description in both B/ and B-. For the image of a point in C with xi 0,

f(x1, "’, xi-1, 0, Xi+l,... x y)

--/(0, Xl,""" Xi_l, Xi+l,""" Xm; 0, Y0, ", Yi--2, Yi-1 + Yi, Yi+I," ", Ym) f(B+)

=f(Xl, Xi-1, Xi+l, Xm, 0" Yo, ", Yi-2, Yi-1 + Yi, Yi+l, Y, O) f(B-),

because all three parameter sets describe the same snare. Similarly, for the image of
a point in D with Yi 0 for 1 -<_ < m,

f($; Yo," Yi-1, O, Yi+I,""",

f(O, Xl, Xi--1, X "JI-Xi+l, Xi+2, Xm" O, Yo, ", Yi-1, Yi+l, Ym) f(B+)

--f(Xl,""" Xi-l, Xi’3c’Xi+l, Xi+2, Xm, O’ Yo, Yi-1, Yi+l," ", ym, O) f(B-).

Since we have given descriptions from both f(B+) and f(B-), this proves (c). Moreover,
the description from f(B+) for each point of f(C)t_Jf(D) shows that the dimension
of f(C) f(D) is at most 2m 3 k 3, because there are 2m 1 nonfixed parameters
and two sum relations xi L Yi, and the hypothesis of the lemma states that f
does not raise dimension. Since dim Ak k-1, we have (d).

Now suppose k is odd. (a) follows from the fact that (0, x2,’"", x,; 37) B+ and
(X:2," Xm Y) Bk-1 describe the same snare. For (b), (0, xe,. , x,; 7) B+ and
(y; xe,..., x,,, 0) B- describe complementary snares, whose images under f are
antipodal. To show the other claims, we proceed as in the even case. If some xi 0
with > 1,

f(Xl, ", Xi--1, 0, Xi+l,""" Xm; y)

f(0, Xl,""" Xi--1, Xi+l,""" Xm; 0, Yl,""", Yi--9., Yi--1 "t-Yi, Yi+l,’’’, Ym) f(B+)

f(Xl, Xi-1, Xi+l, Xm, 0" Yl,’’’, Yi-2, Yi-1 + Yi, Yi+l,’’’, Ym, O) f(B-).

Similarly, if some Yi "-0 with < m,

f(-; Yl,""", Yi-1, 0, Yi+I,""", Y,)

f(0, Xl," Xi--1, X + Xi+l, Xi+2, Xm; 0, Yl," Yi--1, Yi+l," Ym) f(B+)

f(Xl, ", Xi_l, X 31- Xi+l, Xi+2, ", Xm, 0; Yl," ", Yi--1, Yi+l," ", Y,,,, O) f(B-).

This establishes (c). To show (d), note from the f(B+) description that in f(B+) fq f(B-)
there are 2m- 2 nonfixed parameters. Together with the same two sum relations, this
yields dim f(C) [_J f(D) <- 2m 4 k 3 dim Ak 2. [3

4. |k/2| intervals suffice. In this section, we use induction on k to show that an
arbitrary circle coloring with k colors and continuously integrable color densities has
a bisection with at most [k/2] intervals. We consider only bisections described by
points in the parameter space B. In particular, none of the m (possibly empty) specified
intervals has the reference point P in its interior, and P is the starting point of an
interval if k is odd. The proof uses concepts and well-known results from topology.
Due to the origin of the problem and the application of the results, we expect many
of the readers of this paper to be discrete mathematicians. Therefore, we will try to
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describe the relevant topological concepts in footnotes for interested readers; missing
definitions or results can be found in [2] or [3].

If the boundary of Bk contains a solution, there is nothing to prove, so assume
f(OBk). We would like to draw conclusions about the number of points in f-(a),

in particular that this number is odd and therefore nonzero. Unfortunately, If-(a)l
does not behave well enough for arbitrary continuous functions f (for example, it may
become infinite), so instead we study a quantity that agrees with If-(a)l whenever f
is well-behaved (a local homeomorphism) at each point of f-(a). This quantity is the
degree of the map f" (Bk, Bk) - (Ak, Ak- a), henceforth denoted deg (f). The degree
of a continuous map from a set and boundary into another set with a point removed
describes how many times the image covers the target point. In particular, if f-(d) is
empty, then deg (f)=0.1 Since deg (f) is a construct using homology, deg (f) does
not change under continuous perturbations ("homotopies") of f, a fact that will be
used when f is poorly behaved. Later, we will relate deg (f) to the winding number
of f(Bk) around the target point, since that is the quantity to which we can apply the
antipodal facts we derived about OBk.

Since we seek only bisections corresponding to points in B, we will refer to such
points as "solutions," and we will denote the problem of finding such solutions by the
corresponding color function f. We will prove Theorem 2 by showing that deg (f) is
odd (i.e., nonzero) when the problem has no solutions in OB,. Theorem 2 follows
readily; if a k-color problem has no solutions in B, then it has none in OB and hence
deg (f) is nonzero. This contradicts the fact that deg (f)=0 if f-(a) is empty. We
have reduced the theorem to the following topological lemma.

LEMMA 2. Let f’Bk - Ak be a coloring bisection problem. If f has no solutions in
OBk, then deg (f) is odd.

Proof. We prove this by induction on k. For k 1, the parameter space B1 consists
of the single point (L; L). Since the sum of the color densities must be 1 at each point,
one color paints the circle uniformly. The snare corresponding to (L; L) is the semicircle
starting at P, so indeed it bisects the coloring. Recall that deg (f) is the degree of the
map f" (B, B1)- (A1, A1-4); in this case the second element of each pair is empty,
and the first is a 1-point set. Any mapping of an n-point set to a 1-point set covers
the target point n times and has degree n, so here deg (f) 1.

For the induction step, we must show the following" given a k-color problem f
with no solutions in OB, there exists a (k-1)-color problem f’ with no solutions in
OBk-1 and with deg (f) deg (f’)(mod 2).

We approach the computation of deg (f) by looking at the winding number of
the boundary around the target point, because it turns out that this quantity equals

The precise definition of degree uses homology groups. Given a set C and a specified subset D, these
groups are denoted Hi(C, D) and called "the ith homology group of C modulo D." The elements of

Hi(C, D) are classes of formal sums of continuous functions mapping an /-dimensional ball or simplicial
complex A into C, with the requirement that the boundary of A must map into D. Two of these formal
sums belong to the same homology class if they can be continuously deformed into one another (i.e., are

"homotopic"). For the domain and range of the color function f, the k )st homology groups Hk-1 (Bk, Bk)
and Hk_l(Ak, Ak a) are infinite cyclic, i.e. isomorphic to Z. The generator g of Hk-l(Bk, OBk) is a standard
homeomorphism of a (k-1)-simplex into Bk, since Bk is (k-1)-dimensional. The generator g’ of
Hk_(Ak, Ak--a) maps the (k-1)-simplex into a ball centered at d; this covers d exactly once. The map
f induces a homomorphism f, between these groups. The degree of f is defined to be the value of d such
that f,(g) d. g’, where f, is the induced homomorphism on the top-dimensional homology group. In other
words, f maps Bk into something that covers the target point deg (f) times. For example, if the entire image
lies in the punctured set Ak--a, so that f-(a)=0, then f,(g) is in the homology class that is the 0 multiple
of the generator, and deg (f)= 0.
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deg (f). Let Of denote the restriction of f to OBk. Under the assumption that the
boundary does not hit the target point, we have Of:Bk- Ak- 4. The winding number
W(flD, gt) is defined to be the degree of the map liD: D-. A-d (technically, the
degree of the map flD:(D,O)-(Ak-d,O)); we will compute W(Of, 4).2 An elegant
result in topology states that W(Of, a)=deg (f), using the fact that Hi(C, D) and
Hi-I(D, 0) are isomorphic when C is contractible. 3

The winding number can be computed by following any fixed reference direction
/ from the target point and counting crossings with the image surface, a fact that is

intuitively clear in two dimensions. Of course, the crossings must be counted with

appropriate sign, depending on whether the ray enters or leaves the region of interest.

Fixing the ray / from d and counting the crossings with the proper sign yields the
intersection number I(Of, l+). Being a homology concept, I(Of, +) is invariant under
continuous deformations of f or small changes in /. The relevant topological fact is

that W(Of, 4) =/(Of,/+).4 If f does not raise dimension, then f(C) U f(D) U f(OB+) U

2The winding number is a useful and sensible construct only when Hdim(D)(D O) is infinite cyclic
(isomorphic to Z), which holds here for D=OB,. To compute the winding number, we need the induced
homomorphism f, between the (k- 2)nd homology groups, since the dimension of 0Bk is k- 2. H,_2(B,, O)
and H,_:z(A,-a,O) are both infinite cyclic. When the second argument to Hi(C, D) is the null set, the
formal sums in each homology class must be such that all the image contributions arising from the boundary
of the /-dimensional domain cancel. In other words, the generator g of Ht,_2(OB,, O) covers OB exactly
once with (k-2)-dimensional simplices whose boundaries cancel out. Similarly, the generator g’ of
H,_2(A, a, O) covers a sphere centered at a exactly once. W(f, a) is the value of d such that f,(g) d. g’.

This result can be explained as follows. Given a set C and subset D, there is a natural sequence of
homology groups

H( C, 0)--> Hi(C, D) H_ D, 0) Hi_ C, 0),

in which the arrows represent natural group homomorphisms. The outer homomorphisms are inclusion
mappings. The central one is the "boundary mapping." (To define the boundary mapping, consider a map
tr: Ai C belonging to one of the homology classes in Hi(C, D). Its restriction 0r maps Ai to D. Since
OA is a union (formal sum) of (i-1)-simplices, define rj by restricting tr to the ]th simplex in 0A As a
formal sum, it follows that 0 Y trj 0 (since 0a= 0 by cancellation), so indeed Y tr belongs to an element of
Hi-I(D, 0).) This sequence of homomorphisms is an exact sequence, in the sense of group homomorphisms
(the image of the previous map is the kernel of the next). However, if C is contractible, i.e. has no holes,
then the groups at the ends of the sequence are the trivial group; the only formal sum of continuous maps
that can take the boundary of A to the empty set is the 0 formal sum. Since the sequence is exact, the two
groups in the middle are isomorphic. Applying this to (Bk, OBk) and (Ak, Ak-d), we find that H_I(OBk, O)
and H_l(Ak-a 0) are also infinite cyclic. Considering the induced homomorphisms f" Hi(B, OBk)
Hi(Ak, Ak- d) and f’Hi_(OBk, O)- Hi_(Ak- a, 0) yields a commutative diagram, with two ways to get
from Hi(Bk, OBk) to Hi-I(Ak-a,O). The diagram is commutative because, for a mapping Ai- Bk that is
restricted to 0A and composed with f, it doesn’t matter whether the restriction or the composition happens
first. If g and g" are the generators, then following f by the A-isomorphism takes g to d. g", where
d =deg (f). Following the B-isomorphism by f takes g to w. g", where w W(of, d). Since the two routes
yield the same result, deg (f) W(Of, d).

4 This fact has a simpler explanation than that of the previous footnote. The intersection number is
defined for any oriented/-dimensional surface intersecting an oriented (d i)-dimensional surface in d-space.
Given orientations for each, i.e. coordinate systems, the combined coordinate system at an intersection has
a well-defined sign, corresponding to "left-handed" or "right-handed." In particular, is an oriented
1-dimensional surface and f(OBk) is an oriented (k- 2)-dimensional surface in (k- 1)-space, which means
that f(OBk) has a well-defined "top" and "bottom" (given that f does not raise dimension). As you travel

away from ti, if you cross f(OBk) from top to bottom count -1, and from bottom to top count +1.
Tangency causes no problem, because you can count +1/2 when you enter and +1/2 when you leave, in the
appropriate way. Now consider the definition of W(Of, t) using degree and the description of the generator
in H_2(Ak-a,O). Note that W(Of, 8) is the number of times f(OBk) covers each point when radially
projected onto a reference sphere centered at (counted with appropriate sign in case of folds). This is
precisely I(f, +) for any +.
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f(OB-) has dimension at most k-2, by Lemma l(d). Thus, almost every direction +

misses f(C) U f(D) U [(OB/) U f(gB-), in which case (0f)-(l/) consists only of points
in int (B/) U int (B-). If x int (B-) and f(x) /, then for the "antipodal point"
x* B/ under the pairing established in Lemma l(b), f(x*) 2a-f(x) belongs to l-,
the opposite ray from a. Conversely, if x int (B/) and f(x) l-, then x* B- and
f(x*) /. Consequently, I(flB-, /) I(flB/, l-). Let / U l- be the full line
through a. Note that orienting requires us to change the orientation on l-. We have
proved

W(a[, a) I(a[, +) I(fIB+, +) + I(flB-, +) I(fIB+, +) + I([IB+, l-)

I(flB+, l+) I(fIB+, l-)= I(flB+, l) (congruence mod 2).

All that remains is to obtain the desired (k-1)-colored problem. We do this by
projecting along an appropriate line into a space with fewer colors. Let Ak-1 Ak
be those k-tuples whose last coordinate is 0. Intuitively, the most satisfying projection
to use is the one that amalgamates the last two colors, although any direction will
work as long as it is not parallel to Ak-1, does not hit f(C)U f(D), and does not hit

f(OB/). Within a hyperplane, such as Ak, a direction is specified by a k-tuple whose
coordinates sum to 0. Linear projection along a direction simply adds a multiple of
that k-tuple. Projection along the direction (0,...,0,-1,1) maps beAk to

(b,..., bk-:Z, bk-i + bk, O) Ak-1. If f does not raise dimensions, there is a direction
arbitrarily close to this that avoids f(C) U f(D) U f(OB+) U f(OB-), and to which

we can apply the chain of equalities and congruences we have built under that

assumption.
Let 7r be a projection along such a direction. If t(x) =(pl(X),’", pk(X)) are the

color densities at a point x on the circle, then rt(x) are also continuously integrable
color densities summing to 1, and this may be considered a (k- 1)-color problem since
the last coordinate is always 0. Note that the projection may make some color density
negative, but that is allowed in the class of coloring problems we originally defined. To
compute the color function f’ for the new problem, note that the color function is a sum
of m integrals of the color densities. Summation and integration commute with linear
projection, so f’= 7r.f is the (k- 1)-color problem with densities r. tS(x)" f counts the
original colors, and r redistributes them.

The parameter space for f’ is simply B/, which by Lemma 1 (a) is isomorphic to

Bk-. The target point in f’ is 7r(a). In fact, the entire line maps under r to 7r(d).
This leads us back to deg (f’), using the fact that the projection of f crosses the
projection of whenever f crosses l, i.e. I(flB+, l) I(rflB+, 7r(1)). Since we chose a
direction that did not intersect f(OB/) U f(OB-), the projected problem satisfies the
hypothesis of the lemma; it has no solutions in the boundary of its parameter space. By
induction, deg (f’) is odd). But now deg (f) is also odd, since

deg (f)= W(Of, a)= I(Of, +) =- I(f[B+, l)

=I(TrflB+, "rr(1)) =deg (rflB+) =deg (f’)

The only remaining detail is the assumption we have made throughout this argument
that f does not increase dimension. As the Peano space-filling curves show, continuous
functions can raise dimension. However, this lemma still holds for such functions,
because we can apply it to a suitable simplicial approximation ), and simplicial functions
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never raise dimension. The simplicial function is homotopic to f, which means that it
has the same degree, so deg (f) odd implies deg (f) is also odd.

5. Bisection algorithm. Let us now return to the discrete case to discuss algorithms
for finding bisections. When the number of colors in the necklace is fixed at k, the
guarantee that a bisection with at most m [k/2] intervals exists yields a straight-
forward algorithm to find the smallest bisection. This simple algorithm uses exhaustive
search. An m-snare is determined completely by the location of the k "cuts" between
captured and noncaptured beads, i.e. the endpoints of the intervals. (Note that if k is
odd we have placed an arbitrary cut in advance, so k more determine the snare.)
However, the k cuts cannot be placed with complete freedom, since the total number
of beads included and excluded must both equal n. The simplest way to implement
this restriction is to search the entire parameter space Bk. The snares represented
many times are those with fewer intervals, and there are fewer of these. In other
words, the number of points in Bk has the same order as the number of snares.

The number of integer points in a d-dimensional simplex whose d + 1 variables
[n+rn--1sum to n is (na). Thus X has ,-1 integer points, and Y has that many or (+,),

depending on the parity of k. In either case, the number of integer points in Bk is the
product of polynomials in n of degrees [k/2]-1 and /k/2J, so it is O(nk-1).

After O(n) operations for preprocessing, the image of any snare can be computed
in constant time (i.e., O(k)), using the following idea due to Leiserson [7]. In one
pass through the necklace, compute the cumulative distributions for the colors. Then,
to compute the color amounts captured by a snare, sum the differences of these
distributions between the endpoints of the m intervals in the snare. In the boundary,
of course, we need only compute the images of the points in B/. The search finds a
bisection from every complementary pair of bisections with at most [k/2] intervals
(and with the specified cut if k is odd). It runs in O(nk-l) time.

If k => 3, we can save one factor of n by using the topological ideas in the proof
that [k/2] intervals suffice. A "divide-and-conquer" search of the parameter space
Bk runs in O(nk-2) time. As with binary search, to which this reduces when k 2, we
split the parameter space into pieces, determine the piece in which to search for the
desired point, and recurse. With preprocessing as above, the computation of the color
function for any point in Bk takes O(k) time. Other operations required will also be
polynomial in k but independent of n, so the asymptotic running time of the algorithm
will be determined by the number of function evaluations required.

"Divide-and-conquer" yields an O(nk-2) algorithm to find a solution in Bk, but
it does not find all solutions. To ensure finding the smallest solution, we must test all
snares with less than m intervals individually. As noted above, testing the points in
B/ suffices, but B/ is a copy of Bk-1, which has O(nk-2) integer points, so testing all
these points is cheap enough. Having checked OBk, we can assume there is no solution
in the boundary.

To define a concept of winding number in this discrete situation, we use a simplicial
map, because there is an easy way to compute intersection numbers for such maps
and hence determine the winding number. At the integer points in Bk, define f by the

Given a color function f: Bk Ak, the simplicial approximation we need must satisfy the antipodal
properties obtained in Lemma for B and B-. To do this, merely choose the vertices for the simplicial
decomposition of Bk in antipodal pairs according to the pairing in Lemma l(b) for f. Let f agree with f
at these vertices, and let the simplicial decomposition respect the pairing. Define f on the rest of Bk by
linear interpolation from the vertices. This simplicial map has the antipodal property, and the argument
succeeds.
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discrete bead-counting color function. The natural unit regions in the grid formed by
the integer points are not simplices. For k 3 they are squares, and in general they
are the product of ([k/2]-l)- and [k/2J-dimensional simplices. Partition these
further into simplices to view Bk as a simplicial complex of dimension k- 1, and extend

f to the entire space by linear interpolation on these simplices. For example, when
k 3 the product of two segments partitions naturally into two triangles, and when
k 4 the product of a triangle with a segment partitions naturally into three tetra-
hedrons.

The computation of winding number uses the value of f at the integer boundary
points, the extension of f by linear interpolation, and the idea that winding number
equals intersection number. Let D be a simplicial subcomplex of Bk, and suppose that
f(OD) does not include the target point 4. Then we want to compute W(fIOD, a) by
counting the signed intersections of 0D with some ray emanating from 4. The boundary
OD consists of simplices of dimension k- 2, since Bk itself has dimension k- 1. Since

f is simplicial, the image of a boundary simplex A is the simplex of dimension at most
k-2 whose vertices are images of the vertices of /. So, the problem of computing
contributions to the intersection number reduces to deciding when a specified ray
crosses a simplex determined by specified points, and in which "direction."

Let / be an arbitrary direction vector in Ak, let bl,’’ ", bk_l be the vertices of
a simplex A in OD, and let ci =f(bi)-4. Then f(A) intersects the ray d + tl/ (t > 0) if
and only if / belongs to the convex cone determined by {ci}. Since f is simplicial,
they can intersect only once, unless the ray is tangent. Membership in this convex cone
is equivalent to the feasibility of aol+ Y aci, with a >= 0 and a0 > 0. This homogeneous
system of k equations in k unknowns can be solved by Gaussian elimination in O(k3)
operations. If the system has solutions, it is easy to test whether any satisfy the
constraints on the a. Let c be such a solution, if it exists.

When the homogeneous system has a 1-dimensional solution space, the ray d + tl/

"crosses" this part of the boundary. To determine the contribution to the intersection
number, determine whether the vectors c, taken in order, form a right- or left-handed
coordinate system. In other words, find the sign of the determinant composed of these
vectors, again using O(k3) operations. Let e be this sign. Note that when f collapses
dimension, e 0. The contribution to the intersection number from this piece of the
boundary is

e/r(j)

if the solution space is multidimensional. The ray is tangent here, and
the proper contribution will be computed from neighboring simplices.
if c has all a > 0, so that the intersection occurred in the interior of the
simplex.
if c has exactly one ai 0. One neighboring simplex shares the intersec-
tion point, and the contributions will support each other or cancel.
if has j values such that ai 0, and r(j) simplices share that facet.

Alternatively, the complications of nonunit contributions to the intersection number
can be avoided by picking a better direction.

Due to the technicalities of simplicial subdivision for large k, we first describe the
algorithm in the 3-color case. Here the discrete parameter space B3 is the product of
two segments of length n, simplicially subdivided. To "divide and conquer" the space,
split each of the segments in half; this partitions the parameter space into four smaller
squares. Together, the boundaries of these squares contain just under 6n integer points.
Having applied the algorithm first to B2, we know that none of these boundary points
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describe bisections. To determine which region contains a bisection, we must compute
the winding number for f restricted to the boundary of each of the four regions.

Let / be an arbitrary direction in A3, say (.5,-.25,-.25)’. The boundary of each
region consists of 1-dimensional unit simplices, i.e. segments with endpoints, b2. Under
the simplicial f, each maps to a segment. The segment f(bl), f(b2) intersects the ray
t + tl/ if / lies in the convex hull of {Cl, C2 in which case the sign of det (C1, C2)
determines the contribution to the intersection number. Clearly, these operations can
be done in constant time per integer point on the boundary as the segments of the
boundary are traversed.

Choosing one of the regions with a nonzero winding number, perform the same
search on the n! 2 by n! 2 grid. The number of function evaluations performed to find
a solution point is at most Y 6n/2i= 12n. If O(n) storage is available, then the
contributions obtained from the boundary segments of the current region can be stored
when computed, so that that information need not be recomputed when they recur in
boundaries of smaller regions. This would save a factor of 1/2, because the number of
function evaluations (with the same amount of computation for each), would be
4n + 2n/2 8n. Note that the preliminary step of checking the boundary for smaller
bisections can be dropped, because the first full step of the main algorithm includes
that.

A 2-dimensional simplex can be cut into four half-size simplices. If Yl + Y2 + Y3 n,
these pieces are those with a given Yi >= n! 2, and the piece where all yi <= n! 2. Dividing
B4, the product of a 2-simplex and a 1-simplex, partitions it into eight pieces; dividing
Bs, the product of two 2-simplices, partitions it into sixteen pieces. The boundaries
of these pieces still have approximately one lower-dimensional simplex for each vertex,
and can be traversed using a small number of paths in which only one vertex changes
between neighboring simplices. B4 has approximately 4.5n +3(2) of these boundary
vertices; B5 has approximately 9n("2). With divide-and-conquer, the total number
of function evaluations is Y 6(n/2i)2+ o(n2) 8n2+ o(n2) for B4 and 4.5(n/2i)3+
o(n3) 36n3/7+o(n3) for Bs. Storage of the outer boundary as before permits a
reduction in the leading constant, but the factor saved decreases as k increases. For
k=3,4, 5, it is , , 2.

In general, a d-dimensional simplex can be cut into 2a half-size d-dimensional
simplices. The number of vertices in the boundaries of the various pieces is O(nk-2),
and using divide-and-conquer allows the entire algorithm to run in O(nk-2).

6. Application to graph separators. Leighton pointed out an application of the
discrete result to separators in graphs. For present purposes, we define an f(n)-separator
of a graph to be a balanced binary tree with the vertices of the graph as leaves and
no more than f(n) edges of the graph between vertices in different subtrees of a
subtree with n leaves. By "balanced," we mean half of the leaves in any subtree belong
to each of its subtrees. When the induced subgraph on the n leaf nodes of some partial
tree has its nodes split into its "left" and "right" sets, the induced edge cut has "few"
edges, i.e. bounded by f(n).

By applying the circle coloring result, it is possible to obtain a more refined
splitting of the nodes at the cost of some extra edges in the cut. In particular, suppose
the nodes come in k "types," i.e. are labeled arbitrarily with k colors, and let ]HI be
the number of vertices in H. Then

THEOREM 4. Suppose any induced subgraphHofa graph G has anf(IHI)-separator
and the nodes of G are labeled arbitrarily with k colors. Ill(n) O(nj) for some j> 0,
then G has an O( knJ)-separator that separates the vertices of each color as evenly as
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possible at each level, in addition to separating the full vertex set as evenly as possible.
If f(n) O((log n)J), then G has an O((log n)J+l)-separator as described.

To explain this result more directly, we "unbend" the necklace result to an
equivalent result about linear arrangements that eliminates the distinction between
odd and even values of k. A linear arrangement with k colors of beads has a bisection
with at most k cuts. In reading from one end to the other, we switch from capturing
beads to omitting beads each time we cross a cut. If the two ends are identified to
become the reference point P, this is precisely the necklace result. When k is odd, the
first and last intervals are of opposite type, so that the corresponding intervals on the
circle end at P, and there are [k/2] intervals used and omitted. When k is even, the
first and last intervals on the line have the same type, so that in the circle version they
merge at P, and again there are k! 2 intervals of each type. Thus "k cuts on the line
segment" is a uniform way to state the result.

Any separator yields a particular ordering of the vertices of a graph, by reading
the leaf nodes in order. Since the vertices have specified colors, this yields a linear
arrangement of beads. Find a bisection with at most k cuts. Taking the intervals of
captured beads yields a vertex partition of the original graph in which the vertices of
each color are evenly split. To obtain an upper bound on the number of edges between
the two parts, we take k times the maximum number of edges that can join vertices
on opposite sides of a single cut. The endpoints of any such edge belong to opposite
subtrees at some level. At most f(n/2i) edges cross the cut at level i. If f(n) O(n)
for some j>=0, then there are O(kn) edges across the vertex partition. If f(n)=
O((log n)), then there are O(k(log n)/1) edges across the partition. To build the
rest of the desired separator, consider each of the vertex parts separately, find the
f(n/2)-separator on the subgraphs induced by those vertices, and recurse.

7. Continuous applications. Tom Trotter pointed out an application of the con-
tinuous result to a geometric problem in R3. Consider a curve a(t) u (t), U2(t), U3(t)),
0 =< -< 2. An old problem [4], [5] asks whether a curve in 112 always contains four
points that determine a square. In R3 certainly one cannot hope for so much, but one
can hope for a parallelogram. Actually, we can guarantee more. Every continuous
curve in R3 contains four points that determine a parallelogram such that the opposite
portions of the curve total half the length of the curve.

THEOREM 5. If ft( t) with 0 <- <- 2 is a continuous curve in R3, then there are four
points 0 <- tl <-- t <- t3 <- t4 <-- 2 such that t( t) ft( tl) t(t3) tT(t4) and te- tl + t4--t3 1.

Proof. Define a four-color circle coloring with density function pi(t)- ul(t) for
1, 2, 3 and p4(t) 1- U’l(t)- u(t)- U’a(t). The derivatives may be discontinuous at

isolated points, but they are continuously integrable and can be defined at discontinuities
so that they sum to 1 at all points. The cumulative distributions yield the displacements
of ui(t) from ui(O) and minus the sum of those displacements. Integrating all the
way from 0 to 2 yields the total amount of each color, which is 0 for the first three
colors and 2 for the fourth, since the net displacement in any direction around the
closed curve is 0.

Applying Theorem 2, let (tl, t2, t3, t4) be the endpoints of intervals in a bisection.
Given the above "total amounts" of each color, we have

0 ui(t4) ui(t3) + ui(t2) ui(tl) for 1, 2, 3,

l=(t4- ui(ta))-(t3- ui(t3))+(t2- ui(t2))-(tl- ui(tl)) for i=4,

which yields tT(t4) t(t3) --/(tl) tT(t2) and t4- t3 + t2- tl 1. [3
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Narendra Karmarkar noticed another application, of which the following is a
variant.

THEOREM 6. Let fl,’’’,fk-1 be k-1 continuously integrable functions on an
interval [a, hi. Then there is a function orthogonal to each of fl, ",fk-1 that takes on
only the values + 1 and changes sign at most k times in the interval [a, hi.

Proof. Introduce a kth function that is 1 minus the sum of the others. Apply the
linear version of the continuous bisection result to obtain a bisection using at most k
cuts. Define the new function to be +1 on the intervals in the bisection and-1 on
those in its complement.

Karmarkar actually noted the corresponding result for periodic functions, using
the version of the continuous result applicable to circle colorings.

8. Conclusion. In addition to the NP-completeness of the original problem,
related problems remaining open include generalizations to higher dimensions and
splits in other proportions. If intervals must be chosen to capture a fraction a of each
color, it is no longer always possible to do it with k!2 intervals. For example, consider
the following arrangement with four colors of beads: let the beads of colors 1, 2, 3
appear contiguously, and put of the beads of color 4 between color 1 and color 2,
between color 2 and color 3, and between color 3 and color 1. Restricted to two
intervals, there must be a cut within each of colors 1, 2, 3, and the fourth cut appears
somewhere. This means that one stretch of color 4 is entirely included, and one stretch
is entirely omitted, so the fraction of color 4 captured must lie between 1/2 and . The
question is, for what range of values of a will [k/2] intervals suffice? If a l/l, a
more difficult variation would be to find disjoint sets of intervals such that each set
contains 1! of each color. Here one might want to minimize the total number of
intervals or the maximum in any set.

In moving to higher dimensions, the torus and 2-simplex may be considered. For
the discrete or continuous torus, a simple analogue of choosing intervals would be
choosing an even number of horizontal and vertical lines to create a "checkerboard,"
capturing the units in the regions having a given parity in the checkerboard. However,
it is no longer clear that a bisection must always exist. For colorings of a simplex, the
bisection result for linear arrangements is the candidate for generalization. Given a
triangulated simplex, again cuts could be made parallel to the boundaries to capture
the material in the resulting regions of a given parity, but here there seems to be an
example with two colors where such a bisection does not exist. There may be an
analogue of the continuous result for nonrectilinear cuts in a simplex, for regions
formed on the surface of a sphere by passing planes through the origin, etc.
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ON THE DISCRETE RICCATI MATRIX EQUATION*

MINH THANH TRAN]" AND MAHMOUD E. SAWAN

Abstract. In this note, the inequality which is satisfied by the determinant of the positive definite
solution of the discrete algebraic Riccati matrix equation is presented. The result gives lower bound for the
product of the eigenvalues of the matrix solution.

1. Introduction. The discrete algebraic Riccati matrix equation has been used
widely in various areas of engineering system theory, particularly in control system
theory. The techniques of solving this equation numerically are well-established. Those
techniques are mostly iterative algorithms which require making an initial guess of the
solution. So if the initial guess is chosen wisely, one can save a lot of unnecessary
computations. Therefore, to obtain a precise estimate of the "size" of the solution,
we provide here a lower bound for the determinant of the matrix solution of the
algebraic Riccati equation.

In the following, the notations X, ,i(X), tr (X) and IXI denote the transpose,
eigenvalue, trace and determinant of the matrix X, respectively. Also for our derivation
later, we will make use of the following results [1, p. 70], [2, p. 225].

i) For any n n matrices L and H with L > 0

(1) tr (L-HLHT) >= E ]Ai(H)[2 --> 1-[tr (H)]2.
i=1 n

ii) For any real n n matrices R and S such that R R 7- > 0, S ST > 0

(2) ]R[ 1In min
tr (RS).

Is1=1 n

iii) For any m n matrix Y, n m matrix Z, n n matrix W and m m matrix
X, we have the property

(3) [WWZX-1 y]-l= w-l_ w-lz[x+ yW-IZ]- yw-.

2, Main result, In this section, we derive a lower bound for the determinant of
the solution of the discrete algebraic Riccati matrix equation

(4) p=ATpA-ATpB(I+BTpB)-BTpA+O,

where A, P, Q R, BeR n>’’, o or > o.
Here we assume IBBTI >-[QI and the matrix A is stable, therefore the solution matrix
P is positive definite.

THEOREM. The determinant of the positive definite matrix solution P of (4) satisfies
the following inequality:

(5) ,P, >- [M + (M2 + 4n2[BBT[/"’OIn)I/2]2nlBBr]/

where M I i(m)l= + tr (BBTO)- n.
i=1

* Received by the editors June 30, 1983. This work was presented at the SIAM Second Conference
on the Applications of Discrete Mathematics, held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.
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Proof. Using (3) with W P-1, Z B, X- I and Y B, (4) becomes

(6) P- A-[p-1 / BBT]-IA + Q.

Multiplying (6) by (p-i+ BB-) from the left yields

(7) [P-I/BB]P=[P-I+BB]A[p-I+BB]-A/[P-I+BBT]Q.

Computing the traces of both sides of (7), using (1) with L-1 =[P-1 +BBr], H=A
and rearranging terms, we have

(8) tr (BB’P-P-1Q) >- M.

Now using (2) with R-P and noting that IXI-1/IX-11 and tr (X)-tr (X’), (8)
becomes

(9) n[BB T[1/n[pl:Z/n M[p[1/n n[Q[1/n >_ O.

Solving (9) for [PI 1/’, we get the inequality (5). Q.E.D.

3. Conclusion oi the solution. The inequality (5) makes it possible to estimate a
lower bound for the determinant of the discrete algebraic Riccati matrix equation.
This bound does not require A to be nonsingular and only requires a few matrix
computations. These computations can even be further simplified by comparing the
first and last terms of (1) instead of the middle term. However the tightness of the
bound may reduce considerably.
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COVERING, PACKING AND GENERALIZED PERFECTION*

GERARD J. CHANGe" AND GEORGE L. NEMHAUSER*

Abstract. Given a graph G V, E), let Tk V(Tk), E(Tk)) be a tree of diameter =<k that is a partial
graph of G. Let 0"k be the set of V(Tk) for all such Tk. We consider covering and packing problems defined
with respect to 0"k, for all integers k >= 1. 0(G: 0"k) is the minimum number of elements of 0"k that cover
V, and a(G: 0"k) is the maximum size of a P_ V such that no element of 0"k contains more than one
element of P. In particular, 0(G: 0"1) is the edge covering number of G, 0(G: 0"2) is the domination number
of G, and a(G: 0"1) is the stability number of G. We study classes of chordal graphs for which O(H: 0"k)=
a(H: 0"k) for all induced subgraphs H of G. We also give simple algorithms for solving these problems on
some classes of graphs. These results are applicable to location problems.

Key words, combinatorial optimization, graph theory, domination, stability, chordal graphs

AMS(MOS) subject classifications. 05C70, 90C10

1. Introduction. Graph covering and packing problems provide a generic model
for discrete facility location. Location problems have many applications in operations
research, two general references are Christofides [1975] and Tansel et al. [1981]. As
an example, consider a geographical area that is partitioned into regions. Facilities are
going to be placed in some of the regions. We construct a graph whose vertices represent
the regions and whose edges represent pairs of regions that are adjacent. A region
(vertex) and all of the regions that are adjacent to it is called a neighborhood.

In this context, we will consider a minimum covering problem, a maximum packing
problem and the relationship between them. Suppose each neighborhood is to be
served by a costly, but necessary, facility such as a school or hospital. The covering
problem is to choose regions at which to place these service facilities so that each
neighborhood contains at least one and the number of them is minimum.

Now suppose that a company wishes to select regions for the location of noxious
facilities such as pollution producing factories. The packing problem is to place as
many of these facilities as possible, subject to the constraints that each neighborhood
contains no more than one of them.

There is an interesting min-max duality relation between the packing and covering
location problems. Consider a feasible solution to the covering problem, i.e. a set of
regions for service facilities such that each neighborhood of the area contains at least
one service facility. Thus the subset of neighborhoods induced by the regions at which
these facilities are located contains all of the regions. Now in any feasible solution to
the packing problem, none of these neighborhoods can contain more than one noxious
facility. But since these neighborhoods contain all of the regions, their number is an
upper bound on the number of noxious facilities that can be placed in the area. This
inequality is true for any pair of feasible covering and packing solutions. Thus we have
proved that the maximum value of the packing problem is equal to or less than the
minimum value of the covering problem. We call this relationship weak min-max
duality and say that strong min-max duality holds when the two values are equal.
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In this paper, we are interested in characterizing problems of this type for which
strong duality holds. Strong duality is an important, if not essential, property used in
the construction of algorithms. The reason is that when strong duality holds we can
decide the optimality of feasible solutions to the covering and packing problems simply
by checking whether both solutions have the same value. Thus, even when we are
interested in only one of the two problems, we frequently construct algorithms that
solve both.

We now give a formal description of graph covering and packing problems. Let
G (V, E) be a simple graph, i.e. finite, undirected, loopless and without multiple
edges. Let 9 be a family of subsets of V. An 55-covering of G is a subset (55) of 55
with the property that

U (F" F Y(Y)} V.

An 55-packing of G is a subset (55) of V with the property that

(1.2) 1(55) f] SI--< 1 for all S e 55.

For any pair ((5), o%(5e)) of packings and coverings, (1.1) and (1.2) imply

(1.3) E

Let a(G" 55)=max 1(55)1 and O(O" St’)=min 1(9)1. a(G" 55) and O(G" ) are
called the 5f-packing and Y-covering numbers of G, respectively.

Relation (1.3) implies the weak rain-max duality relation

(1.4) a(G" 3) <- O(G: 55)

for all G and if’. The strong min-max duality relation is said to hold for G and 55 if
(1.4) is an equality.

Throughout the paper, we use the following terminology from graph theory. A
partial graph G’= V’, E’) of G V, E) is a graph such that V’ c_ V and E’

___
E. An

induced subgraph of G is a partial graph such that E’= {(x, y)e E" x, y e V’}. The
complement of G V, E) is the graph G V, E), where E {(x, y)" (x, y) E}.

The subset V’ _c V is independent or stable if the subgraph it induces contains no
edges. The subset C c__ V is a clique if the complement of the subgraph it induces
contains no edges.

A graph G is connected if there is a path joining every pair of vertices. The length
of a path in G joining vertices x and y is the number of edges in the path. The distance
do(x, y) from x to y in G is the length of a minimum length path from x to y. The
distance from V V to V2 C V is do( V1, V2) minx, vl y v2 do(x, y). The kth power
of a graph G V, E) is the raph Gk V, E k) where E"k {(x, y)" 1 _-< do(x, y) --< k}.

The n-neighborhood Nbd (x, n) of a vertex x is { z" d(z, x) n}. The neighborhood
Nbd (x) of x is the 1-neighborhood Nbd (x, 1). If d(x, y) k is finite and 0_-< m _-< k,
then Bet (x, m, y) denotes the set of all vertices z between x and y such that d(x, z) m
and d(z, y) k- m.

The diameter of a connected graph G is d(G)=maxx,yvdo(x, y). The radius of
G is r(G)=minxvf(x), where f(x)=maxyvdo(x, y); x is a center of G if r(G)=
f(x). The bi-radius of G is br (G)=mineE b(e), where b( e) maxz v do( e, z); e is
a bi-center if br (G)= b(e). For any connected graph G, d(G)/2<-r(G)<-_d(G) and
(a(G)- 1)/2 =<br (G)=< r(G)=<br (G)+ 1.
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A cycle of a graph contains a chord if two nonconsecutive vertices of the cycle
are an edge. A hole is a cycle without a chord. An anti-hole is the complement of a
hole. A hole with n edges (of length n) is called an n-hole and is denoted by Hn. An
n-hole is called even or odd according to the parity of n.

A graph is a forest if it does not contain any holes. A tree is a connected forest.
A graph is bipartite if it does not contain any odd holes. A graph is chordal or
triangulated if it does not contain any holes of length greater than three.

A graph is called S-perfect if strong duality holds for all of its induced subgraphs.
Let be the family of cliques of a graph. The -packings are stable sets and a(G: U)
is called the stability number of G. The U-coverings are clique coverings and 0(G: U)
is the clique cover number. In the early 1960’s, Berge introduced the notion of
U-perfection, which is referred to as perfection, and the problem of characterizing
perfect graphs. Bipartite and chordal graphs are perfect (Hajnal and Surinyi [1958],
and Berge [1960]; also see Berge [1973] and Golumbic [1980]). Lovisz [1972] proved
the perfect graph theorem, which states that a graph is perfect if and only if its
complement is perfect. The strong perfect graph conjecture states that a graph is perfect
if it does not contain an odd hole or odd anti-hole of length at least five. The converse
of this conjecture is obviously true since a(H2n/l: U) n < n + 1 0(H2/1: U) for all
integers n => 2.

2. 7"k-covering and packing problems. Given a graph G=(V, E), let Tk
(V(Tk), E(Tk)) be a tree of diameter _<-k that is a partial graph of G. Let -k be the
set of V(Tk) for all such Tk. The location problems we discussed in the introduction
are special cases of -k-covering and packing problems. In particular, let N(V)=
{u V’(u, v) E or u v} be the star or closed neighborhood of u V. Then if2
{N(v)" v V}, the set of stars of a graph, is precisely the family of subsets required
for the location problems discussed above. If (-9.) is a -2-cover, then S=
{ v V: N(v) (ff2)} is called a dominating set and 0(G" -2) is called the domination
number of G. For all x V, there exists a u S such that de(u, v)=< 1. A 2-packing
is a vertex subset P V such that d(x, y)> 2 for all pairs of distinct vertices x and y
in P.

By considering -k-coverings for even values of k > 2, we allow a facility to serve
all regions within distance k/2 of itself. Each element of the cover generates a partial
graph with radius <= k/2 and a facility is located at a center of each partial graph.

For odd values of k, -k-coverings can be related to facilities located on edges.
Such facilities can serve any region within distance (k- 1)!2 from at least one endpoint
of the edge. Now each element of the cover generates a partial graph with bi-radius
-<_(k- 1)/2 and a facility is located at a bi-center of each partial graph.

In this section, we will establish a simple relationship between clique covering and
packing and -k-covering and packing. We also state a well-known characterization of
-l-perfect graphs and characterize graphs that are -k-perfect for all integers k _-> 1.

Sections 3, 4 and 5 contain new results. In 3, we give necessary and sufficient
conditions for ffk-perfection for all even integers k >- 2 under the assumption that the
perfect graph conjecture is true and prove that these conditions are sufficient for
-2-perfection. This extends our results given in Chang and Nemhauser [1982].

In 4, we characterize graphs that are -k-perfect for all integers k _-> 2. Section
5 gives a simple polynomial-time algorithm for determining a maximum cardinality
-k-packing and a minimum cardinality -k-covering on these graphs. More generally,
this algorithm determines a maximum cardinality stable set and a minimum cardinality
clique cover for a class of U-perfect graphs that contains chordal graphs.
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Let ck be the family of cliques of Gg. Since x, y V(Tk) S-k implies d(x, y) <= k,
we have (x, y) E k. Thus S-g cg, which implies

(2.1) O(G: CCk) <= O(G" S-k).

Furthermore, if {x, y}_ C CCk, then the set of vertices on any path of length <=k
joining x and y is an element of S-k, which implies

(2.2) a(G" S-)= a(G"

From the definitions of gk and Gk, we have

(2.3) a(G" ck) a(Gk" g) and 0(G" gk) 0(Gk" g).

From (1.4), (2.1), (2.2) and (2.3), we obtain

(2.4) a(G: S-k) a(Gk" c) <= O(Gg" c) <= O(G" -k).

Therefore, G is S-k-perfect if and only if, for all induced subgraphs H of G,
(F1) a(Hk" c)= O(Hk.

(F2) O(Hk" c)= O(H: S-k) or, equivalently, if C is a clique in Hk, then there
exists a tree T, which is a partial graph of H, of diameter _<-k such that C c_ V(T).

Note that q-perfection of Gk is not necessary for S-k-perfection of G. For example
a 9-hole is S-2-perfect, but its square is not q-perfect since the square contains 5-holes.

For any graph, S-1 is the set of edges of the graph. Thus a(G" S-a) is the maximum
number of vertices such that no two are joined by an edge and 0(G; S-I) is the minimum
number of edges that cover all vertices. It is well known that a(G" S-l)- O(G" S-I) if
G is bipartite. Furthermore, for an odd hole H2k+I, a(H2k+l" -1)-- k < k+ 1
O(H2k+I" S-I), for all integers k _-> 1. Since every nonbipartite graph contains an odd
hole, we have

THEOREM 2.1. A graph is S-l-perfect if and only if it is bipartite.
S-k-perfection forbids graphs with holes of length n > k and n # 0 (mod k + 1).

Thus, it is not surprising that S-k-perfection for all positive integers k characterizes
forests. Specifically we have"

THEOREM 2.2. The following statements are equivalent for any graph G.
(1) G is S-k-perfect for all integers k >- 1,
(2) G is S-ak-perfect for all integers k>-_l where a= 1, a2-2, and ak+l

H=I (a+ 1)-2 for k >-2.
(3) G is a forest.
Proof. (1) => (2) is obvious.
(2)(3). Suppose G is not a forest; then it has a hole H,, n => 3. It is easy to see

that a(H,," S-k)=max {1, [n/(k+l)]} and O(H,,,s-k)=[n/(k+l)]. Thus if G is
perfect and Hn is a hole of G such that n > k, then n 0 (mod k + 1). Choose k-> 2
such that ak < n<--ak+l. Since G is S-a-perfect, n is a multiple of a,,+ 1 for m
1,. , k. But the (a, + 1) ’s are pairwise relatively prime, so n >= I-I jk__ (aJ + 1) ak/ + 2.
This contradicts the assumption that n <= ak/l. So G is a forest.

(3)=>(1). If G is a forest, then any induced subgraph H of G is also a forest.
Powers of forests are chordal (see Golumbic [1980, Thm. 4.8]) and thus perfect, i.e.
(F1) holds. Since H is a forest, CCk S-k. Hence O(Hk" ) O(H" (k) O(H" S-k), i.e.
(F2) holds.

Remark. (3)=>(1) was proved by Meir and Moon [1975] in a different way. An
algorithm for S-k-covering problem on trees was given by Slater [1976] which general-
izes the algorithm for k- 1 given by Cockayne et al. [1975].
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3. Odd-sun-free chordal graphs and q’-perfection tor even k. Chordal graphs
are not necessarily -2-perfect. The graph of Fig. 3.1 provides an example.

FIG. 3.1. A chordal graph G with a(G" if2) < 2 0(G" -2).

An n-sun is a chordal graph G whose vertex set can be partitioned into Y
{Yl," ", Yn} and Z {zl,""", zn} such that the following three conditions hold.

(S1) Y is a stable set in G.
($2) (zl,""", z,, zl) is a cycle in G.
($3) (Yi, Zj) E if and only if j or j + 1 (mod n).
In this definition, the z’s are called inner vertices of the n-sun and the y’s outer

vertices. An n-anti-sun is the complement of an n-sun. An n-sun is called complete if
Z is a clique. An n-sun is called odd or even according to the parity of n. The graph
of Fig. 3.1 is a (complete) 3-sun.

A graph that does not contain a sun (3-sun, odd-sun, 3-anti-sun, 3-sun or 3-anti-sun
respectively) as an induced subgraph is called sun-free (3-sun-free, odd-sun-free,
3-anti-sun-free, 3-sun-3-anti-sun-free respectively). For convenience, we use SF-
chordal for sun-free chordal, 3SF-chordal for 3-sun-free chordal, OSF-chordal for
odd-sun-free chordal, 3ASF-chordal for 3-anti-sun-free chordal, and 3S3ASF-chordal
for 3-sun-3-anti-sun-free chordal.

In a previous paper (Chang and Nemhauser [1982]), we proved Theorem 3.1 and
gave algorithms for -k-covering and packing problems on SF-chordal graphs when k
is even.

THEOREM 3.1. If G is SF-chordal, then G is -k-perfect for all even integers k.
The following results from Chang and Nemhauser [1982] were used to prove

Theorem 3.1 and are also needed here.
PROPOSITION 3.2. If C is a cycle of a chordal graph, then for every edge (u, v) of

C there is a vertex w of C that is adjacent to both u and v.

It is to be understood in the sequel that for all vertices of an n-cycle or an n-sun addition of indices
is done modulo n.
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THEOREM 3.3. If G is a chordal graph and Gk has a hole H (Xl," , x,, Xl) of
length n >- 4, then k is even and d(xi, Xi+l) k for 1 <- <= n. Moreover, iffor 1 <-_ <- n, p
is any shortest path from xi to Xi+l containing z such that d(xi, z) d(Xi+l, zi) k/2,
then (Zl,""", zn, zl) is a cycle of length n in G. Also, there are Yl,"" ", Yn such that
{yl,""", y,, zl," z,} induces an n-sun with the y’s as outer vertices and the z’s as
inner vertices such that d(xi, yi)= k2-1, i= 1,..., n.

THEOREM 3.4. If G is a chordal graph and d(x, y)= k is finite and 0 <- m <-_ k,
then Bet (x, m, y) is a clique.

THEOREM 3.5. Irt a chordal graph G, if C is a clique and x C is such that
d(x, y)= k for all y C, then 71 yc Bet (y, 1, x) is not empty.

THEOREM 3.6. If G is a chordal graph and S is a maximal clique in G k, then S
induces a connected subgraph H of G such that do(x, y) di-l(X, y) for all x, y S.

THEOREM 3.7. If G is a 3SF-chordal graph and k is even, then C is a clique in
G k if and only if there is some z such that do(z, y) <_- k/2 for all y C.

Outline of the proof of Theorem 3.1. Since G is SF-chordal, all induced subgraphs
H of G are SF-chordal.

(F1) Since H is SF-chordal, by Theorem 3.3 Hk is chordal for all k _-> 1 and hence
a(Hk" )= O(Hk. q).

(F2) This follows from Theorem 3.7 and the fact that a vertex set C of H is
covered by a partial graph Tk that is a tree of diameter <= k if and only if there is some
z such that dH(Z, y) <= k/2 for all y C. F1

The converse of Theorem 3.1 is false. Complete even suns are if-k-perfect for all
even k. In this section, we will use a result on balanced matrices (see Chang [1982])
to prove that OSF-chordal graphs are -2-perfect. We also prove that if the strong
perfect graph conjecture is true, then OSF-chordal graphs are -k-perfect for all even k.

Suppose A is an m x n matrix all of whose coefficients are 0 or 1. Consider the
following two integer linear programming problems (ILP) and their linear programming
relaxations.

P(A)"

D(A)"

P(A)"

D(A)"

O(A) =min {xl" xA >= 1, x >-0 and integer},

a(A) max {ly" Ay<= 1, y => 0 and integer},

0(A) min {xl" xA>= 1, x>=O},

d(A) =max{ly" Ay<= 1, y>_-O},

where 1 stands for both m- and n-vectors all of whose coefficients equal 1. We assume
that A has no zero column to guarantee that these four problems are feasible and
have finite optimal solutions. From relaxation and linear programming duality, we
obtain the following weak duality for the ILP’s:

(3.1) a(A) <= d(A) O(A) <- O(A).

The -2-covering problem is P(M), where M is a symmetric Vl x lVl matrix with
mj 1 if d(i, j) =< 1 and mij 0 otherwise. The -2-packing problem is D(M). We call
M the closed neighborhood matrix of G since each row of M is the incidence vector
of a closed neighborhood of a vertex.

A 0-1 matrix A is said to be balanced if it does not have a p x p submatrix all
of whose row and column sums equal two, where p is an odd integer.

THEOREM 3.8 (Berge [1972], Fulkerson et al. [1974]). IrA is a balanced matrix,
then a(A) O(A). Moreover, all of the extreme points of {y: Ay <= 1, y >= 0} are integral.

OSF-chordal graphs can be characterized in terms of balanced matrices.
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THEOREM 3.9 (Chang [1982]). G is OSF-chordal if and only if its closed neighbor-
hood matrix M is balanced.

COROLLARY 3.10. If G is OSF-chordal, then G is -2-perfect.
Proof. Since G is OSF-chordal, all of its induced subgraphs H are OSF-chordal.

If M is the closed neighborhood matrix of H, then a(H" -2) a(M) and O(H" -2)
O(M). By Theorems 3.8 and 3.9, we have a(M) O(M). Hence a(H: -2)= O(H" if2)
and so G is -2-perfect.

COROLLARY 3.11. If G is OSF-chordal, then G2 is perfect.
Proof. If G is OSF-chordal, then it is 3SF-chordal. Consider the matrix Mc(G2)

whose rows are incidence vectors of all maximal cliques of G2. Theorem 3.7 implies
that each row of Mc(G2) is a row of the closed neighborhood matrix M of G, i.e.
Mc(G2) is a submatrix of M. By Theorem 3.9, M is balanced and so Mc(G2) is
balanced. The perfection of G2 then follows from Theorem 3.8, and the fact that G
is perfect if and only if all extreme points of {y" Mc(G)y-<_ 1, y >_-0} are integral (see
Golumbic [1980, Thm. 3.14].

We now turn to the question of giving necessary conditions for -k-perfection for
all even k.

THEOREM 3.12. If G V, E) is OSF-chordal and k is even, then Gk has no odd
holes or odd anti-holes of length at least five.

Proof. Theorem 3.3 implies that Gk has no odd hole of length at least five and
hence has no 5-anti-hole, since a 5-anti-hole is also a 5-hole. Suppose G: has an odd
anti-hole H of size n- 2m+ 1-> 7. In particular, suppose H =(Xl,’’’, xn, Xl) is an
n-hole in the complement of G

We say that and ] are consecutive if ] i+ 1 or ] i-1.
CLAIM 1. dG (Xi, X1) k d- 1 if and ] are consecutive, else de (xi, xi) k.
Proof of Claim 1. Suppose and ] are consecutive and assume ] i+ 1. Then

(xi, xi/3, Xi/l, xi/4, xi) is a 4-hole in G k, see Fig. 3.2. Hence by Theorem 3.3, there
exists y and yj such that d(x, y) d(xj, y) k/2-1 and d(y, y) -< 3, which implies
dc(x, x) -<_ k + 1. But d(xi, x) > k since (x, xj) e E k, so that d(x, x) k + 1.

FIG. 3.2. A 4-hole (xi, xi+3, xi+l, x/4, xi) in G k.

If and j are not consecutive, then either i-1 is not consecutive to j+ 1 and
hence (x, Xi+l, xi-1, x., xi) is a 4-hole in Gk, or else + 1 is not consecutive to j- 1 and
hence (x, X-l, Xi+l, xj, x) is a 4-hole in G k, see Fig. 3.3. In either case we have a hole
of G k that contains (x, xj) so that Theorem 3.3 implies d6(x, xi) k. so Claim 1 holds.

For i= 1,..., n, consider the set Ci {xi+2s: s=0, 1,..., m-l}.
CLAIM 2. For each there exists a vertex zi such that ifx Ci, then de (x, zi) k/2,

else da xj, Zi > k/ 2.
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i+

Xi

Xj_ Xi

Xi* Xi

FIG. 3.3. A 4-hole (xi, xj+l, xi-1, xj, xi) or (xi, x.i- 1, Xi+ 1, Xj, Xi) in G k.

Proof of Claim 2. By Claim 1, each Ci is a clique in G k. Since G is 3SF-chordal,
Theorem 3.7 implies that for each Ci there is a z such that d(xj, zi) <= k/2 for every
xj C. Then since Claim 1 implies that d(xp, Xq) k for Xp, Xq C, we obtain
d(x, z)= k/2 for all x Ci. If x Ci, then there is some 0=< s=< m-1 such that ]
and + 2s are consecutive. So d(x, z) > k/2 follows from the fact that d(xj, x/2s) > k
and d(zi, xi/.s)= k/2. So Claim 2 holds.

CLAIM 3. For 1," , n, let zi be defined as in Claim 2. Then (z, z) E for all
i].

Proof of Claim 3. Case 1. Suppose and are consecutive, say + 1. Consider
the 4-hole H (x, x+3, Xi+l, x+4, x) of Gk, see Fig. 3.2. d(x, zi) dG(xi+4, zi) k/2
by Claim 2 and the fact that x, xi/4 C; d(x, x/4) k by Claim 1. Thus z is the
middle vertex of some shortest path Pl from x to xi/4. Similarly, z is the middle
vertex of some shortest path pe from X+l to xi/3. By Theorem 3.3, G has a 4-sun in
which z and z are two inner vertices. Since G is 3-sun-free, the 4-sun is a complete
4-sun and hence (z, z) E.

Case 2. Suppose and are not consecutive. Since n is odd, ] i+ 2s or i= ] + 2s
for some 1 -<_ s =< m 1. Suppose, without loss of generality, that + 2s. In this case,
xj C 1") Cj, Xj_2 Ci\Cj, and x-3 C\Ci. Consider the 4-hole H (x, x_e, Xj+l, xj-3, x)
in G k, see Fig. 3.4. Again, z is the middle vertex of some shortest path Pl from x to
x_ and z is the middle vertex of some shortest path pe from xj to x-3. So Theorem
3.3 implies z, zi) E.

From Claim 2, Claim 3, and Theorem 3.5, there is a y such that d(x, y) k/2-1
and (yj, z_2s) E for s 0, 1,. , m- 1. However, for any other z, Claim 2 implies
d(x, zi)> k/2 so that (y, zi) E. Thus we have Claim 4.

CLAIM 4. (yj, Zi) E if and only if j- 2s for some 0 <-_ s <- m 1.
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Xio

"_
Xi_ Xi- Xi-

FIG. 3.4. A 4-hole (xj, xj_2, xj+l, xj_3, x,) in G k.

Now consider W {Yl, Yn-2, Y,,, Y2, Y,,-a, Z1, 23, Zn, Z2, Zn-1}, which induces a
chordal graph that satisfies the following three properties (see Fig. 3.5):

(1) {Zl, z3, z,, z2, z,-a} is a clique by Claim 3.
(2) (Yl, 7,1, Yn-2, 7,3, Yn, Zn, Y2, 7,2, Yn-a, Zn-1, Ya} is a cycle and, by Claim 4, each y

in the cycle is adjacent only to exactly two z’s.
(3) {Yl, Yn-2, Yn, Y2, Yn-1} is a stable set. This follows from (1): (2), and the fact

that G is chordal. For example, suppose (Yl, Yn-z) EE; then (1) and (2) imply that
(Yl, Yn-2, Z3, Zn-1, Yl) is a 4-hole in G, which is a contradiction.

From (1)-(3), W induces a complete 5-sun, which is a contradiction since G is
odd-sun-free. Hence the theorem is true.

Yn-

Zn -I

Y Yn
FIG. 3.5

THEOREM 3.13. If G is 3-k-perfectfor all even k, then G is OSF-chordal. Moreover,
if the strong perfect graph conjecture is true, then the converse is also true.

Proof. (3). G does not have an n-hole Hn with n _-> 4 as an induced subgraph
since a (Hn: 3-k) 1 < 2 0(Hn 3-k), where k n 2 if n is even and k n 3 if n is
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odd. Hence G is chordal. G does not have an odd sun as an induced subgraph since
a(odd-n-sun: 2) (n- 1)/2 < (n + 1)/2= 0(odd-n-sun: 9-2).

(<=) Induced sugraphs of OSF-chordal graphs are OSF-chordal.
(F1) By Theorem 3.12, if the strong perfect graph conjecture is true, then even

powers of OSF-chordal graphs are perfect.
(F2) See the statement in the outline of the proof of Theorem 3.1. [-1

We close this section with the conjecture that Theorem 3.13 is true independent
of the strong perfect graph conjecture.

4. 3-sun-3-anti-sun-iree chordal graphs. In this section, we characterize graphs
that are 9-k-perfect for all k => 2.

PROPOSITION 4.1. Suppose al, a2, a3, bl, b2, b3 are six vertices in a chordal graph
G (V, E) and {al, a2, a3} forms a triangle.

(A) If ai, bj) E: i= j, then { bl, b2, b3} is a stable set and hence the six vertices
induce a 3-anti-sun as in Fig. 4.1(a).

(B) If ai, bj) E: # j, then { bl, b2, b3} is a stable set and hence the six vertices
induce a 3-sun as in Fig. 4.1(b).

b2

(b)

(a)

b

a.

FIG. 4.1
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We now characterize 3-anti-sun-free chordal graphs by a minimum bi-radius
property. As noted in the introduction, br (H)=> [d(H)/2J for any connected graph
H. We say that G has the minimum bi-radius property if

(F3) br (H)= [d(H)/2] for all connected induced subgraphs H of G such that
d(H) => 2.

Note that if d(H) 1, then H is a complete graph. So br (H) [d(H)/2J -0 if
H is an edge and br (H) 1 > [d(H)/2] otherwise.

THEOREM 4.2. For any chordal graph G, the following statements are equialem;
(1) (F3) is true.
(2) (F3) is true ]’or all H such that d(H) is odd.

is 3-anti-sun-free.
Proof. (1)= (2) is obvious.
(2)=(3) holds since d(3-anti-sun) 3 and br (3-anti-sun) 2.
(3)=(1). Suppose this is not the case; then (3 has a connected induced subgraph

H with d(H)-> 2 such that [d(H)/2J + 1 =<br (H) or, equivalently,

(4.1) d(H)<-2br(H)-l.

The theorem will be proved by obtaining a contradiction to (4.1).
Note that 2 br (H)- 1 _>- d(H) _-> 2 implies that br (H) _-> [1.5] 2.
For any bi-center (u, v),’define S(u, v)={z: d({u, v}, z) br (H)}. Note that

S(u, v) fg. Now choose a bi-center (x, y) such that IS(x, Y)I is as small as possible.
Let V(x)={z: d(z,x)<d(z, y)} and V(y)={z: d(z, y)<d(z,x)}.
CLAIM 1. V(x) and V(y)
Proof of Claim 1. If V(x)= then d(z, y) <= d(z, x) and hence d(z, {x, y})

d(z, y) for all z V. Choose z’ Nbd (y, br (H)) and x’ Bet (y, 1, z’). Note that
d(z, {x, y})=d(z, y)>=d(z, {x’, y}) for all z V, so (x’, y) is a bi-center such that
S(x’, y)_ S(x, y). But z’ S(x, y)\S(x’, y) and so IS(x’, Y)I <IS(x, Y)I, which is a
contradiction. So V(x) (. Similarly, V(y)

CLAIM 2. d(z,x)=d(z, y) <br (H) for all z V\(V(x)t_J V(y)).
Proof of Claim 2. Suppose there is z such that d(z, x)= d(z, y)=br (H). Then,

by Theorem 3.5, there is u Bet (x, 1, z) fq Bet (y, 1, z). Since br (H) => 2, wecan choose
u’ Bet (u, 1, z). Then u’ is not adjacent to x or y, see Fig. 4.2. Choose an x’ adjacent
to x but not adjacent to u or y. Suppose no such x’ exists; then d(x, v)>= d({u, y}, v)
for all v x and d(x, z)> d({u, y}, z). Hence (u, y) is a bi-center such that S(u, y)
S(x, y). But z’ S(x, y)\S(u, y) and so IS(u, y)l<lS(x, Y)I, which is a contradiction.
Similarly, there is a y’ adjacent to y but not to u or x. Then, by Proposition 4.1(A),
{x, y, u, x’y’u’} induces a 3-anti-sun, which is a contradiction. This proves Claim 2.

Now let d max v(,) d(z, x) and d2 max v(y) d(z, y). Without loss of general-
ity, assume da _-< d2.

CLAIM 3. br (H)- 1 _<- dl -< d2 br (H).
Proof of Claim 3. By Claim 2, we know that br (H)=max {dl, d2}--d2. So we

only have to prove that br(H)-l<=d. Suppose dl<-br(H)-2. Since (x,y)e
E, d(z, y) <= br (H)- I for any zeV(x). Choose z’
Bet (y, l, z’). Then (x’,y) is a bi-center such that S(x’, y) c_ S(x, y) and z’e
S(x, y)\S(x’, y). Thus IS(x’, y)l<lS(x, Y)I, which is a contradiction. This proves
Claim 3.

CLAIM 4. d(H) 2 br (H) 1 and d br (H) 1. Moreover, for any za V*(x)
V(x) (-I Nbd (x, da) and z2 V*(y) V(y) f’l Nbd (y, d2), d(zl, z2) 2 br (H)- 1 and
them is a vertex v adjacent to x and y such that v Bet (zl, dl, z2).
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U’

x’ y’

FIG. 4.2

Proof of Claim 4. Choose shortest paths Pzlx, Pzzy, Pz, zz from 2’ to x, ze to y, and
Zl to ze respectively as in Fig. 4.3. Note that it is impossible that x Wl or y we,
otherwise d(H)>= d(Zl, z2)= dl + 1 + de=> 2 br (H), which contradicts (4.1). Consider
the cycle (Wl,"’, we,’", y,x,’", Wl). By Proposition 3.2, there is a vertex v
adjacent to both x and y. Note that v is not between x and Wl (similarly, not between
y and we) otherwise d(Zl, y)<=dl=d(Zl, X), which contradicts the assumption that
2"1 V(x). Also

(4.2) d(z, v) => d(z,, x),

since d(z, v) < d(z, x) implies that d(z, y) <-_ d(za, x), which contradicts the assump-
tion that za V(x). Similarly, we have

(4.3) d(z2, v) => d(z2, y).

From (4.1), (4.2), (4.3) and Claim 3, we have

2 br (H)- 1 => d(H) => d(zl, z2) d(zl, v) + d(z2, v)

=> d(za, x) + d(z2, y) d + d2 => 2 br (H) 1.

Thus d(z, z2) d(H) 2 br (H)- 1 and d(z, x) d(zl, v) d br (H)- 1 and
d(z2, y)= d2. So Claim 4 holds.

W

FG. 4.3
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Now choose vertices Zl E V*(X), Z2 W*(y), and a corresponding v
Bet (Zl, dl, z2) that is adjacent to both x and y as in Claim 4. Without loss of generality,
wecan assume that S(v) {w V*(x): d(v, w) br (H)} has as few vertices as possible.
Note that d(v, z) <= d(x, z) + 1 dl + 1 br (H) for all z V*(x).

CLAIM 5. S(V).
Proof of Claim 5. Claim 4 implies d(zl, x) d(z, v) dl. Since x is adjacent to

v, by Theorem 3.5, there is a vertex v’ Bet (x, 1, Zl) fq Bet (v, 1, Zl). Similarly, there
is a u E Bet (y, 1, z2) fq Bet (v, 1, za) and a u’ Bet (u, 1, z) as in Fig. 4.4. Note that
u’ is not adjacent to y or v; v’ is not adjacent to u; and v’ is not adjacent to y otherwise
d(z, y) _-< d d(z, x), which contradicts the fact that zl V*(x). Suppose there is a
vertex y’ adjacent to y but not u or v. Then Proposition 4.1(A) implies that
{u, v, y, u’, v’, y’} induces a 3-anti-sun, which is a contradiction. So every z adjacent
to y is either adjacent to u or v. This implies that d(z, y) -> d(z, {u, v}) for every z V.
This fact and d(v, z)_-<br (H) for all z V*(x) imply that (u, v) is a bi-center. Suppose
S(v) =, then S(u, v)c_S(x, y). But z2ES(x, y)\S(u, v), so IS(u, v)[<[S(x, y)[. This
contradicts the choice of (x, y), so Claim 5 holds.

v’ u’ Z2

y,

FIG. 4.4

Now fix zl, z2 and v as in the proof of Claim 5. By Claim 5, there is a z S(v).
By the definition of S(v), z V*(X). By Claim 4, there is w Bet (z, dl, z2) that is
adjacent to both x and y. Since d(z2, v) br (H), d(v, x) 1 and d(z:, x) > br (H),
we have v Bet (x, 1, z2). Similarly, w E Bet (x, 1, z2). By Theorem 3.4, v is adjacent
to w. So C={w, v, y} is a clique such that d(z2, w)=d(z2, v)=d(z2, y) =br (H). By
Theorem 3.5, there is a vertex u f) ac Bet (a, 1, z2) and then there is u’ Bet (u, 1, z2)
as in Fig. 4.5. By Theorem 3.5, we can choose w’ Bet (x, 1, z) f3 Bet (w, 1, z).

W’ W

U’

Z’ V’

FIG. 4.5

Note that u’ is not adjacent to v or w; w’ is not adjacent to u; and w’ is not adjacent
to v otherwise d(z, v) =br (H)-I and then zC_S(v).
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For any z’e S(w), i.e. z’e V*(x) and d(z’, w)=br (H), suppose d(z’, v)=
br (H) 1. Then there is v’ e Bet (v, 1, z’) fl Bet (x, 1, z’) as in Fig. 4.5. For the
same reasons that w’ is not adjacent to u or v, v’ is not adjacent to u or w. Then,

Wby Proposition 4.1(A), {u,v,w,u,v’, } induces a 3-anti-sun, which is a
contradiction. So d(z’, v)= br (H) and z’ e S(v), which proves that S(w)c__ S(v). But
z S(v)\S(w), so IS(w)l <lS(v)l. This contradicts the choice of v, and the proof is
complete.

COIOLI.AR 4.3. If G is 3ASF-chordal and k is an odd integer >=3, then C is a
clique in G k if and only if there exists an edge (x, y) such that d({x, y}, z)<= (k-1)/2
for all z C. Hence O(G: -)= O(G"

Proof. Suppose C is a clique in G k. Without loss of generality we can assume it
is maximal. By Theorem 3.6, C induces a connected subgraph H such that dH(u, v)=
d(u, v) for all u, v e C. Hence d(H) <= k. Since G is 3ASF-chordal, by Theorem 4.2,
br(H)=[d(H)/2]<=(k-1)/2, i.e. there is a bi-center (x,y) of H such that
d({x, y},z)=dH({x, y},z)<-(k-1)/2 for all zC.

The converse is obvious.
O(G" )= O(G" c) then follows from the fact that C is covered by a partial

graph that is a tree of diameter <-k if and only if there is (x, y)e E such that
d({x, y},z)<=(k-1)/2 for all zC. l-1

LFMMA 4.4. Every n-sun with n >= 5 has a 3-anti-sun as a subgraph.
Proof. Suppose the y’s are outer vertices and the z’s are inner vertices of the

n-sun. By Proposition 3.2, the cycle (Zl, z2,’’ ", zn, zl), has a vertex zj adjacent to
both z2 and z3. If j {1, 4}, then Proposition 4.1(A) implies that {z2, z3, zj, Y2, Y4, Yi}
induces a 3-anti-sun. Now suppose, without loss of generality, that j 4, see Fig. 4.6.
Then in the cycle (zl, z2, z4, zs,"" ", zn, z), there is a vertex z adjacent to both z2
and z4. Choose i= j+ 1 if j 5 and i= j otherwise, then {z2, z4, z, Y3, Y4, Yi} induces
a 3-anti-sun.

COROLLARY 4.5. If G is 3S3ASF-chordal, then it is OSF-chordal and hence
-2-perfect.

TIaEOIFM 4.6. If G is 3ASF-chordal, then G is chordal for all integers k >= 3.
Proof. Suppose G has a hole H (xa,..., x,, Xl) of length n-> 4. By Theorem

3.3, k is even and {Yl," , Yn, z,. , z,} induces an n-sun. Choose y Bet (y, 1, Xl).
Theorem 3.3 implies that y is not adjacent to zl or zn. Hence {Yl, Zl, Zn, y, Y2, Yn}
induces a 3-anti-sun. This is a contradiction, so G is chordal.

Note that Theorem 4.6 is false if k 2, e.g. a complete 4-sun satisfies the hypothesis
of the theorem but its square is not chordal.

THEOREM 4.7. The following statements are equivalent for all graphs G"
(1) G is -k-perfect for all integers k >= 2.
(2) G is -ck-perfect for all integers k>=l, where c1=2, c2=3 and Ck+a

I-Iik= (cj + 1)--2 for k > 2
(3) G is 3S3ASF-chordal.
Proof. (1) :=> (2) is clear.
(2):=>(3). G is 3-sun-free since a(3-sun" if2)= 1 < 2 0(3-sun: -2) and 3-anti-

sun-free since a(3-anti-sun: :3-3) 1 <2= 0(3-anti-sun: -3). The proof of chordality
is similar to the proof of (2)==>(3) of Theorem 2.2.

(3)=:>(1). Because of Corollary 4.5, we only have to prove -k-perfection for
k-> 3. Since G is 3S3ASF-chordal, its induced subgraphs H are 3S3ASF-chordal.

(F1) Theorem 4.6 implies that Hk is perfect.
(F2) O(Hk" ) O(H" -k) follows from the statements in the outline of the proof

of Theorem 3.1 when k is even, and from Corollary 4.3 when k is odd.
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z2 4

Z1

FIG. 4.6

5. Nearly chordal graphs. If G is OSF-chordal, Corollary 3.11 states that G2 is
perfect. Hence the stable set problem (C-packing) and clique covering problem
(C-covering) on G2, as well as the dominating set problem (ff2-covering) on G can
be solved in polynomial time by an ellipsoid algorithm (Gr6tschel, Lovisz and Schrijver
[1981]). However, no efficient combinatorial algorithm is known for these problems
on OSF-chordal graphs. Higher powers of OSF-chordal graphs are not even known
to be perfect, but as discussed in 3, we strongly believe that they are.

The situation is much simpler for 3S3ASF-chordal graphs. If G is 3S3ASF-chordal,
then Gk is perfect for all k >- 1 and indeed chordal for all k 2. Hence the stable set
and clique covering problem on Gk, k 2, and the -k-packing and ffk-covering
problems, k > 2, on G can be solved by well-known combinatorial algorithms (see
Golumbic [1980]). In this section, we consider k 2.

A graph G V, E) is called nearly chordal if the following three conditions hold:
(NC1) The maximum length of a hole in G is 4.
(NC2) If (Xl, x2, x3, x4, Xl) is a 4-hole and v x for 1, 2, 3, 4, then v is either

not adjacent to any x or adjacent to at least three x’s.
(NC3) If (Xl, X2, X3, X4, Xl) is a 4-hole, then C={v V" v is adjacent to both xi

and X/l} t_J {x, X/l} is a clique in G for 1, 2, 3, 4.
We will give an O(I VI" IEI) algorithm for solving the stable set and clique covering

problems on nearly chordal graphs. We will also prove that if G is 3S3ASF-chordal,
then G is nearly chordal so the algorithm also solves the dominating set problem on
G. It can be shown that the class of nearly chordal graphs is a subset of the perfectly
orderable graphs introduced by Chvital [1981 ].

PROPOSI3:ION 5.1. Chordal graphs are nearly chordal Every induced subgraph of
a nearly chordal graph is nearly chordal
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PROPOSITION 5.2. In a nearly chordal graph G, every cycle C Xl, X2, Xn, X1)
of length n >- 5 has at least n- 3 chords.

Proof. We will prove the proposition by induction on n. If n 5, then C cannot
have only one chord, otherwise G has a 4-hole and a vertex adjacent to exactly two
vertices of the 4-hole, which contradicts (NC2). Suppose the proposition holds for all
n’< n-> 6. By (NC1), C has a chord.

Case 1. C has a chord of the form (xi, xi/2). Consider the cycle C1
(xi, xi/2, xi/3, , xi-1, xi), of length n- 1 >= 5. By the induction hypothesis, C1 has at
least n- 4 chords all of which are chords of C. So C has at least n- 3 chords.

Case 2. C has no chord of the type considered in Case 1, but has a chord of the
form (xi, xi/3). Then Cl=(Xi, X+l, Xi/2, x+3, xi) is a 4-hole and C2=
(xi, xi/3, xi/4,""", xi-1, xi) is a cycle of length n-2 => 4. By the induction hypothesis,
C2 has a least (n-2)-4= n-6 chords (this includes the case of n-2 =4). Since xi-1
is adjacent to a vertex of C1, (NC2) implies that either (xi-1, Xi/l) E or (xi-1, xi/2) E.
Similarly, (x+4, Xi/l) E or (x/4, xi/2) E. So C has at least 1 +(n-6)+2 n-3
chords.

Case 3. C has a chord that decomposes it into two cycles of length n => 5 and
n2 >- 5 such that nl + n2 n + 2. By the induction hypothesis, these two cycles have at
least nl 3 and n2- 3 chords respectively. So C has at least 1 + (nl 3) + (n2- 3) n 3
chords.

PROPOSITION 5.3. Nearly chordal graphs are perfect.
Proof. The result follows from Proposition 5.2 and the fact that if every odd cycle

of length ->_5 of G has at least two chords, then G is perfect (Meyniel [1976]). The
proposition also follows from Algorithm 5.2 given below.

Burlet [1982] has recently given an algorithm for solving the clique covering and
stable set problems on graphs with the property that every odd cycle of length >-5 has
at least two chords. Although this algorithm can, of course, solve these two problems
on nearly chordal graphs, it is much more complicated than the algorithm to be given
below, which is applicable only to nearly chordal graphs.

A trivial polynomial-time algorithm can be obtained by enumerating 4-holes and
then applying any polynomial algorithm for chordal graphs. However, a more efficient
algorithm is obtained by using a scheme based on Lexicographic Breadth First (LBF)
search (Rose, Tarjan, and Leuker [1976]).

ALGORITHM 5.1. LBF search.
assign the label to each vertex;
for <- n to 1 step -1 do

pick an unmarked vertex v with largest (lexicographic) label;
assign the index to v and mark v;
for each unmarked vertex w Nbd (v) do add to label (w);
end.

Note that we do not actually need to calculate the labels, rather we keep the
unmarked vertices in lexicographic order by using a queue. For details and the following
property see Golumbic [1980].

PROPOSITION 5.4 (Golumbic [1980]). Suppose Iv1, v2," , vn] is an LBF ordering
of the vertices of a graph. If a < b < c and Vc is adjacent to Va but not Vb, then there exists
d > c such that vd is adjacent to vb but not va.

THEOREM 5.5. Suppose Iv1," , vn] is an LBF ordering of the vertices of a nearly
chordal graph G V, E). If there are < j < k such that (vi, vj) E, (vi, Vk) E and
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Vj, Vk) ! E, then there are p and q such that < ] < p < q and vi, Vp, Vq, vj, vi) is a 4-hole
in G.

Proof. We consider a sequence of integers n-1 > no < nl <’’" defined as follows.
Let n-i ], no i, nl ], and then choose n2 p as large as possible such that
E but (vn_1, v,2) E. Note that p exists and k =< p. Now by Proposition 5.4, we can
choose n3=q>p as large as possible such that (V/,II ?13) E but (v,o, v,3) E. If
(vn, vn3) E, then the proof is complete. Otherwise suppose (v,=, vn) E, we will get
a contradiction by considering the following inductive procedure. Assume we are given
the increasing sequence of integers no < n <’’" < n,, with the following properties"

(1) If r>0, then (v,o, Vr)ECzr<=2.
(2) If r, s>0, then (vr, v)Elr-sl=2.
(3) For r > 2, nr is as large as possible such that (v,r_2, v,r) E but (V,r_, V,r) E.

The construction for m 3 has been given above.
The vertices v,_, vn_1, vn satisfy the hypothesis of Proposition 5.4 as va, Vb, and

vc respectively. Hence, choose n,,/l > n,, as large as possible so that v,+l is adjacent
to v,_ but not v,_. By the indunction hypothesis, we know that (1), (2), (3) are
true for the case of r, s =< m. We complete the induction by showing that v,+ is not
adjacent to v,, for m, m- 2, m- 3,.. , 0.

Suppose v+ is adjacent to v,. Consider the cycle C
vo, v,, vn,. v,, vn+, v,_,, v_z,. v,2, V,o) when m is odd, and C=
v,o, v,, v,3,. ,v,_, vn+l, v,., vn_2," vn, v,o) when m is even. C contains m + 2

vertices and by the induction hypothesis and (1) and (2), every chord of C contains
v,/1. By Proposition 5.2, C has at least m 1 chords, which implies that (v,+, v,) E
for r 0, 1,..., m. This is a contradiction since v,+ is not adjacent to v,_.

We will prove that vn+ is not adjacent to v,, for t=m-2, m-3,...,0 by
backward induction on t. By choice, v,+ is not adjacent to v,_=. Suppose v,+ is not
adjacent to v,, but is adjacent to v,,_ 1. By Proposition 5.4, there is ny > n,/l such that

vn is adjacent to v,, but not v,,_l. So nr is larger than n,/2 and vn is adjacent to v,,
but not v,,_, which is a contradiction to the choice of v,,+.

Clearly, the inductive procedure continues indefinitely, but the graph is finite,
which is a contradiction. So Theorem 5.5 holds.

Remark. As in the proof, we can choose p and q in the following way: choose
the maximum p such that < ] < p and Vp is adjacent to v but not v); then choose the
maximum q > p such that Vq is adjacent to v but not v. We will use this procedure
in Algorithm 5.2.

ALGORITHM 5.2.
input: A nearly chordal graph G with a LBF ordering [vl,. , vn] of its vertices.
output: A minimum clique covering C and a maximal vertex packing S.
method:

StepO. i-0; C; S*-;
all vertices are unmarked.

Step 1. i-i+1;
ii _<- n then go to Step 2;

else lrint C and S and STOP.
Step 2. i 1.) is marked then go to Step 1;

else go to Step 3.
Step 3. A - { Vk: k > i, (vi, Vk) E, and Vk unmarked} t_J { vi};

ii A is a clique then go to Step 4;
else go to Step 5.
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Step4. C C U {A};
S<---
mark all vertices in A;
go to Step 1.

Step 5. Choose vj A and vp, vp as in the above
remark such that (vi, vj, Vq, Vp, vi) is a 4-hole;
A <’- { Z" Z is adjacent to /’)i and v}
A.-{z" z is adjacent to Vp and Vq}t3{Vp, vq};
C - C [-J {A1, A2};
S<--
mark all vertices in A1 and A.;
go to Step 1.

THEOREM 5.6. Algorithm 5.2 terminates in 0(I VI IEI) time, and gives a minimum
cardinality clique covering C and a maximum cardinality vertex packing S such that

ICl-ISI.
Proof. It is easy to see that ICI- ISl at each iteration and hence in the final output

and also that the final set of cliques covers all of the vertices. A1 and A2 are cliques
by condition (NC3). We only have to prove that S is a stable set at each iteration and
hence in the final output. When vi is put into S and A is a clique, then all neighbors
of vi are marked. When vi and vq are put into S and A is not a clique, then
(Vi, Vj, Vq, Vp, Vi) is a 4-hole, hence by (NC2) all v Nbd (vi)t_J Nbd (Vq) are adjacent
to at least three vertices of the 4-hole and thus are in A1 t_J A2. Hence at the beginning
of each iteration, a vertex is marked if and only if it is in S or adjacent to some vertex
in S. So any unmarked vertex, in particular vi, is not in S and not adjacent to any
vertex in S. Thus when A is a clique, S t_J {vi} remains a stable set. When A is not a
clique, vi and vj are unmarked. Suppose vq is marked, then it is adjacent to some
vertex x in S. By condition (NC2), x is then adjacent to at least two more vertices in
the 4-hole. Hence either vi or vj is marked, which is a contradiction. So Vq is unmarked
and hence S U { vi, vq} remains stable.

Since the algorithm only examines the neighborhood of each vertex once, its
running time is O(1Vl" IEI).

We conclude this paper by proving that if G is 3S3ASF-chordal, then G2 is nearly
chordal.

LEMMA 5.7.2 Suppose G (V, E) is 3S3ASF-chordaL Then the maximum length
of a hole in G2 V, E2) is four. Suppose G2 has a 4-hole (Xl, x2, x3, x4, xl). Then the
following statements are true.

(1) There exist zl, z2, z3, z4 such that {Xl, x2, x3, x4, Zl, z2, z3, z4} induces a com-
plete 4-sun in G with the x’s as outer vertices and the z’s as inner vertices.

(2) Suppose v xi for 1, 2, 3, 4. Then v is either not adjacent to any xi in G2 or
else is adjacent to at least three x’s in G2.

(3) Suppose v is adjacent to Xi, Xi+l, Xi+2 but not Xi+3 in G. Then v Z for
1, 2, 3, 4, and v is adjacent to zi and zi+ but not zi+2 or zi+3 in G.
(4) If v, xi) E 2 for 1, 2, 2, 4 then de(v, zi) <= 1 for 1, 2, 3, 4.
Proof. Since G is 3-anti-sun-free, by Theorem 3.3 and Lemma 4.4, the maximum

length of a hole in G2 is four.
Suppose G has a 4-hole (Xl, x2, x3, x4, Xl). By Theorem 3.3, there exist four

vertices zl, z2, z3, z4 such that {xl, x2, x3, x4, Zl, z2, z3, z4} induces a 4-sun of G with

Indices for the xi’s and zi’s are taken mod 4 in the statement and proof of the lemma.
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the x’s as outer vertices and the z’s as inner vertices. (Note that xi yi for the case
of k 2 in Theorem 3.3.) Since G is 3-sun-free, the 4-sun is complete. This proves (1).

We will prove (2), (3), and (4) by the following steps.
Step 1. Suppose v =zj for some ]. Then v is adjacent to all of the x’s in G2 and

de(v, z)<= 1 for all i. So (2)-(4) are true. From now on, we assume that v is not a
vertex of the complete 4-sun.

Step 2. If (v, xj) E2 for some j, then (v, Zk) E for some k.
Proof of Step 2. Either de v, x) 1 or de v, x) 2.
Suppose de(v, x) 1 and consider the six vertices xj, zj, z+3, v, X+l, xj+3 (view

them as a’s and b’s as in Fig. 5.1). Since (a, bl) E for all and (al, b2) E, (al, b3) E,
(a2, b3) E, (a3, bE) E, from Proposition 4.1(A), either (a2, bl) E or (a3, bl) E
since G has no 3-anti-sun. So v is adjacent to either z or zj+3 in G. This proves Step 2
for the case of de (v, xj)= 1.

j+ =b3 3 =zj+3

j+2

j,::Z Zj/l

b2 =xj+1

FIG. 5.1

If de(v, x)= 2, let (v, w, x) be a path in G. Assume v is not adjacent to any Zk.
Then, as in Fig. 5.2, w is not a vertex of the complete 4-sun since w is adjacent to x
which is adjacent only to z and zj/3 in the complete 4-sun.

For the same reason as in the previous case, w is adjacent to either z or z+3.
Because of symmetry we can assume, without loss of generality, that (w, z) E as in
Fig. 5.3.

Apply Proposition 4.1(A) to the six named vertices in Fig. 5.3. Then w is adjacent
to zj+ or zj+3 in G. If w is adjacent to z+, but not zi+3, then (w, Zj+l, zj+3, Xj, W) is a
4-hole in G, which is impossible since G is chordal. So (w, z/3) e E and we have Fig.
5.4.

Now apply Proposition 4.1(A) to the six named vertices in Fig. 5.4. Then either

W, Xj+l) E or (w, xj+3) E. Because of symmetry, we can assume (w, Xj+l) E. In
the cycle (w, X+l, Z+l, zj/3, w), (X/l, zi+3) E implies (w, Zi/l) e E. So we have
Fig. 5.5.
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xj+3

j/ xj/

FIG. 5.2

w

j+ ’+1

FIG. 5.3

Apply Proposition 4.1(B) to the six named vertices in Fig. 5.5. Note that
(al, bl) E, (al, b2) E E, (a, b3) E E, (a2, b) E E, (a2, b3) E E, (a3, bl) E E, (a3, b2) E E
and (a, b) ; E. Since G is 3SF-chordal, Proposition 4.1 (B) implies (a, b) (w, z+e) E
E. So we have Fig. 5.6.

Apply Proposition 4.1(A) to the six named vertices in Fig. 5.6. Then either
(w, xj/2)E or (w, xj/3)E. But we know that (w, xi)E and (w,x/l)E. So either
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w

zj+3

j

FIG. 5.4

W

j+3
,,b

j+2
=a

j+2
b3 a =zj..

FIG. 5.5

do(xj, xj+2) 2 or do(X+l, x+3) 2, which is not possible since (xl, x2, x3, X4, X1) is a
4-hole in G2. This proves Step 2 for the case of do(v, x)= 2.

Step 3. If (v, x) e E2 for some , by Step 2, v is adjacent to some Zk; see Fig. 5.7.
Now apply Proposition 4.1(A) to {Zk, Zk/l, Zk/3, V, Xk/, Xk/3} and obtain (v, Zk+l) e E
or (v, Zk/3)e E. Without loss of generality, assume (v, Zk/l) E. So v is adjacent to
Xk, Xk/1, Xk/2 in G2. This proves (2) and (3).
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xj+2
+1

FIG. 5.6

( Xk/

Xk+ k+ Xk/2

FG. 5.7

Step 4. For (4) we need to prove that (v, Zk+2) E and (v, Zk+3) E when (v, Xi)
Ez for 1, 2, 3, 4.

Proof of Step 4. First we prove that either (v, Zk/2) E or (v, Zk/3) E. Suppose
this is not the case.

Case 1. d(v, Xk/3) 1. Consider the cycle (v, Zk/l, Zk/2, Xk/3, V). (Zk/l, Xk+3) E
implies (v, Zk/2) E, which is a contradiction.
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Case 2. de(v, Xk/3)= 2. Let (v, w, Xk/3) be a path in G as in Fig. 5.8. Note that
w is not in the complete 4-sun since Xk/3 is adjacent only to Zk/2 and Zk/3 in the sun.
Consider the cycle (v, Zk/l, Zk/2, Xk/3, W, V). Since (v, Zk/2) E, (v, Xk/3) E and
(Zk+I, Xk+3)E we have (W, Zk+I)E and (W, Zk+2)E as in Fig. 5.8.

k.

k+a
Xk+

k

FIG. 5.8

Apply Proposition 4.1(B) to the six vertices {w, Zk+l, Zk+2, Xk+2, Xk+3, /)} in Fig.
5.8. Then (w, Xk+2) E. Similarly, (w, Xk) E. So d(Xk, Xk+2)= 2, which contradicts
the assumption that (xl," , x4, Xl) is a hole in G2. Therefore (v, Zk+2) E or (v, Zk+3)
E. By symmetry we can assume (v, Zk+2) E as in Fig. 5.9.

Now apply Proposition 4.1(B) to the six vertices {Zk, Zk+2, Zk+3, Xk+3, Xk, V} as in
Fig. 5.9, which yields (v, Zk+3) E. This proves Step 4 and hence (4)

zk+

Xk,3 zk+2
FIG. 5.9
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THEOREM 5.8. If G is 3S3ASF-chordal, then G2 is nearly chordal.
Proof (NC1) follows from Lemma 5.7. (NC2) follows from (2) of Lemma 5.7.

By (3) and (4) of Lemma 5.7, if v is adjacent to xi and Xi+l in G2, then de(v, z) <_- 1.
Hence de(v, v’)-<_ 2 for all v, v’ adjacent to x and X+l in G2. This proves (NC3) for
G2. l-]
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INTRINSIC LIMITATIONS OF THE MAJORITY RULE, AN
ALGORITHMIC APPROACH*

JAMES M. ABELLOf

Abstract. The consistent sets of permutations are those over which unrestricted choice necessarily
produces transitive relations under simple majority vote.

The main goal of this paper is to shed some light on the structure of maximal consistent sets. By using
graph theoretical techniques we have been able to design an algorithm which generates maximal connected
consistent sets. The obtained results support the following author’s conjecture: If IM I denotes the cardinality
of a maximum consistent set then 2n-1 < IM.I < 2" for n >-4 where n is the number of alternatives on which
voting is taking place. This implies that if majority rule is the aggregation procedure the number of different
opinions an individual is allowed to have is less than 2", which indicates that not much more individual
diversity is allowed by giving the voter unrestricted choice than by circumscribing him to choose from a
more restrictive looking Blackian domain.

Key words, algorithm, Arrow’s theorem, Blackian domain, connected graphs, consistent sets, simple
majority rule

Introduction. It is a very well-known fact that simple majority voting produces
a social relation which is not necessarily transitive (Arrow [2]). Domain restrictions
under which majority vote avoids the intransitivity flaw can be found in Bowman [3]
and Inada [5]. Some general discussions in this area are presented in Fishburn [4] and
Bowman [3] and a probabilistic treatment in Kelly [7] and Klahr [8].

Since the unfortunate aspect of domain restrictions is that a sufficiently rich realm
of choice may not remain, it is natural to ask how much freedom of choice is consistent
with transitivity, and we take the size of the domain as a rough measure of the degre,e
of choice. When the number of alternatives is n, quite structurally different, transitive
domains (consistent sets) of cardinality 2’*-1 have been constructed (Abello [1 ], Johnson
[6], Abello and Johnson [10]) and it has been proved that the maximum number of
votes in a profile following the "single peaked" condition (a Blackian domain) is 2"*-1

(Raynaud [9]).
We have found general maximal transitive domains of cardinality ()2"*-1-4 for

n > 4, which to our knowledge is the best known lower bound [1], [10].
In this paper we present general results which lay down the foundations of an

algorithm to produce maximal consistent sets. Some of the transitive domains construc-
ted in previous works appear as special outputs of the proposed procedure.

The contents of this work add to the already accumulated evidence supporting
the following conjecture:

The cardinality of a maximum consistent set is less than 2"* for n >= 4.
The truth of the conjecture will indicate that if majority rule is the aggregation

procedure not much more individual diversity is allowed by giving the voter unrestricted
choice than by circumscribing him to choose from a more restrictive Blackian domain.

1. Problem formulation and graph representation. See [10] for further discussion.
Let (E, =< be a totally ordered set of symbols of cardinality [E n Z+, and S the
set of permutations on E.

* Received by the editors June 30, 1983. Portions of this work were presented at the SIAM Second
Conference on the Applications of Discrete Mathematics, held at Massachusetts Institute of Technology,
Cambridge, Massachusetts, June 27-29, 1983.

? Mathematics Department, University of California at San Diego, La Jolla, California 92093.
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DEFINITION 1.1. A set B c S is called cyclic if there are three symbols xil, xi2, x3
and three permutations in B which, when restricted to the three symbols, are

Xi Xi Xi3l
Xi Xi Xi2l
Xi Xi Xil/

DEFINITION 1.2.
i) Let u, v, w S; if the set {u, v, w} is not cyclic it is called a consistent three-set.
ii) A subset C of S. for which every three-subset is consistent is called a consistent

subset of S..
Example 1.1. Let E {1, 2, 3, 4}. The set C=(1234,4123,4321,4312} is con-

sistent because every three-subset is consistent. Notice that this requires checking for
the consistency of the (13ci)1 three-subsets of C. Moreover, for each three-subset it is
necessary to check each of the (11) triples of symbols of for the noncyclicity condition.
It should be clear at this point that this task is computationally expensive even for
moderately large values of n IEI.

DEFINITION 1.3.
i) If p e S., by T(p) we will denote the set of ordered triples of symbols of E

determined by p and by (p) we will denote the set of ordered pairs determined by
p. ’(p) will denote the set of adjacent ordered pair of symbols appearing in p. Each
ordered pair can be interpreted in a natural and unique way as a transposition and
under this interpretation we will refer to z(p) as p’s admissible set of transpositions.
Notice that z(p)(p) and Iz(p)l=n-1. If t-(p) then t(p) is the permutation
obtained by applying the transposition to p. If (x, y) then -1= (y, x) and -(p)
itt t-l -(t(p)).

ii) If C c_ S, then T(C)= T(p), (C)= _J (p) and ’(C)= z(p).
pC pC pC

The following (summarized from [10]) are some elementary properties of con-
sistent sets"

FACT 1.1.
i) Any subset of a consistent set is consistent.
ii) Any superset of a cyclic set is cyclic.
iii) The intersection of consistent sets is a consistent set but their union is not always

consistent.
iv) IT S,.)I=P I I, 3) (the number of different 3-permutations out of a set of

IEl-elements).
v) If C is a consistent subset of S then [T( C)[ <= 4(131).
vi) C is a consistent set iff C*=Ct.J{wlT(w) T(C)} is consistent.
Graph representation. Consider a graph Gn (V, E) where V S., n and

two vertices u, v are joined by an edge itt there exists an adjacent transposition such
that u l(v).

When two vertices u, v are adjacent the arc is directed from u to v if u

ul uu+l un and v Ul U+lUi" u, with u < U+l. It is clear that the degree
of u n 1, /u G, (see Fig. 1).

DEFINITION 1.4. If U Ul"’" U, let e(u) be the set of pairs (u, uj) which do not
introduce an inversion, i.e.,

e(u) {(ui, uj)[i < j, ui < uj}.

() denotes the binomial coefficient.
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1234

2154 524 1243

3124

.4 2413 142

431 3412 ,t. 13

IZ 4521

12

413:

FIG. 1. Representation of the graph of the permutations of E 1, 2, 3, 4}. The relevant transpositions
are indicated on each edge.

DEFINITION 1.5. For u, v e Sv., u _-> v ift e (u) =_ e (v).
FACT 1.2. -->_ is an order relation on S. and (Sv., >’-) is a poser with maximum

element Iv. (the identity in S) and minimum element I (the reverse of Iv.).
The following lemma gives the first relation between the poset (Sv., >_-) and the

class of consistent subsets of
LEMMA 1.1. If L is a chain in Sv., >’-) then L is a consistent subset of
Proof. See 10].
Example 1.2. The set {1234, 1243, 1423, 4123, 4132, 4312, 4321}c S{1,2,3,4 is

consistent because it is a chain in (S1,2,3,4,-->) (see Fig. 1).
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2. Classes of consistent sets.
DEFINITION 2.1.
i) A subset K0 of a consistent set C is called a kernel for C iff T(C)= T(Ko)

and Ig01 minlgl {K C}.
ii) cog =-{A c S." A is consistent and K is a kernel for A}.
Note. There is a unique maximum cardinality set X: in
FACT 2.1. Let Ko and K1 be kernels of cc and cog respectively. If T(Ko) T(K)

then XgoC XCl where Xlo and Xg denote the maximum sets in their classes.
Proof. (by contradiction). Assume iiip" pXr.o\Xc. T(p)c T(K0)

T(Xgo) T(X/1) because K0 and K are kernels and T(Ko) T(K1). Then X/ tA {p}
is a consistent set in %’g of cardinality greater than Ixcl, a contradiction. Q.E.D.

COROLLARY 2.1. Any maximum consistent set must contain a kernel K such that
T(K) is of cardinality 4().

Proof. Immediate from Fact 2.1. Q.E.D.
Any maximum chain L in (S, =>) is a consistent set such that IT(L)I 4() which

suggests that the maximum cardinality sets X in the classes ( are among the
candidates for a maximum consistent set. However it is not always true that if L and
L’ are maximal chains then Ix,.I Ix,.,I (see Fig. 2). Moreover, there are maximum
consistent sets which do not contain a maximal chain as shown by the following example.

Example 2.1. n=3,E={1,2,3},K {123, 213, 321, 312},Xc =K (see Fig. 3). K
does not contain a maximal chain; however K is a maximum consistent set.

We have seen that chains in (Sx, =>) appear to be a very important structure for
a large class of consistent sets. Now we will define other kernels called "skeletons"
which are structurally equivalent to maximal chains from the consistency point of view.

DEFINITION 2.2. A skeleton S(p) is an ()+ 1 ordered set of permutations
(Po, P1," P<)-I) such that;

i) Po=p, P+=ti/l(Pi) where ti+l (Pi), i=O, 1,... ()-1,
ii) for j, ti t and ti t-; 1.
FACT 2.2.

i) Let S(p) (Po, P, ,P)) be a skeleton and k{0, 1,... (.)- 1}. If tk+l
(X, y) then ({P0, P"" ", Pk}) does not contain the ordered pair (y, x).

ii) Let I be the identity in S,. Then we have the following equivalence. S(I) is a
skeleton iff S(I) is a maximal chain in S,.

iii) If S(p) is a skeleton then the set S*(p)=S(p)U{wIT(w)c
T({P0, P1," , P)-I})} is a consistent set.

Proof. i) and ii) follow readily from the definition. For iii) consider p=
Pl Pg Pn I and the mapping Pi i. This mapping gives us a one-to-one correspon-
dence between the skeleton S(p) and some skeleton S(I) such that S(p) is consistent
iff S(I) is. But we know that S(I) is consistent because it is a chain (Fact2.2 ii and
Lemma 1.1), therefore S(p) and S*(p) are consistent. Q.E.D.

For the remainder of this section (Po, P1," "’, P)) will denote a skeleton, and
for each i=O, 1, 2,..., ()-1, t+l will denote the corresponding transposition (see
Definition 2.2 above).

LEMMA 2.1. Let w S and k {0, 1, 2,. , ()- 1}.

T(w) c T({P0, P1, , Pk}) t_J T(Pk+I)

=:> T( w)/ T({Po, P, ", Pk}) or T(Pk/)/ T({Po, P, Pk}).

Proof (by contradiction). Assume that T( w)/ T({Po, P1," ", Pk}) and

(1) 7"( w)/T({Po, P1, Pk}) T(Pk+)/T({Po, P,’" ", Pk}).



LIMITATIONS OF THE MAJORITY RULE 137

/2 314

1241

’342

14

J,I R 4321’*E
FIG. 2. Two maximal consistent sets of different cardinality each containing a maximal chain. The

elements of one set are marked by and the elements of the other set appear with a * immediately at their right.

If tk+l =(X, y) then each ordered triple in T( w)/ T({Po, PI,... ,Pk}) must involve
(y, x) because T(Pk/I)/T({Po, P1,’", Pk}) {(--, Y, X), (y, X,--)}. Now, w is not of
the form y... x... because it would imply that T({Po,""’, Pk}) contains triples
of the form (y, -, x), which contradicts the fact that ({Po, , Pk}) does not contain
the ordered pair (y, x) (see Fact 2.2i). Therefore w must be of the form

(2) yx.

Let

(3)
(y, x, z) T(Pk/I)/ T({Po, P1,""", Pk}) and (y, x, z)

_
T( w)/ T({Po, P," , P})

(see (1) above).
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123

I 321

T(Pk+I)/T({Po, P1,"" ,Pk}), which is a contradiction to the fact that (y,x,z)
T(Pk+I)/ T({Po, P1,"’, Pk}). Q.E.D.

COROLLARY 2.2. If T( w) c T(.{po, P1," ", Pk}) T(Pk+l) then

]T(w)/T({Po, P,. P})I- 0 orn-2.

Proof. Follows from the preceding lemma and the fact that

IT(P+,)/T({Po, P,, , P})I
All the preceding machinery is justified by the following results which show that

those maximal consistent sets which have skeletons as kernels have a structure deter-
mined completely by the order of the elements of the skeleton and are bounded to
be connected subgraphs of (S,, ). The following theorem is sort of a projective result
which together with Corollary 2.4 below form the basis of an algorithm to generate
maximal connected consistent sets.

THEOREM 2.1. If w S, is such that T(w) T({Po, P1," ", Pi}) T(Pi+I) for some
i{0,1,...,()-1} then weCi+l={VeS,: v=ti+l(U) for ueCi}UCi (here Co=
{Po}).

Proof. Without loss of generality we can assume that Po I (the identity in S,).
The proof is by induction on i.

Basis. i=0. Let we S, T(w) T(Po) T(P1). In this case the result follows
from the fact that the maximum number of permutations in S, determined by ()+
(n- 2) triples is 2.

Induction hypothesis. Assume the result is true for 0
T({Po, P1," ", Pk-1) T(Pk) w Ck. We must prove that T(w)
T({Po, P,"" ,Pk})U T(Pk+) we C+I (see the definition of C* in Fact 1.1). If
T(w) T({Po, P1," , Pk}) then w e C C+I by the induction hypothesis; so let us
assume that T(w) T({Po, P1,’" ", Pk}). In this case T( w)/ T({Po, P1,’" ", Pk})
T(Pk+)/T({Po,""", Pk}) by the preceding lemma and its corollary.

Now if tk+ (X, y) then x and y must occupy the same adjacent positions in Pk+l
and w; also any symbol preceding y in Pk+l must appear preceding y in w and any
symbol preceded by x in Pk+ must be preceded by x in w (remember that tk+l(Pk)
Pk+ and T( w)/ T({Po, P,’’’, Pk}) T(Pk+)/T({Po, ", Pk})). On the other hand
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any other triple not involving both symbols x and y in either Pk+l or w must be an
element of T({P0, P1," ",Pk}) because T(w) c T({P0, P1," ", P}) U T(Pml). There-
fore, the permutation -1tml(W) is such that T(tk+l(w))c T({P0, , Pk}) which implies
that -1kml(W) E Ck by the induction hypothesis, so w is obtained as a projection by tml
of an element in C, namely -1tk+l(w). Q.E.D.

DEFINITION 2.3. Let T’ be a consistent subset of T(S,). A set C is called
maximally consistent (m.c.) with respect to T’ itt

i) T’ T(C)
and

ii) { w E S.I T(w) T’} C.
DZFINITION 2.4. For i {0, 1,’’’, ()-1} and a skeleton (Po, PI,""", P()) con-

sider the following recursive definition of C/*"

C0* (P0}, C*+,=(weS, T(w)_ T(C*) U T(Pi.I)}.

COROLLARY 2.3. For
T({Po, P,, P}).

Proof. It is clear that

j{0, 1,...,()} C’ is m.c. with respect to

T(C+I) T(C) U T(P+I) T({Po, P1,"", P]}) U T(P)+I)
T({Po, P1, Pi, P+I}).

Thus Cf+l is consistent because {Po, P1,""", Pj, Pj+I} is a skeleton which is con-
sistent by Fact 2.2 ii above. Q.E.D.

Incidentally notice that

C)= {Po, P1, P()} U { wlT( w) = T({Po, P1, Pt)})}
and that if T(w) T(Cf) then w Cf.

DZFINITION 2.5. A permutation/x E C* is called projectable by tim1 itt tml e ’(/z),
and is called consistently projectable when T(timl(lx)) T(C* U T(Piml).

COROLLARY 2.4. C/*+1 C* U vl/x -1ti+l(1)) C*i and I is consistently projectable
by tirol}.

Proof. Follows from Definition 2.5 and Theorem 2.1. Q.E.D.
The preceding results indicate that majority rule produces transitive results if the

collection of voter opinions as a whole can be partitioned (at least in the connected
case) into no more than (n2+ n)/2 groups which can be ordered according with the
level of disagreement they have with respect to a fixed permutation P.

The contents of Corollary 2.4 can be depicted graphically as in Fig. 4.

FIG. 4. The projection theorem.
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THEOREM 2.2. Let v, w E C* such that ti+l e r(v) r(w). Assume that C*i 1,3
{ti+l(V), ti+l(W)} is consistent and that PATH (v, w) is a path from v to w: PATH
(v, w)_ {tl, t2,""", ti}.

Under these conditions t+l must be disjoint from every transposition in PATH
(v, w).

Proof. By induction on the length of PATH (v, w). Let ti+l (x, y).
Basis. If IPATH (v, w) I= 1 then we have v xy..., w xy... as in Fig.

5. Now if e is not disjoint from ti+l then
(i) e (z, x), z x, z y or e (y, z) which implies that ti+ can not be admissible

for both v and w.

FIG. 5

Induction hypothesis. Assume the result is true for IPATH v, w) k with 1 =< k <
h-<(). We must prove it for [PATH(v,w)I=k+I where PATH(v, w)=
el, e2, ek+l.

(ii) If el is not disjoint from ti+l then ti+l can not be admissible for e(v) (see (i)
above).

If ti+l is admissible for el(v) then ti+l is disjoint from every ei 2,. , k + 1 (by
the induction hypothesis); now el is disjoint from ti+ by (ii), therefore ti+l would be

V ...Xy...

el(v) ti+l(V) ...yx...

-1ek+l(

1

W ...Xy...

ti+l".
t’’i;1 (w)

FIG. 6
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in this case disjoint from every ei in PATH (v, w) and we will be done. So, let us
assume that ti/l is admissible for both v and w; however el is not disjoint from ti/l.
In this case we have that ti/l is admissible for neither el(v) nor e+l(W), which implies
that ti/l and ek/l are not disjoint.

Now consider the permutations el(v),w,h/l(W),h/l(V) and h/ =(x, y).There are
four cases to be considered

Casei. If el =(z, x) then el(v) contains a triple of the form (x,z, y) and t+l(V)
contains a triple of the form (z, y, x).

Case ii. If e (y, z) then el(v) contains a triple of the form (x, z, y) and t/l(V)
contains a triple of the form (y, x, z).

Case iii. If ek/l (X, Z) then el(W) contains a triple of the form (x, z, y) and
t+l(W) contains a triple of the form (z, y, x).

Case iv. If ek/l (Z, y) then el+l(W) contains a triple of the form (x, z, y) and
ti/l(W) contains a triple of the form (y, x, z).

Case and Case iv imply that {ex(v), ti+l(V), el+l(W), ti+l(W)} is not consistent,
contradicting the hypothesis that C*U{h/(v), ti/(w)} is consistent. Similarly for
cases ii and iii. So the only combinations left for consideration are case and case iii

-1or case n and iv, but in both situations we have el ek/l, contradicting the fact that
no two transpositions used in PATH (v, w) may be inverses to each other because
PATH (v, w) is a subset of a skeleton. Q.E.D.

3. An algorithm to generate maximal connected consistent sets in (S, >=). We
will refer to this algorithm as the MCCS algorithm.

The algorithm consists of (.) stages where n IEI. At each stage a recursive
procedure BACKTRACK (P, t, l) is used to find all the permutations which are
consistently projectable by t. Theorem 2.2 is the justification for the correctness of
this process.

Procedure BACKTRACK (P, t, l)
/*Find all the permutations in C* which are consistently projectable by the

adjacent transposition (x, y) r(P). is the position of the symbol x in the permuta-
tion P. Every visited permutation is marked. C* and projection are global sets.*/

beginproe
lot (each unmarked predecessor R of P in C*) do

begin
MARK R;
I (position of x and y in R and + 1 respectively) then

begin
Projection := Projection U t(R );

call BACKTRACK (R, t, l)
end

end
endproc

main )/*(P) denotes the set of ordered pairs determined by P. Each ordered
pair defines a transposition in a natural way. There is no loss of generality in picking
the identity I in (S., >_-) as the initial permutation. Initially every permutation is
unmarked; r(P) is the set of P’s admissible adjacent transpositions. C* and Projection
are global sets. At the end C* contains a maximal connected consistent set as indicated
by Theorem 2.1 and Corollaries 2.3 and 2.4.*/
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beginmain
1. Pick up a permutation Po in (Sx, >_-); P := Po;
2. C*:=Projection:= {P}; -:= z(P)f-I(P); := (P);
3. while (- ) do
4. begin
5. Pick up a transposition in -;
6. :-position of first symbol of in P;
7. call BACKTRACK (P, t,/);
8. P:= t(P); C* := C* t_J Projection {P};
9. Projection := ; r := -(P) f3

10. Unmark all the permutations in C*;
11. end
12. output(C*)
13. endmain

Comments. i. Different choices of in line 5 of the main procedure may produce
maximal consistent sets of different cardinality (the sets presented in Fig. 2 illustrate
this point). We do not know of a good optimality criterion to be used at that point
which guarantees that the obtained set C* is of maximum cardinality. However, if
this algorithm is used to check the maximality of a given connected consistent set,
then any choice of at line 5 will do.

ii. The consistent sets EXP (P), EXP’ (P), EXP" (P) and EXP’" (P) constructed
by Abello 1 and discussed in Abello and Johnson [10] are generated by this algorithm
when the transpositions at line 5 are chosen appropriately. Each of these sets contains
a skeleton which can be determined precisely by certain orderings of the set of adjacent
transpositions which are required to transform certain permutation O into its reverse
0n. So all that is needed to do is to execute the algorithm with initial permutation
following the path indicated by one of the skeletons (see the Appendix).

A conjecture. Let T be a maximum consistent set on a set Si of symbols and
let T,,_i be a maximum consistent set on {1, 2,..., n}-S (the complement of S).
The set T, Tn- formed by concatenating each /-permutation on T with every
(n-/)-permutation in Tn_ is consistent because T and T,_i are. If we assume that
T and T_ contain a skeleton of lengths () and ("-) respectively then we have that
T T_ contains a sub-skeleton of length ()+ (n-i). On the other hand, if there is a
connected consistent set of greater cardinality than any other consistent set such a set
may be decomposed into # equivalence classes each being of cardinality =<
in other words IT I--< IT -,I. This being the case, a bound for IT I is determined
by a bound on # which is given by considering how many times () contains ()+ (-);
and (wonder of wonders!) this number is less than or equal to 2+ 2/n-2 for any i:
2<=i<=n-2.

Therefore IT I<-(2/2/n-2)IT, IIT _,I. In particular if i=2 we have IT I_-<
(2+2/n-2)2xlT,_2l,
(i) Iz l 4 x T,_2I + (4/n 2)1T,_2I.
For large n the fraction in the second term of (i) is insignificant, which together with
the assumption that To-=I < 2 will give us that

This analysis together with the fact that all the known consistent sets are of cardinality
less than 2 suggest the following conjecture.
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If M, denotes the cardinality of a maximum consistent set, then 2"-< [M,[ < 2"
for n>=4.

Appendix. Two sample sets generated by the algorithm.

EXP (P).
For x , EXP (x) x.
For P p P2 P,,

EXP (P) Pl EXP (p2... P,,) U p, EXP (pl... P,-,).
Figure 7 illustrates EXP (P) with P= 12345.

FIG. 7. Graphical representation of EXP (12345). Each arrow represents an adjacent transposition.
[EXP (12345)1= 16and LC (12345)c EXP (12345). The elements of LC (12345) have a check mark

at their right. We have encircled those elements which have a common prefix of length two, namely
12 EXP (345), 15 EXP (234), 51 EXP (234) and 54 EXP (123).

This set is generated by the MCCS algorithm if the transpositions chosen at line
5 are those corresponding to the permutations which have a check mark at their right
in Fig. 7. These permutations form a skeleton denoted here by LC(12345) (see [10]).

EXP’"(P)

EXP’"(P)-- EXP (P) U P2P EXP (P3 P.) U p._ap. EXP (p P.-2)

-{P, (PzP,)P3 Pn, P.-P.(P Pn-2)R}

Figure 8 illustrates EXP’" (P) with P= 12345. This set is generated by the MCCS
algorithm if the path marked with check marks is followed with initial permutation
21354.
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12354

21354 " 12534

2154 4 51234

51243

15432 51423 45123

51432" ,54123 4513_2

54312",

FIG. 8. A maximal consistent set ofcardinality (3/2)2"-1-4. Here, n 5, so IEXP" (12345)1 20.
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Abstract. The characteristic equations for a graph are defined as the system of equations for the
coefficients of the characteristic polynomial. The construction of the equations is related to the method of
Krylov, and the coefficients of these characteristic equations represent random walks of different length for
pairs of vertices. Some properties of the characteristic equations, as revealed on illustrations, are discussed.
These illustrations include trees on six vertices, isospectral graphs, and selected graphs having some unusual
structural features.
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Introduction. The characteristic polynomial of a graph is defined as det (A-xI),
where A is the adjacency matrix for the graph considered and I is the unit matrix of
the same dimension. It represents one of the very important graph invariants. In the
early development of quantum chemistry, the interaction matrix, the Hamiltonian,
included only the nearest neighbor contributions; the characteristic polynomial played
the role of the secular determinant ]. This explains the continued interest of chemists
in spectral properties of graphs even though Bloch’s approximation [2] on the import-
ance of the nearest neighbors no longer represents a viable mathematical model for
computation of the electronic structure of molecules. Nevertheless, the characteristic
polynomial emerges in some other chemical problems, such as the qualitative descrip-
tion of molecular orbitals, particularly their nodal characteristics, as related to Wood-
ward-Hoffmann rules for cyclization in chemical reactions [3], [4]; for descriptions of
numerous problems of chemical kinetics; as the starting point for construction of
acyclic polynomials [5], [6] and other similar contraptions. Coulson [7] appears to be
the first to recognize the role of selected subgraphs, enumeration of which gives the
coefficients of the characteristic polynomial. More recently, several people have out-
lined graph theoretical constructions, showing that it suffices to use only K2 and Cn
as subgraphs (i.e., disjoint edges or disjoint cycles respectively). The most complete
analysis is due to Sachs [8]. However, in applications the combinatorial explosion of
terms associated with Sachs’ method makes the scheme impractical already for graphs
having less than a dozen vertices. With a rather pessimistic appraisal of computational
difficulties associated with the construction of the characteristic polynomial, Harary,
King, Mowshowitz and Read point out [9]: "... the calculation of characteristic
polynomials for graphs of any size is usually extremely tedious ...". Hence, it is not
surprising to see a revived interest in the challenging problem of construction of the
characteristic polynomial. Modifications considering a vertex, edge or a ring removal
reduced the amount of labor in many instances [10]-[15]. An elegant approach was
described by Balasubramanian [16] in which the idea of pruning trees has been
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incorporated directly into a modified and reduced adjacency matrix, the approach
which can be exteneded to cyclic graphs with pending bonds [17].

A need for a general approach which is computationally straightforward and
bypasses the proliferation of components is clearly desirable, particularly since the
topic of isospectral graphs, which has received attention in the mathematical 18], 19],
physical [20], [21 and chemical [22]-[25], literature is still of interest and may continue
to be so as long as the question of the complete characterization of isospectral graphs
remains unresolved. It is then somewhat suprising that all the past efforts on construc-
tion of the characteristic polynomial have overlooked the so-called method of Krylov
[26] for this construction. This particular approach appears well known in the area of
numerical analysis ofmatrices and linear equations. A review article on indirect methods
of expansion of secular determinants into algebraic equations was prepared already
in 1945 by Weyland [27]. The method of Krylov essentially uses powers ofthe adjacency
matrix which, when multiplied by a unit (column) vector, give equations for the
coefficients of the characteristic polynomial. In a recent book [28] on the symmetric
eigenvalue problem we read: "The idea of the power method is a very natural one.
The civil engineers call it Stodola’s Iteration. In (Krylov [26], 1931) the sequence,
(x, Ax, A2x, .) is actually used to find the coefficients of the characteristic polynomial
and, despite that unfortunate goal, Krylov’s name became securely attached to the
sequence." In another book [29] on latent roots and latent vectors, there are further
comments on Krylov’s method. These comments point out the shortcomings in an
example in which the full characteristic equation (polynomial) is not found. "In certain
cases a different starting vector may yield the characteristic equation, but the uncertainty
makes the method of little practical value," summarizes Hammerling [29] on the
method. A good introduction to Krylov’s method can also be found in Berezin and
Zhidkov [30] and Gantmacher [31]. We will use essentially Krylov’s method for
computing the characteristic polynomial and will extend the approach by using all
possible starting vectors. We will discuss the properties of a so-augmented system of
equations which we will call characteristic equations, and will avoid referring to the
characteristic polynomial equation Ch(x)=0 as the characteristic equation. We will
see that the characteristic equations have a useful role, not perhaps excluding possible
practical value in numerical computations.

Brief outline of Krylov’s method. Consider the graph G1 with adjacency matrix A
shown in Fig. 1.

0 0 0

A=
0 0

0
2 3 0

6
FIG. 1. A simple graph for illustration of the Cayley-Hamilton theorem.

The characteristic polynomial in this case is

(-1)" det(A-xI) x4-4x2-2x + 1.

The factor (-1)" is introduced to make the leading term, x", positive. The Cayley-
Hamilton theorem says that in this case A4-4A2-2A / =0, that is, the adjacency
matrix A satisfies its own characteristic polynomial. The above becomes a matrix
equation which is satisfied for any element ai, of the matrices A, A2, A4 and the
corresponding i,j elements of the unity and zero matrices. The graph considered is
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simple enough that one can easily verify the validity of the theorem. The required
powers of A are"

0 3 4 4 2

a2= i
2 a4= i

7 6 6

2 6 7 6

6 611

The Cayley-Hamilton theorem then becomes:

(A4),.j-4(A2),.j-2(A)i.j +(1)i.j =0,

and should hold for any i,j. For instance, for i= 2, j 1, the 2, elements of the
matrices A4, A2 and A are, respectively, 4, 1, and 0; thus we see that the above relation
is satisfied.

We will consider now a somewhat generalized form of the Cayley-Hamilton
theorem. Consider the following products" A X, A (A X), A (A (A X)), etc, in which
we select a vector (column X with the components xl, x2, x3, Xn) and make repeated
products with the matrix A on derived vectors. We can write the result of the first
multiplication as X’ (i.e., A X X’), the result of the second multiplication as X"
(i.e., A X’- X") and so on. These are equivalent to the products A X, A2X, Aax etc.,
but we need not have various powers A", because we can use X’, X" etc. with A rather
than constructing A2 and higher powers of A to be used with the initially selected
column-vector X. The basis for our approach is the fact that vectors AkX also satisfy
the Cayley-Hamilton theorem; since they can be easily derived and considered known
they allow us to determine the unknown coefficients of the characteristic polynomial
which also appear in the Cayley-Hamilton theorem. For the graph Gl the characteristic
polynomial is" x4+a2XE-t-a3X -I-a4 with a_=-4, a3=-2 and a4--1. The Cayley-
Hamilton theorem becomes A4 -I- a2A2 + a3A -t- a4 0. Formally, we see that by multiply-
ing the above matrix equation (from the right) by the column vector X, we derive a
valid vector equation" A4X -t-a2A2X + a3A X -q-a4X--0. Since A is known and X can
be chosen at will, we see that we can generate a system of linear equations for the
coefficients ai which when solved, allows one to write the characteristic polynomial.
Solving linear equations poses no problem; thus the suggested procedure is computa-
tionally practical while conceptually simple. Observe the difference: in the usual
eigenvalue problem, one diagonalizes the secular determinant and finds eigenvalues
and eigenvectors without explicitly obtaining the characteristic polynomial; in the
present approach one solves equations for the coefficients which define the secular
equation. The information on the characteristic polynomial is of interest per se as it
allows the study of various structural features which are reflected in the magnitudes
of the coefficients. This is particularly of interest when families of structurally related
systems are considered [32], [33].

An example. We will illustrate some details of the procedure on the graph G2 in
Fig. 2.

G2
0 0

-0 0 0 0 0 1"
0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 O_

FIG. 2. The smallest graph with all vertices being nonequivalent.
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In this particular graph all vertices are nonequivalent. The characteristic polynomial
is of degree six: x6 +alx -t-a2x4 .-t-a3X3 -+-a4x:2 .-Fasx-Fa6. It is known that for graphs:
(a) a =0; and (b) a2 =-(the number of edges). Graph G is simple enough that one
can determine by inspection a few other coefficients, but in order to illustrate the
procedure we will assume that the coefficients are not known. Since X can be chosen
at will, we may take a vector with all but one component zero. As will be seen, this
will lead to fewer computations in constructing the vectors X’, X", etc. Hence we
assume X to be a column vector with x and all other xi 0. The column vectors
X, A X, A(A X)) make an array Akx with n rows and n + columns:

-1 0 0 3 2 12

0 0 0 0 6

0 0 4 7 19

0 0 5 7 25

0 0 0 6 8

0 0 3 2 12 16_

Each row of the array AkX defines one of the linear equations for the coefficients of
the characteristic polynomial because the elements of each row satisfy the Cayley-
Hamilton theorem when extended to vector multiplication. Therefore, in this case we
obtain the following set of linear equations for the coefficients ai"

(A) 12 + 2a +3a + a4 + a6 0,

(B) 6 + 2al +3a2 0,

(C) 19+ 7al+4a2+ a3+a4 ---0,

(D) 25 + 7al + 5a2 -F a -F a4 0,

(E) 8 + 6a + a2 + a3 --0,

(F) 16+12al +2a2 +3a3 +as =0.

Strictly, ao appears as the factor of the constant terms and the above would then
correspond to a system of homogenous linear equation, which could then be transfor-
med into the above set by assuming ao 1. The above equations can be simplified by
little manipulations. Thus (D)-(C) gives 6 + a =0, which determines a2. Substitution
of this result into (B) gives al, and with a and a2 known one can determine a3 from
(E); other coefficients are then easily found. The solution is

a 0, a2 -6, a -2, a4 7, a5 2, a6 1,

and the characteristic polynomial for G. is

X6--6xa--2X +7X2 +2x- 1.

Since for all graphs a 0 and a2---(number of edges), we can assume these known
results, view the set of equations as somewhat redundant, and speed up the solution
process.

The solution to the system of equations, the coefficients a, are integers, because
they represent a result of enumeration of qualified subgraphs. However, given a set of
equations, like the equations (A)-(F), it is by no means obvious that the solution in
integers exists, so an interesting question can be raised [34] on the characterization of
conditions that ensure solutions in integers for a system of linear equations. Because
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the proposed approach for computing the characteristic polynomial leads to a system
of linear equations, one has to be concerned with the possibility that the system of
equations is incomplete. In principle, a system of equations may be inconsistent, but
because the characteristic polynomial exists we need not consider that issue. Incom-
pleteness is a result of linear dependence between the equations or appearance of the
same equation more than once. As will be seen, in cases of graphs with symmetry we
will obtain duplicate equations and the situation may arise of having an insufficient
number of equations to determine the coefficients.

The complete set of characteristic equations. The system of equations for the
coefficients ak in the previous section were sufficient for obtaining the solution.
However, the array Ak X with X the column vector (1, 0, 0, 0, 0, 0) is only one of many
such possible arrays that can be generated by vector multiplications we have outlined.
In particular, one can consider all vectors of the form (..-, 0, 1, 0,...) with at
different rows of the column.

In Table we show the remaining arrays for the graph G,. Because the entries
in each row of an Akxi (i indicating the nonzero position in the unit column vectors)
represent the count of walks of length k between the vertex and the vertex j, where
j is the row j of the Ak Xi arrays, one sees that each row of the arrays Ak X summarizes
the random walks of different lengths for a pair of vertices (i, j). In a graph with n
vertices there are 1/2n(n+l) such pairs ((i, i) also has to be included, representing
self-returning walks of length k). Hence in the case of G2 with 6 vertices, we have in
all 21 different pairs, and therefore at most 21 different equations. These are listed in
Table 2, together with the assignment of vertices (i, j). As one sees on inspection, most
ofthe derived equations are different, at least for the case considered. Only the equations
1, 5) and (2, 6) are duplicate, indicating equinumerosity for all walks ofthe correspond-

ing length between the two pairs of nonequivalent vertices.
The collection of nonduplicate equations from the possible total of 1/2n(n / 1) will

be called the characteristic system or characteristic equations of a graph. The concept
of characteristic equation is more general than the concept of characteristic polynomial,
in the sense that the latter, as a rule, will be contained in the former (provided that
in the case of deficiency we can find additional conditions which yield a coefficients).
Importantly, the characteristic equations contain more information about a graph. Even
in the case of a restricted number of such equations we have the information that
many pairs of vertices produce the same count for random walks.

A trivial reason for such an occurrence is equivalence of vertices (vertices belong
to the same orbits of the automorphism group). But as will be seen, there are other,
nontrivial, situations that require a better understanding. Already for the graph G2,
which was selected for illustration because it is the smallest graph having no equivalent
vertices (identity being the only symmetry operation), we see that the pair (1, 5) yields
the same count of random walks as the pair (2, 6). Why? We hope to partially answer
this question and similar ones for more general cases. In order to clarify these situations
we will first examine the characteristic equations for acyclic graphs (trees) on six
vertices, as they offer a fair number of typical coincidental counts of walks for
nonequivalent pairs of vertices.

Before proceeding with the results for selected graphs, let us point to some
properties of the arrays Akxi of Table and the characteristic equations of Table 2.
Observe that in a few instances the second column of an array AkXi has all zeros
except for single entry and thus the second column can be considered as another
unit column vector X. For example, in the case of the first array Akx1, we find that
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TABLE

The arrays AkXi for graph G2.

Xl

o
o
o
o
o

o
o

o
o
o

o
o
o
o
o

0 3 2 12 0 0 0 0 6
0 0 6 0 0 2 0 6

4 7 19 0 0 0 5 8
5 7 25 0 0 0 4 2 17

0 6 8 0 0 2 0 6 2
0 3 2 12 16 0 0 0 6 8

4 7 19 0 0 5 7 25
0 5 8 0 0 0 4 2 17
2 2 8 14 39 0 4 7 20 41

4 7 20 41 0 3 2 13 16 62
5 8 25 0 0 4 2 17 18

4 7 19 41 0 5 7 25 43

0 3 2 12 16 0 0 0 6 8
0 6 8 0 0 2 0 6 2

4 7 19 41 0 0 5 8 25
5 7 25 43 0 0 4 2 17 18

6 8 31 0 2 0 6 2 23
3 2 12 16 56 0 0 6 8 31

TABLE 2

The characteristic equations of graph G2 extracted from AkXi arrays.

(A)
(8)
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(*)
(K)
(L)
(M)
(N)
(O)
(P)
(Q)
(R)
(S)
(T)

a6+ -I- a4+ -I- 3a2q- 2a+12=0
a2d- a + 6=0

a4+ a3+ 4a2+ 7a1+19=0
a4-1- a3-b 5a2-1- 7a+21=0

a3-k a2-k 6a+ 8=0

a5+ 3a3+ 2a2+12a1+16=0
a6 + a + 2a + 6 0

a3+ a2+ 5al-k 8=0

a4+ 4a2+ 2a1+17=0
a5+ 2a3+ 6a+ 2=0

a3+ a2+ 6a1+ 8=0

a + 2a4 +2a + 8a + 14a +39 0

a + a4 +4a3 + 7a2 +20al +41 0

a4 d- a -t- 5a d- 8al +25 0

a5+ a4+4a3+ 7a2+19a1+41=0
a + 3a4 +2a3 + 13a2 + 16a +62 0

a + 4a + 2a + 17a + 18 0

a5+ a4+5a3+ 7a2+25a+43=0
a + 2a + 6a2 + 2al +23 0

a4+ a3q- 6a2+ 8a1+31=0
a6-t- 3a4+2a3+12a2+16a +56=0

(,)
(,)
(1,3)
(1,4)
(,5)
(1,6)
(2,2)
(2,3)
(2,4)
(,5)
(2,6)
(3,3)
(3,4)
(3,5)
(3,6)
(4,4)
(4,5)
(4,6)
(5,5)
(5,6)
(6,6)
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the second column represents the unit column vector X6. Consequently, the array Akx6
is identical to AkxI if shifted by one column to the right. This can be used in computing
Akx6 to reduce the amount of computation by simply continuing to calculate Akx]
for one more iteration. Normally one computes Akxi for k-0, l, 2,..., n but now
one should also find the column corresponding to k-n / 1.

In Table 2 we include equations involving all the coefficients (assuming ao-- 1),
even though we know that in the case of graphs al 0. A number of equations can
produce this result trivially: cf. the equations (E) and (H) for instance, or (L) and (N)
and the pair (D) and (N). By incorporating the information on a] 0 we would reduce
the number of different equations from the present 20 to 17, but since we are primarily
interested in the equations, rather than in their solution (the characteristic polynomial)
we may keep all the different equations for the purpose of characterization of a graph.
Immediately a number of questions may be asked: Is the characterization unique? Can
a graph be reconstructed from a known system of equations? What is the meaning of
duplicate equations, and why do they appear?

Characteristic equations for trees with n = 6 vertices. In order to answer the ques-
tions posed above, it is instructive to consider a number of selected examples. We start
by examining the characteristic equations for trees (acyclic graphs) on n 6 vertices.
Because of the bipartitie character of trees we report only the characteristic equations
for the coefficients aEk, since necessarily all a2k+l (k-’0, 1, 1,2) are, in this case, zero.
The results are shown in Table 3. Graphs G3-Gs are illustrated in Fig. 3 where an
arbitrary labeling of vertices has been assumed. We have included all possible
equations; duplicates within a graph are indicated by (*) and duplicate equations
between different graphs have been indicated as (**).

Inspection of Table 3 points to some regularities in the characteristic equations.
The simplest equation, (c)" a /5--0, which corresponds to the well-known property

o----c o..1-o Ga
3 4 5 2

6 4 5 5
0 C 0 ,0

6

;

G4

G6

G7

G8

FIG. 3. Trees on n 6 vertices and labeling of their vertices.
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of the characteristic polynomial that a2 counts the number of edges in a graph, appears
in all cases that have chains of length 4. Similarly, all graphs that have an edge of the
type [35] (1, 3) have two equations with all corresponding coefficients identical except
for a6 which is either or 0 (cf. equations (g) and (h)). Hence all such graphs necessarily

TABLE 3

The characteristic equations for trees with n 6 vertices. A duplicate
equation within a graph is marked as (*), the occurrence of a same

equation in different members is shown as (**).

G3: (a) a6+ a4+ 2a2+ 5=0 (1,1)
(b) a4 + 3a + 9=0 (1,3)
(c) a2+ 5=0 (1,5)
(d) a6+2a4+ 6a4+19=0 (3,3)
(e) a4+ 4a2+14=0 (3, 5)
(f) a6+2a4+ 5az+14=0 (5, 5)

G4: (g) a + a + 3a + 10=0
(h) a4 + 3a + 10=0
(i) a4 + 4a2 + 15 =0

(**) a2 + 5 0

(**) a + a + 2a2 + 5 0

(* a + 3a + 10=0
(j) a +2a4 + 7a +24=0

(k) a6 +2a4 + 5a2+15=0
(1) a4 + 5a +20 0

(m) a +3a + 10a2 +35=0

Gs: (a) a + a4 + 3a + 11 0

(**) a4+ 4a2+15=0
(0) a6 +234+ 6a2+21 =0
(**) a + 5a +20 0

(p) a + a + 2a + 6 0

(**) a + 5 0

(*), (**) a4 + 4a + 15 =0

G6: (**) a + a + 3a + 11 0

(q) a + 3a + 11 =0

(r) a4 + 5a2 +21 =0
(s) a + 3a + laz +43 =0

G7." (t) a + a + 4a + 17 =0

(u) a4 + 4a2 + 17 =0

(v) a + 5a + 22 0

(w) a6 +2a4 + 7a2 +29=0
(x) a6+ a4 + 2a2+ 7=0

(*) a + 5a +22 0

(y) a +4a + 17a +73 =0

G8." (z) a + a + 5a2 + 25 0

() a4 + 5a +25=0

($) a +5a4 +25az + 125=0

(1,1)
(1,2)
(1,4)
(1,3) cf. (c)
(3, 3) cf. (a)
(3, 4) cf. (h)
(4,4)
(5,5)
(5,6)
(6,6)

(1,1)
(1,4)
(4,4)
(4, 5) cf. (1)
(2,2)
(2, 3) cf. (c)
(2, 6) cf. (i)

(1,1) cf. (n)
(1,2)
(,5)
(5,5)

(,)
(,2)
(1,5)
(5,5)
(4,4)
(4, 6) cf. (v)
(6,6)

(1,1)
(1,2)
(6,6)
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have an eigenvalue x 0, another well-known result of spectral graph theory. The
highest coefficient a6 appears only in the equations corresponding to count of self-
returning walks (i.e., those having label (i, i)). The edge type (1, 3) or in general (m, n)
indicates the valencies of the two vertices i,j making the edge [35].

Another important observation is that the number of distinctive equations appears
to depend strongly on the symmetry properties of the graphs: fewer equivalence classes,
fewer equations. In the case of the star graph G8 we have only three equations for the
three coefficients, but since a6--0 we see that the equations are linearly dependent
(proportional). The case illustrates one of the limitations of Krylov’s method, which
in this case gives only two equations"

a6 0, a4 + 5a2 +25 0.

Without additional information or some modification of the procedure in this case we
cannot determine the charaeteristic polynomial.

The case indicates a potential difficulty that may occur in highly symmetrical
graphs, but the fact that we have obtained only three different equation (from 21
theoretically possible equations) is in itself information, and the question to consider
is how can this kind of information be used to derive the characteristic polynomial.
Elsewhere we will discuss this problem in more detail [36], so let us only point out
that in such cases one should use the information on the equivalence and introduce
appropriate linear combinations of vertex labels that will factor the adjacency matrix.
Then we may proceed to construct arrays Bky analogous to the arrays AkXi but
corresponding to subspaces of the factored adjacency matrix. As a result, one obtains
a system of equations for each factor and, consequently, the factors of the characteristic
polynomial consistent with the automorphism group of the graph.

Isospectral graphs. The first critical test for the characteristic equations as being
unique comes from comparison of such equations for isospectral graphs. These are
graphs that have identical characteristic polynomials and thus represent a potential
case for identical sets of characteristic equations. If graphs are not isospectral then
they will necessarily differ in at least one equation, since one of the equations has to
account for a different root factor (x xi). But since the characteristic equations contain
more information than the characteristic polynomial, it may happen that isospectral
graphs have different characteristic equations. As we will see, indeed this appears to
be a rule, rather than exception. The characteristic polynomial, which represents the
expanded secular determinant in the well-known Hiickel MO method, is related to
random walks, the relationship which has been pointed out and discussed by Marcus
[39]. The coefficients of the xn-j term of the characteristic polynomial can be derived
from known counts of self-returning walks of length j. The intimate relationship is
also reflected in the equivalence of the information given by a characteristic polynomial
and spectral moments.2 In comparison, the characteristic equations, besides incorporat-
ing the same information on self-returning walks also contain information on the count
of random walks (non self-returning walks). The number of non self-returning walks
is generally much greater than the number of self-returning walks, thus with the
abundance of structural information concealed in a collection of all random walks,
rather than using only self-returning walks and limited structural information involved

The earliest recognition of the mathematical equivalence of the Hiickel MO method and the graph
theory eigenvalue problem appears in [37], [38].

Spectral moments are defined as M i xk or alternatively, because of the invariant properties of
the trace of A of adjacency matrix, as M Tr Ak. For more see the papers of Baker and Fisher [20], [21].
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there, it appears much less likely to encounter so many coincidences that are typical
for characteristic polynomials.

In Table 4 we list the characteristic equations for a simplest pair of acyclic
isospectral graphs, which immediately confirms our expectations. Not only are the
collection of the characteristic equations different, but in this particular instance none
of the equations are the same! Graphs are shown in Fig. 4.

69:

Glo:

TABLE 4

The characteristic equations for a pair of isospectral graphs.

a8+ a6+ 4a4+ 19a2+ 97=0

a6+ 4a4+ 19az+ 97=0

a6+ 7a4+ 40a2+217=0
a +4a + 19a + 97a +508 0

a8+ a6+ 5a4+ 26a2+137=0
a6+ 5a4+ 26a2+137=0

a + 7a + 40 0

a6+ 6a4+ 33a2/177=0
a8+ a6+ 2a4+ 5az+ 17=0

a6+ 3a4+ 12a2+ 57=0

a8+2a6+ 9a4+ 45a2+234=0
as+2a6+ 5a4+ 17a2+ 74=0

a + 7a + 40a + 177 0

a +5a +26a4 + 137a +725 0

(1,1)
(1,2)
(1,7)
(7,7)

(1,1)
(1,2)
(1,5)
(1,6)
(5,5)
(5,6)
(6,6)
(7,7)
(7,8)
(8,8)

2 4

3 6 4

Ge G,o

FIG. 4. The smallest isospectral trees.

We have examined a fair number of isospectral graphs and will report our finding
elsewhere [40]. The preliminary results confirm that, as a rule, one can expect different
characteristic equations for isospectral graphs although in numerous cases one finds
the same equation in two isospectral graphs. But the latter is true also in case of graphs
which are not isospectral, so it should not be viewed as an alarming sign. With increasing
symmetry, however, the number of equations is reduced considerably, as can already
be seen with graph Ki.5 (G8); hence the chance should not be overlooked that for
highly regular and symmetric graphs we may have isospectral pairs with the same
collection of characteristic equations, should not be overlooked. In fact, as Schwenk
confirmed [41], highly regular transitive graphs with the same characteristic equations
exist, they are illustrated in Schwenk’s paper on spectral reconstruction problems [42].
Not only do these graphs have the same characteristic polynomials, but their subgraphs
obtained by deleting vertex or by deleting an edge are also isospectral.

Another pair of highly regular graphs which are isospectral and whose study may
provide interesting results is the pair of graphs of Fig. 5, considered by Fisher [21].
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FIG. 5. lsospectral graphs of Fisher.

As Fink and Morris [43] observed, here both graphs have the same collection of vertex
codes, where "code" represents the history of the path connectedness of a vertex
and is defined to be a sequence Pl, P2, P3, Pk, with Pk (Ak)ii Another such
pair of graphs has been identified by Slater, and the topic expanded by Quintas and
Slater; see [44]-[46].

Endospectral graphs. Graphs of the type shown in Fig. 6 we call endospectral (the
name proposed here for the first time, from the Greek endo meaning within or inner.
The first such graph Gl, was studied by Schwenk [23], who demonstrated that there
are two symmetry nonequivalent vertices whose removal produces disconnected sub-
graphs with the property that the characteristic polynomial for the system is the same,

o (c)
2 3 5 6 7 8 9

(b)

c = c -- o o o (a)

FIG. 6. Endospectral graphs.

regardless which of the two vertices has been removed. The consequences of this is
that one may attach to the two special vertices suitably named (by Herndon [24] as
isospectral points (nodes or vertices)) any fragment F and construct, in this way, an
isospectral pair of graphs. Another such endospectral graph is G2, which has been
identified in the chemical literature [22], [24] as the source of the isospectrality of
well-known chemical graphs of divinylbenzene and 2-phenylbutadiene (see Fig. 7).
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FIG. 7. Molecular graphs of divinylbenzene and phenylbutadiene.

It is of interest to mention that over 40 years of chemical studies of such molecules
by the simple Hiickel MO method isospectrality among molecules was unknown until
1973, when ivkovi6 [48] discerned the above pair as such. This is somewhat embarrass-
ing, particularly because ;ivkovic discovered the above two molecules as isospectral
by examining well-known tables. Coulson and Streitwieser’s compilation, Dictionary
ofpi-Electron Calculations [49], published in 1965, contains eigenvalues and eigenvec-
tors for some 350 molecular structures. The two isospectral molecules p-divinylbenzene
and 2-phenylbutadiene are tabulated only 5 pages apart!

In the area of chemical documentation occurrence of isospectral graphs had been
discussed by Balaban and Harary in 1971 [50]. For the purposes of chemical documenta-
tion the work of Balaban and Harary doomed the use of the characteristic polynomial
as hazardous and useless, even though today we may be somewhat less pessimistic if
we are willing to supplement use of the characteristic polynomial with information on
structurally related systems [32]. If one uses the characteristic equations rather than
the polynomial itself, we may resurrect spectral graph theory as a viable basis for
characterization of graphs; the topic will be elaborated elsewhere [51]. Finally a word
of cautionmthe mathematical isospectrality and associated properties and the actual
molecule pi-electron spectroscopy should not be confused, even though the simple
MO method suggests that the two are the same. The Hiickel MO method has been
known for too long a time to be deficient in predictions of molecular spectral properties.
Hence the report of Heilbronner and Jones [52] on differences in the actual spectra
of divinylbenzene and 2-phenylbutadiene was hardly warranted as a demonstration of
the limitations of the H/ickel MO approach (see [53]). This can be established already
by examining the spectrum of a single molecule. Actual photo-electron spectra are of
interest per se as a source for testing other theoretical models, but the conclusion that
isospectral graphs are of no relevance to chemistry only fuels confusion about chemical
graph theory among less informed readers.

The last of the three endospectral graphs shown in Fig. 6 has been found by the
present author [15]. The isospectral points (i.e., those which when erased still leave
the same characteristic polynomial) 4 and 11 have the same count of self-returning
walks: 2, 6, 22, 88, 365,. .. Higher walks necessarily have to coincide, because of
the Cayley-Hamilton theorem, which can be viewed as a recursive relation. In Table
5 we list all walks for the two isospectral points. As one sees, the two isospectral points
can nevertheless be distinguished: while the sequences of self-returning walks are the
same for the vertices, the sequences representing random walks are different. The
situation can be contrasted with that associated with the so called unusual walks [54],
which represent a coincidental count of self-returning walks in two different graphs,
which need not be even isospectral (see the next section). The results in Table 5 are

The manuscript of ivkovic was submitted to Croatica Chemica Acta but never appeared. It was

subsequently resurrected and enlarged with the collaboration of Trinajsti6 and Randi6 and appeared in
Molecular Physics [22].
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TABLE 5

Selected equations for the endospectral graph corresponding to the isospectral vertices (4) and (11).

one step
(4,3):
(4,5)
(11,6)
(11,12)

1, 3, 11, 43, 173, 708,
1, 3, 11, 43, 192, 831,
1, 4, 16, 66, 277, 1174,
1, 2, 6, 22, 88, 363,

two steps
(4,2)
(4,6)
(ll, 5)
(11,7)

0, 1, 5, 21, 85, 343, 1394,
0, 1, 5, 23, 104, 466, 2074,
0, 1, 5, 22, 95, 410, 1773,
0, 1, 5, 22, 94, 399, 1695,

three steps
(4,1)
(4,7)
(4,11)
(11,8)

0, 1, 5, 21, 85, 343,
0, 1, 6, 30, 141, 644,
0, 1, 6, 29, 133, 599,
0, 1, 6, 28, 122, 521,

Combined walks:
(4,3)+(4,5)=(11,6)+(11, 12)
2, 6, 22, 88, 365, 1539,

(4,2) +(4, 6)=(11, 5) +(11,7)
0, 2, 10, 44, 189, 809, 3468,

(4, 1) +(4, 10) +(4, 7)+(4, 11) +3(4, 3) +3(4, 5)= (11, 4) +(11, 8) +4(11, 6) +2(11, 12)
6, 22, 84, 365, 1539, 6546

combined in the lower part of the table by adding all walks of length 1, then adding
separately all walks of length 2, length 3, etc. for each of the two isospectral vertices.

As one sees, the combined results produce sequences which are the same, whether
we consider walks originating at vertex 4 or vertex 11. Thus the regularity observed
for unusual vertices hold here also, if self-returning walks are considered and weighting
of walks is taken properly into account. Moreover, we find that the same regularity
holds also for random walks (i.e., walks originating at one vertex but not necessarily
ending at the same vertex), and we will see that the same is true for unusual vertices
(vide infra). The weighting is determined by the number of ways one can walk from
to j. For instance, in the case of the pairs of vertices (4, 3) and (4, 5) and count of

walks of length 3 we have weighting factor 3 (there being three walks of length 3
between vertices 4 and 3 or 4 and 5). However, in the case of vertex 11 there are four
walks between 11 and 6 and only two walks between 11 and 12, hence the corresponding
factors are 4 and 2 respectively.

In summary, endospectral graphs have different counts of random walks for the
isospectral points. However, properly combined, such sequences of counts of random
walks produce for the isospectral points the same resulting overall sequence.

Unusual walks. In Fig. 8 we show graphs having unusual walks. If for two vertices
walk sequences WI and WE are equal, then the corresponding vertices are said to have
equipotent walks [54]. If two nonequivalent vertices have equipotent walks, then we
call them unusual walks. The vertices have also been called isocodal [55] in view of
the synonymous use of the terms code and sequence (when no confusion results).
Table 6 lists several of the characteristic equations associated with the two graphs of
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$ b

"7 8

FIG. 8. A pair of graphs with unusual walks.

TABLE 6

Unusual random walks in graphs of Fig. 8.

(2,1) 0, l, 0, 6, 4, 45, 56, 358, 616, (a,b)
(2,5) 0, l, 0, 7, 2, 51, 42, 396, 532, (a,c)
(2,7) 0, 0, l, 3, 10, 30, 91, 273, 820, (a,d)
(2, 4) 0, 0, 2, 1, 16, 16, 126, 189, 1024, (a,e)
(2,2) l, 0, 3, 0, 19, 10, 141, 154, 1109, (a,a)

Fig. 7. We report only the equations corresponding to the unusual vertices. The labelling
of vertices for the two graphs has been selected so that the characteristic equations
have common labels. Thus the occurrence of unusual graphs allows one to induce
numbering of vertices in one of the graphs when labels in the other have been selected
(arbitrarily). In the case of equations having (i, i) labels, one obtains the sequence of
self-returning walks, which reproduces the observation previously known for these
graphs. In fact the unusual graphs have been detected by examination of the counts
of self-returning walks. However, the novelty here reported is that the regularity to
hold for self-returning walks is also true for random walks, if one of the vertices is
the special vertex.

Discussion. Recently Powers and Sulaiman [56] considered walk partitions of
vertices in a graph in relation to the coloration of a graph. Their sequences
(e, Ae, A2e, , Ak-le), where Ae for l>=0 is a list of the number of walks of length
starting from each of the vertices, and is equivalent (except for notation) to our

arrays Ak Xi. They detected isospectral points, as these would partition into the same
class but the partitioning would not coincide with an orbit partition. Similarly, Ellzey
and Davis [57] in their approach to detection of the automorphism of graphs came
across points (atoms in a molecular graph) which would not be differentiated initially.
The partitioning "process" is perturbed; nonequivalent vertices eventually do separate
into different orbits.

All these more recent investigations clearly show that many graphs, and frequently
relatively simple graphs, possess intriguing structural features that we have overlooked
in the past or have not investigated thoroughly. The emphasis in different works is
different: coloration in the work of Powers and Sulaiman and automorphism in the
work of Davis and Ellzey. Our emphasis is on the novel concept, the characteristic
.equations, while the early work of Krylov, Stodola, and possibly others rediscovering
the approach was more concerned with numerically solving a matrix eigenvalue
problem. Observe that Krylov considered general matrices with real elements, in
contrast to binary matrices with zero and ones as elements. Possibly the lack of interest
in graph theory for more general matrices is a reason that the work of Krylov, or that
of Frame [58], was generally overlooked, despite an otherwise intense interest in graph
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FIG. 9. A well-known graph depicted differently (showing tetrahedral symmetry).

spectra [59]. Our interest is primarily with the characteristic equations as such. It
appears that such interest and concern may lead to novel directions in reviving the
quest for graph isomorphism and graph recognition in particular. Here we distinguish
between the two. The graph isomorphism problem is well known and has received
considerable attention [60]-[62]. We call the graph recognition problem one in which
there is a single graph to be considered, and the question is, can the graph be identified
with those previously known. For example, is the graph of Fig. 9 some known graph
just depicted differently?4

But even if some may consider the problem of graph isomorphism as resolved,
the search for new ways and possibly simpler ones will remain, and the characteristic
equations appear to offer some new avenues to this old problem.

Let us point to one important aspect of the collection of characteristic equations.
Suppose we consider a graph with n vertices, which can have n! different ways of
labeling. In contrast there are at most 1/2n(n + 1) different equations, hence much fewer
comparisons to be made to verify that two different adjacency matrices of n x n size
represent the same graph. In case of highly regular graphs we may have too few
equations, however, and this approach may not be suitable in such instances. Excluding
these rare "pathological" cases we see how an apparently n! problem may eventually
be circumvented and possibly shown not to be so complex, even perhaps permitting
an algorithm which is polynomial in respect to n.

It yet remains to be seen under which circumstances one can expect the above
approach to be used as a test for isomorphism, but it certainly has eliminated most of
isospectral graphs as obstacles to such applications. The new counterexamples form
a less populous class of "isopotent" graphs, graphs characterized by the same set of
characteristic equations, the first members of the new class being the two isospectral
graphs of Schwenk, having 16 vertices, each of degree six. Use of Akxi arrays for
resolving the isomorphism problem appears attractive: it possesses all the elegance
and simplicity initially hoped for when the characteristic polynomial was considered

The graph is known as Desargues-Levi, it is closely related to the well-known Petersen graph, as

pointed out by A. T. Balaban in [63]. The particular pictorial form shown was suggested by this author in

[64], where more familiar alternatives are shown, due to H. S. M. Coxeter (Univ. Toronto), K. Mislow

(Chemistry, Princeton Univ.) and others. We may point out that the particular graph is the first graph in

the chemical literature in which vertices and edges are not related to atoms and bonds but rather to molecules

(isomers) and rearrangement routes (reactions) (see [65]). The graph was subsequently called Balaban’s

graph, but on an initiative of Balaban the name "Desargues-Levi" has been suggested, approved (Coxeter)
and accepted (Mislow).

For example, through the use of computer techniques.
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as a possibility for such a task; yet even being so intimately connected to the characteris-
tic polynomial, the characteristic equations are more powerful, devoid of frequent
coincidental situations. The problem deserves closer scrutiny before being recommen-
ded for such application. Much may depend on our ability to better understand the
occurrence of highly specialized cases (like the two graphs of Schwenk) that do not
qualify for such analysis. This task is outside the scope of the present manuscript.
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OPTIMAL SET PARTITIONING*

F. K. HWANG’, J. SUN* AND E. Y. YAO

Abstract. We consider the problem of partitioning a set of elements into unlabeled subsets to minimize
cost, where the cost of a partition is essentially the sum of costs contributed by the component subsets. We
give several results which specify conditions on the cost functions such that there always exists an optimal
partition which is an "ordered partition" (an optimal ordered partition can be determined in quadratic
time). We also give several applications to illustrate the usefulness of our results.

1. Introduction. The problem of finding a minimum "cost" partition of a given
set of elements arises in many applications. One such model which has recently been
studied ],[ 2],[ 3 ],[4],[ 5 is:

K
minimize F (e f (Si)

i=l

where P $1 tO $2... tO SK is a partition of
a given set Z of n real numbers: Z {zl zn}
f: 2z R is a function defined on the power

set of Z

When K is arbitrary, we refer to the above problem simply as the partition
problem. When K is fixed, we refer to the problem as the K-partition problem. A
more special case is that not only K, but the set M --{Isl Is l}, which is called
the shape of P, is also fixed, it is then referred to as the shape-partition problem.

Define an ordered partition to be one in which for any two subsets Si and Sj,
either no number in Si exceeds any number in Sj, or vice versa. We say that f has
the property OP OOP if there always exists an optimal partition which is ordered.
Hwang [4] noted that an optimal ordered partition can always be determined in
O(n 2) time by a straightforward application of dynamic programming and studied
certain classes of f functions for which OP--OOP. Chakravarty, Orlin and
Rothblum [2] considered the K-partition problems. They gave an elegant result for
OP--OOP and showed that an optimal ordered K-partition can be obtained in
0 (n2"K) time..

It should be noted that we can prove OP--OOP for a K-partition problem by
proving it for an arbitrary shape partition since a K-partition must assume some
shape. Similarly, we can prove OP OOP for a partition problem by proving it for
an arbitrary K-partition. This is the approach used in [2] and [4] and will be
continued in this paper. It should also be noted that all our results apply to the case

*Received by the editors August 1, 1983, and in revised form February 1, 1984. This work was

presented at the SIAM Second Conference on the Applications of Discrete Mathematics, held at

Massachusetts of Technology, Cambridge, Massachusetts, June 27-29, 1983. This paper was typeset at Bell
Laboratories, Murray Hill, New Jersey, using the troff program running under the UnixTM operating
system. Final copy was produced on April 12, 1984.

’AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
University of Washington, Seattle, Washington 98195.
Zhejiang University, Hangzhou, Zhejiang, China.
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that F(P) L(s,iK= f(Si)) where L is a nondecreasing function which can depend on
K for K-partition and on shape for shape-partition.

2. Some definitions. Let G be a set function defined on subsets of Z. G is said
to be minimum-(maximum)-ordered if for arbitrary S and S, S __c S

_
Z, there

always exists an ordered partition S1, S\S1 such that

G(S) +G(S\S1) < (>) G(S) +G(S\S) with ]SI IS1].

A minimum-ordered function is called minimum-ordered-proper if min {G ($1),
G (S\SI)} < min {G (Sl), G (S\S1)} for all S S c_ Z, Is il Is I, and improper
if the inequality is reversed, Similarly, we can define maximum-ordered-proper and
improper by interchanging the two words "minimum" and "maximum" and reversing
the inequality. Note that G is minimum-ordered-proper (improper) if and only if-G
is maximum-ordered-proper (improper).

A proper function can be further divided into short-proper or long-proper
depending on whether it is always the shorter or the longer set achieving the minimum
(or maximum). This short or long property is very useful for shape partitions for then
the optimal ordered partition is explicit once the z;’s are ordered (otherwise we have
to compare K!/IIj(mj!) ordered partition where mj is the multiplicity of size j in the
shape).

3. Minimum-(maximum) -ordered functions. The following lemma was proved in
[21,[41.

LEMMA 1. Suppose that the problem is to minimize (maximize)
F(P) KS,i=l f(Si) for a shape-partition. Then OP OOP if f is a
minimum-(maximum)-ordered function. We now state a self-evident but useful
result.

THEOREM (the relabeling theorem). Suppose that OP OOP for f. Let f’
be obtained from f by replacing every number z S by the number g(z) where g is

an arbitrary function. Then OP OOP for f’ (the ordering is on g (z)).
A set function G is said to be nondecreasing (nonincreasing) if for any

z S c Z and z Z, z < z, G(S) < (>/) G(S tO {z2}\{zl}).
THEOREM 2 (the separation theorem). Suppose that

f (S) + f (S\S) f (Si) f (S\SI) [H(Sl\{zi})-H(S\S\{zj})lG(zi, zj)

where H is nonincreasing (nondecreasing), G(zi, zj) preserves the sign of (zi-zj),
and {$ S\S1 is obtained from {S1, S\S1} by interchanging zi S and zj S\S1.
Then f (S) is minimum-(maximum)-ordered.

Proof Let {$1, S\S} be an optimal but not ordered partition, x and Xls,i
denote the smallest and largest element in S1, Y and y s\s,I denote the smallest and
largest in S\S. Then x < Yls\s,I and Y < Xls,I. Now

0 >/f(S1)+f(S\SI)-f(S tO {Yls\s,i}\{xl})-f(S\S U {Xl}\{Yls\s,I})

[H (S l\{X 1}) H (S\S \{Yls\s,I}) G (x l, Yls\s,I)



OPTIMAL SET PARTITIONING 165

Since G(x, Yls\s,I) < 0 we have H(SI\{X}) H(S\S1\{Yls\s,I}) >/ O. Thus, letting

S S I,.J {yl}\{Xlsl}, we have

0 >/f(S) +f(S\S1)-f(SI)-f(S\SI)

[H(S\{Xls,I}) H(S\S\{yl})] G (xls,i, Yl)

>/ [H (S \{x }) H (S\S I\{Ylsxs,I}) G (xls,i, y 1) 0,

i.e., we can always interchange y with Xls,i without affecting optimality. Eventually,
we obtain an optimal ordered partition.

A function g(x, y) is called an interval function if g is increasing in max{x, y}
and decreasing in rain{x, y}.

THEOREM 3. Suppose that f (S) ,zeS g(z, u) where g is an interval function
and u satisfies Zzes g(z, u) minv ZzeS g(z, v). Then OP OOP for the general
or K-partition problems with F(P) ,i f (Si) to be minimized.

Proof Consider arbitrary S, S satisfying $1

_
S c__Z. Let u and u2 be

defined in

g(z,u)-min g(z,v)
zS zS

g(z, U2) min g(z, v)
S\St S\S

Suppose that {$1, S\S} is optimal but not ordered. If u u2, then there exists
X b/1 Now

f (S1)+f (S\S) g(z, u) > g(z, u)+g(x, x) >/ f (S\{x})+f ({x})
zS zS\{x}

a contradiction to the optimality of {S, S\S}. If b/1 U2, assume without loss of
generality that U < u2. Then there exist x e $1 and w S\SI with x > w.
Furthermore, at least one of the following two inequalities is true:

g(w, U 1) < g(w, /’/2)

g(x, u2) < g(x, Ul)

Without loss of generality, assume the first inequality is true. Define

S =S1 t {w},

g(z,u) --min g(z,v)
zS zS

g(z, U2) min g(z, v)
S\s S\S

Then
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G (S 1) + G (S\S) g(z, u) + , g(z,
ES\S

> g(z, U 1) + g(z, /t

S S\S

> , g (z, u + ,
$1 S\S

g(z, U 2) G(St) + G(S\S)

a contradiction to the optimality of the partition {St, S\S}. Hence OP OOP.
Remark. Unfortunately this result is not applicable for the shape-partition case

because the shape of the partition is changed when rearranging the elements of S
and S\St. We now show that a stronger condition on G will extend Theorem 3 to

shape-partition.
An interval function is called super-additive if it satisfies the additional condition

that for x and y both lying in the range (z,w), g(z,w)+g(x,y) >/
g(x, z)+g(y, w).

COROLLARY. If g is super-additive, then f is minimum-ordered.
Proof Let x, w, Ul, u2 be defined as before (ut < u2). Then by superadditivity

g(x, Ul)+g(w U 2) >/ g(x, Uz)+g(w, Ul)

Therefore, analogous to Theorem 3, we have

G (S 1)+G (S\S 1) G (St)+G (S\S)

Suppose that/11 U2. Then we can keep on interchanging larger elements into S\S
and eventually obtain an ordered optimal partition. We now prove
Ul Ul U2 U2.

Suppose the contrary that there exists a U > U such that__
g(z, Ul)+g(w U 1) <

zES,\{x} zeS,\{x}
g(z, Ul)+g(w U 1)

But by the definition of u 1,, g(z, u)+g(x, u) < ,
zs,\{x} zS,\{x}

Adding up both sides, we obtain

g(z, Ul)+g(x, U 1)

g(w, Ul)+g(x U 1) < g(w, Ul)+g(x, Ul)

a contradiction to the superadditivity of g. Similarly, we can prove u 2 U 2. The
proof is complete.

We give another result on super-additive functions.
THEOREM 4. Let S denote the set {z < < zt and g a super-additive

interval function. Then U(S) ti2 g(zi, zi+i) is minimum-ordered, for >/2.

Proof Let S be the set {x < x2 Xg} and let S\S be the set
{Yl Y2 Ym}. Furthermore, let S {z < z2 < < Ze+m} be the elements
in S. Without loss of generality, assume z --x. We show that (S, S\S) cannot
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be an optimal partition of S if Xe > Yl. Define S1 {Z1, Z2 Ze} and

SISI {Ze+l, ze+2 Ze+m}.
Let (u 1, u2), (u3, u4),..., (ui_l, ui), u >/ u2 ’ " /g2i, denote the adjacent

pairs in Sl(uk and U2k+l can denote the same x element) not adjacent in S.
Similarly, let (vl, v2), (v3, v4) (vj-1, vj) vl >/ v2 >/ >/ Vzj denote the adjacent
pairs in S\S1 (v2k and v.k+l can denote the same y element) not adjacent in S.
Without loss of generality, assume U >/ V l. Then necessarily,

uk , vk for k 1, 2 j, and

I;k " Vk+2 for k 1, 2 i-1

Furthermore, (V2k_l, b/2k) and (U2k+l V2k) for all k above are adjacent in S.
Therefore

f(S1) +f(S\Sl)-f(Si) -f(S
j

g(U2k_l, U2k) -b g(V2k_l, V2k) -b g(ze,
k=l

j

g(U2k-1, V2k-2) g(V2k-1, U2k) (i--j)g(v2j+l U2j+2)
k--I k"l

(j-bl--i)g(bl2i+l V2i)

where Vo, v2j+l and u2i+l are defined to be the z elements adjacent to u l, Uzj+2 and

v2i, respectively, in S, and U >/ Vo, v2j+l > b/2j+l, U2i+I /" V2i. Note that the last
two terms in the equation contain a single g term since is either j or j+l. Without

loss of generality, assume that Uzh-1 < ze < ze+ < U2h. We have

g(U2k_l, U2k) /. g(U2k_l, 1,’2k_2) k 1, 2 h-1

g(v2k-l, U2k), k ---h+l ,i,

g(vk-1, 1;2k) " g(V2k-1, U2k), k 1,2 h-l,

and

Therefore

g(U2k/l,V2k), k h ,j

g(U2h-1, Uzh)+g(ze, Ze+l) >/ g(U2h- 1, V2h-2)+g(V2h-1, U2h)

f (Sl) + f (S\Sl) f (Si) f (S\Sl) O

4. Composition functions. Suppose that G is ordered. Let HG be the
composition of G and H. We would like to know under what conditions that HG is
also ordered.
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THEOREM 5. The following relations between G, H and HG are valid.

H HG

convex

nondecreasing

convex

nonincreasing

concave

nondecreasing

concave

nonincreasing

minimum-

proper

maximum-

proper

minimum-

proper

minimum-

improper

minimum-

improper

maximum-

improper

maximum-

proper

maximum-

proper

proper

maximum-

improper

minimum-

improper

maximum-

improper

Proof. We prove only for the case that G is minimum-proper and H is concave
nondecreasing since the other cases are similar.

Consider S1 and S such that S1 __C_ S _c Z. Since G is minimum-proper

G (S ) + G (S\S1) G (S + G (S\S + d

Without loss of generality, assume

for some d>/O.

G(SI) < min{G(S), G(S\S)}
By using the concave and nondecreasing property of H, we have

HG (S 1) + HG (S\S ) >/ HG (S) + H[G (S\S) + d

>/ HG (S1) + HG (S\S

Hence HG is minimum-proper.
COROLLARY. The word "proper" in Theorem 5 can be replaced by "short-

proper" ("long proper").
If we strengthen the condition for G, then the condition for H can be weakened.

The following theorem is a straight-forward extension of an elegant result of
Chakravarty, Orlin and Rothblum [2].

THEOREM 6. Suppose that HIslG is concave (convex) in y for every fixed IS]
and G (S) zS g(z). Then HIslG is minimum-(maximum)-ordered.

Chakravarty, Orlin and Rothblum proved the case for g(z)= z. Theorem 6
follows immediately from Theorem 1.

5. Examples.
Example 1. A system reliability problem. Consider a system consisting of k

parallel components where component is a series combination of ni elements. The
problem is to assign n Z--1 ni elements with working probabilities q qn to the k
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components to maximize the system reliability.
We may define the cost of a partition as the probability of system down, i.e.,

k k nt
F(P) II f (Si) II [1 II qj

i--1 i=1 j--1

We make the log transformation (which is nondecreasing) to obtain the standard form

Since

k k
log F (P) log f (Si) log

i--1 i=1

1- II qj
j=l

f (Si)--1 II qj
j=l

is easily verified to be minimum-short-proper and log is a concave nondecreasing
function, by the corollary of Theorem 5, log f(Si) is minimum- short-proper. Hence
the most reliable system is obtained by assigning the n most reliable elements to
component 1, the next n2 most reliable elements to component 2, and so on, assuming
n < n2 < < nk.

Example 2. Symmetric functions. We first consider the power mean case

f(S) IsI Z

Define g(z)= 2r, His](y)= IsIf /. For s < 1, His is convex. Hence f is
minimum-ordered in g(z) by Theorem 6. For s >/ 1, Hsl is concave. Then f is
maximum-ordered. The special case r and s 1/2 have been studied in [1 ],[3].

Next we consider the yth-order cross product case. Define

c(s)= nz.
Yc_S zCY

Let

f (S IS IC (S

Then for S S, z E Sl, 2j S 2 S\S1,

f(Sl) +f(S\S) -f(Si) -f(S

--[Sllc[Cy(Sl-{2i}) -Jc xiCy_l(Sl-{2i})] -+- [S2lC[Cy(g2-{zj}) .-[--xjCy_l(gl-{Zj})]

-Is,l[c(s,-{z,}) + xjCy_(s-{zi})]- Is.lC[Cy(S-{zj}) + xiCy_(Sz-{zj})]

--[ISllcCy_l(Sl-{2i}) -IS2[CCy_l(S2-{zj})l(zi-zj)

By Theorem 2, f is maximum-ordered.
Example 3. A scheduling problem. We have k identical machines to do n jobs

while job requires setting the machine at level zi. Assume that the cost of setting a
machine from level x to level y is g(x, y) where g is convex nondecreasing in Ix-y I.
It is easily verified that g is super-additive. By Theorem 4 an optimal scheduling is
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obtained by the following steps:
(i) Order jobs according to Zi.

(ii) Obtain an optimal ordered partition.
(iii) For each machine schedule the jobs in order of zi (either way).

Example 4. A clustering problem. Suppose that we want to partition a set of
numbers into clusters with the following goals:

(i) The smaller the number of clusters the better.
(ii) Clusters should not vary too much in sizes.
(iii) Numbers in a cluster should be close.

It is easily seen that we can write
k

F (P) CM %" . f (Si)
i=l

where any criteria of the first two goals affect only CM (which is a function of the
shape M), and any criterion of the last goal affects only f. By our comments in the
last paragraph of Sec. l, it suffices to prove OP OOP for the shape-partition
problem FM(P)=,ik=lf(Si) with an arbitrarily given M. We consider two
subproblems.

In the first subproblem f(S) is the range of S. Let S {zl < z2 < < zt}.
Then f(S) ,[s_ g(zi, Zi+l) [11 (zi+ zi).

Since g is clearly superadditive, f is minimum-ordered by Theorem 4. In the
second subproblem, f (S) is the variance of S. Then

(z-y,.)
f(Si) . g(z, .)= . . IsilzESi i=1 ESi

where z-. is the mean of z in Si. Since z. minimizes ,zS, g(z, v) overall v and g is
easily verified to be superadditive, f is minimum-ordered by the Corollary of
Theorem 3.

6. Conclusion. Tanaev [51 considered optimal set partitions for labeled subsets.
Chakravarty, Orlin and Rothblum [3] considered optimal set partitions for
multivariate elements. In this paper we study optimal set partitions for unlabeled
subsets and single variate elements.

[41
[51
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MAPPINGS AND FACETS FOR NON-ABELIAN GROUP PROBLEMS*

JULIAN ARAOZ’f AND ELLIS L. JOHNSON

Abstract. The main result is a generalization of two of Gomory’s results for Abelian groups. The first
result shows how to get a facet for a given problem from a facet of a problem on the homomorphic image
of the given problem. For non-Abelian groups, this result gives facets having zero-valued coefficients on a
normal subgroup. The second result characterizes all facets having zero-valued coefficients. For general
subgroups, not normal, we must define an image which is more general than a group; we define multigroups
and show that the subadditive characterization of facets still holds for such systems. Our motivation for
introducing this additional generality is to explain facets of group problems having zero-valued coefficients
on subgroups which are not normal.

AMS subject classifications. 20D99, 52A25, 90C10

1. Introduction. An important idea in deriving valid inequalities for an integer
program has been to use mappings onto smaller or somehow simpler problems. An
example is to map from an integer program onto an Abelian group problem and "lift"
strong valid inequalities (e.g. facets) for the group problem back to the integer program
to use as cuts (see [3, pp. 23-27]).

Gomory’s results on homomorphisms and facets for the group problem are
particularly interesting because he shows both that the lifted inequalities are facets [2,
Thm. 19] and that all facets having zero coefficients, as the lifted facets do, come from
lifting [2, Thm. 20]. The main result of this paper is to generalize these two theorems
to non-Abelian groups.

We begin with a description ofthe non-Abelian group problem and some examples.
In order to generalize to non-Abelian groups, we have to generalize the notion of
homomorphisms and factor groups. The images of our mappings need not be groups,
and we introduce the notion of a multigroup. The result that the subadditive characteriz-
ation of facets [6] holds even for such systems is an additional, interesting result which
was motivated by the attempt to characterize all facets having zero coefficients.

2. The non-Abelian group problem. A group is a set G with an addition + such
that for every g and h in G, g + h is also in G and such that the following properties
hold.

Property 2.1. g+(h+k)=(g+h)+k, for all g, h, k in G (associativity).
Property 2.2. g + 0 0 + g, for all g G (zero element).
Property 2.3. g + (-g) (-g) + g 0, for all g G and some -g G (negation).
The zero element 0 of G is easily seen to be unique, as is the negative -g for a

given g.
An Abelian group satisfies, in addition:
Property 2.4. g + h h + g, for all g, h in G (commutativity).
A non-Abelian group is a group which is not commutative. Our results include

the Abelian case but are not new there [2]. Thus, our main interest is in non-Abelian
groups.

The group problem is determined by a group G, a right-hand side b G, and an
objectivefunction c(g), g G. A solution expression to the group problem is an expression

* Received by the editors July 24, 1981, and in final revised form February 15, 1984.
t Universidad Sim6n Bolivar, Caracas, Venezuela.
T. J. Watson Research Center, Yorktown Heights, New York 10598.
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whose sum is b"

g+h+...+k=b.

An optimum solution expression is a solution expression g / h /. / k which minimizes
c(g)+ c(h)+. .+ c(k) over all solution expressions.

FIG.

Example. Consider as an example the smallest non-Abelian group: the trihedral
group D6 of positions of the triangle. This group has two generators: the rotation r
and the reflection s; and is determined by r3-- 0, s2-- 0, st--rEs. Its addition table is
given in Table 1. We have taken g =r, g2- rE, g3 "-S, g4--rs, and g5 rEs.

0

g4

gl

g2

g3

g4

g2

g5

g3

g4

TABLE

g2

g4

g5

g3

g3

g4

g5

g2

g4

g5

g3

g2

g5

g4

g2

Let us take as right-hand side g5 and as objective function

c(gl) c(g3)= 1,

c(O) c(g2)= c(g4)= c(gs)= 100.

Then, g + gl / g3 (--gs), is a solution expression with objective function value equal
to 3, while g3 / gl (= gs) is a solution expression with objective function value equal
to 2. In fact, g3 / gl is an optimum solution expression. This problem can be stated as
one of finding the smallest number of rotations and reflections (about a given axis)
which will take us from the given initial position to the final specified position. With
different objective functions, we get different optimum solution expressions, of course.

In this example, we effectively limited the group elements being considered to g
and g3 by taking a large objective function value on other group elements. We always
assume all group elements are present in the problem.

Assumption 2.5. Master group assumption. We assume that the group problems
are master group problems, i.e. all group elements can be used in solution expressions.
For example, if b g, then b itself is a solution expression, but not an optimum one
in our example since c(b) c(gs) 100.
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We list several other assumptions used throughout.
Assumption 2.6. Finite group assumption. All of our groups will be finite.
Assumption 2.7. Nonzero right-hand side. Assume b 0.
Assumption 2.8. Nonnegative objective coefficients. Assume c(g)_->0 since other-

wise there is no optimum solution because we can always use any element g many
times in a solution" b 4- g 4- g +. + g b provided the number of g’s is a multiple of
the order of the group.

Assumption 2.9. Solution expressions without O. Since c(0)_->0, every optimum
solution expression can be assumed to not include 0.

3. The group polyhedron. Given an expression, the corresponding incidence vector

is (t(g), g G) where t(g) is the number of times the group element g appears in the
expression. The incidence vector is a solution vector when it is the incidence vector
of a solution expression. By assumption 2.9, t(0)=0 in every solution vector, so we

delete t(0) from t. Denote

(3.1) G+- G-{0}.

Define the group polyhedron P to be:

(3.2) P =conv {(t(g), g G+ it is a solution vector}.

The group polyhedron depends on both the group G and the right-hand side b G/.
When G is an Abelian group, the group polyhedron is called by Gomory [2] the corner
polyhedron.

Group polyhedra have been shown [1] to be closed and have recession cone equal
to Ra+. We are interested in the facets ofthe group polyhedron, i.e., the minimal defining
system of inequalities. Since the recession cone is Ra+, every coefficient 7r(g) in a facet

Y’. r(g)t(g) --> 7ro
gG+

satisfies or(g) _-> 0. Here, let d IG+I.
As an example, consider the group D6 whose addition table is given in Table

of the previous section. Let the right-hand side be gs. Then, there are four inequalities,
other than tj >_- 0, j 1, , 5 needed to define the group polyhedron:

2tl + 2t2+ t3 + t4+ 3t5--> 3,

t3+ t4+ t5 -> 1,

t + t2+ t3 + t5 >- 1,

4- t2 4- t4 4- 15 >- 1.

The vertices are

tl t2 t3 t4 t5

2

2
2
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For a right-hand side of b g, there are seven facets"

4t +2t2+ ta+3t4+3ts>=4,

4t+2t2+3t3+3t4+ t5_-->4,

4t+2t2+3t3+ ta+3ts>_-- 4,

2t+ t2+ t3+ t4+ t5->-2,

it+ t2 + /’4+ t5 >- 1,

t+ t2+ t3+ 4 -->_1,

tt + t2+ t3+ t5 -> 1.

The vertices are

t 12 14 t5

The other possibilities for the right-hand side are essentially included since there are
automorphisms taking g5 to either g3 or g4 and taking g to g2.

Notice that this group, D6, has four subgroups {1, 2}, {3}, {4}, {5}. In both cases
b- g,b gs, there are facets having coefficients equal to zero for any subgroup not
containing the right-hand side. This fact is not surprising since we have the results
from Abelian groups to that effect and in any case

is always a valid inequality, but not always a facet, for any subgroup K with b K.
This inequality reflects the fact that if K is a subgroup with b K, then we cannot
form an expression from elements in K which will add up to b. However, the resulting
inequality need not be a facet, in general, but there is always a facet with coefficients
zr(g) =0 for g K. This paper is mainly concerned with characterizing such facets.

There is a subadditive characterization of facets [6], which is a tool used here.
Define the subadditive cone for G to be

(3.3)
S={(r(g),g G+)lTr(g+h)<-Tr(g)+Tr(h),if g, h, and g+h G+,

0 =< r(g) + r(h), if g, h G+ and g + h 0}.

THEOREM 3.4 [6, Thm. 2]. If P, the group polyhedronfor group G and right-hand
side b, and if 7r S, the subadditive cone for group G, then

E r(g)t(g)_>- 7r(b).
g G+
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It should be clear that S is a polyhedral cone. In fact, S
_

Rd+, d IG/I, is true.
Thus S is pointed and has a finite number of extreme rays. We say that 7r is on an
extreme ray if it is not the origin and is on the half-line making up the extreme ray.

THEOREM 3.5 [6, Thm. 7]. The facets of P, other than t(g)>= O, are among the
vectors 7r on extreme rays of S. In fact, a vector 7r on an extreme ray of S is a facet of
P if and only if it satisfies for each g G/ at least one of r(b) r(g’) + or(g) + 7r(g"),
for some g’, g" G satisfying b g’ + g + g".

The following proposition is an easy consequence of Theorem 3.5 and S
_

Rd+.
PROPOSITION 3.6. If rr is a facet ofP and if zr(g) =0 for any g G/, then zr(g) =0

on some subgroup K of G and zr(g) > 0 for g
_
K.

Proof. All we need to show is that if zr(g) =0 and zr(h) =0, then r(g+h)=0.
This follows, in one direction, from

(g+ h)-<_ (g)+ (h) =0,

by 7r S and Definition (3.3). On the other hand r(g + h) => 0 follows from S
_
R+.

4. Normal subgroups. For a group G (Abelian or non-Abelian) and any subgroup
K, the left (or right) cosets can be formed by fixing any g G and taking all h g + k
(or h k / g) for all k K. It is well known (see, e.g., [4, pp. 10-15]) that the resulting
left cosets are disjoint and, hence, partition G. Another way to define cosets is to define
g and h to be left-equivalent if h =g + k. Left-equivalence is, then, an equivalence
relation and the left cosets are the equivalent classes.

The subgroup K is a normal subgroup if and only if the partition of G given,by
left cosets is identical to the partition given by right cosets. In case K is normal, we
simply refer to cosets. When G is Abelian, every subgroup is normal. For a normal
subgroup K, the factor group GK is defined to have elements the cosets and addition
defined from the addition / of G. That is, if ff is the coset containing g and h is the
coset containing h, then

where/ is the coset containing k g + h,

defines an addition on ( GK. The pair t and can easily be shown to be a
group. The mapping ok" G G/K defined by b(g)= , the coset containing g, is a

homomorphism, i.e. satisfies

(g+ h b(g) - b(h ).

In fact, every homomorphism is such a mapping onto a factor group [4, p. 28]. The
first of the two main results of Gomory [2, Thm. 19] on lifting facets for Abelian groups
using homomorphisms is generalized in the theorem below to non-Abelian groups. We
further generalize it in 7.

THEOREM 4.1. If K is a normal subgroup of G and if "?r is a facet for the factor
group G/K with right-hand side ), the zero ofG/K, then afacetfor G with right-hand
side b, where ok(b)= b, is given by

7r(g) (b(g)),

where d is the homomorphism from G to GK.
The proof of Theorem 4.1 is interesting but is not given here because it is not too

different from the Abelian case (for a different proof, see [5, p. 33]) and because it is
a special case of Theorem 7.1, whose proof, however, is a bit more complicated because
of its more general setting.
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The second theorem of Gomory [2, Thm. 20] which we generalize is a converse
of Theorem 4.1. As in the case of Theorem 4. l, we state it here for the normal subgroup
.case without proof. Theorem 8.1 generalizes the result to any subgroup.

THEOREM 4.2. If or is a facet for the group G and right-hand side b and if r(g)=0
for all g K, where K is a normal subgroup of G, then r satisfies

r(g) (b(g)),

wherec is the homomorphismfrom G to G/K and r is somefacetfor G/K with right-hand
side b c b ).

We follow Gomory and call the derivation of r from " a lifting of the facet -from GK to G.
From Proposition 3.6, if rr(g)=0 for any g G+, then r(g) must be zero on a

subgroup of G. Theorem 4.2 says that if that subgroup is normal (or contains a normal
subgroup), then r comes from lifting some facet from a homomorphic image of G.
The next two sections are a digression to develop the structure needed to generalize
that result to any facet having some r(g)=0, g G+. In the process, we generalize
Theorem 4.1 since we define a more general lifting of facets.

Before proceeding, let us give a small example. For the dihedral group D6, given
in Table l, the subgroup {0, gl, g2} is normal and its factor group is isomorphic to C2,
the cyclic group of order 2. For a right-hand side b- gs, the facet

t3 + t4 + t5 >----
comes from lifting the facet ’l -> from C2 with right-hand side .

A subgroup of D6 which is not normal is {0, g3}. Yet, there is a facet for b g,
namely

tl + t2+ t4+ t5 -> 1,

for which -rr(g3)=0 and r(gi)= 1, i# 3. This facet is an example of one which we
seek to explain.

5. Subgroups, submorphisms, and multigroups. Let K be any subgroup of a group
G. In order not to be in a previously discussed case, think of G as being non-Abelian
and K being a subgroup which is not normal.

DEFINITION 5.1. Two group elements g and h are K-equivalent if

g k + h + k’ for some k and k’ in K.

Since K is a subgroup, this relation is easily seen to be reflexive and transitive, so
is an equivalence relation. Let us call the equivalence classes K-classes or double
cosets [7].

One way to construct K-classes is to form left-cosets and right-cosets, and merge
(take the union of) any two intersecting cosets until a partition of G is reached.

In the case of D6 and subgroup {0, g3}, the K-classes are just {0, g3} and
{g, g2, g4, gs}.

The dihedral group D8 of order 8 is a more interesting case. Its addition table is
given in Table 2. The subgroup K (0, g4} gives K-classes {0, g4}, {gl, g3, gs, g7} and
{g2, g6}- This example shows that K-classes need not all be of the same size.

PROPOSrrlON 5.2. Let G be a group and K be a subgroup. Then, K is always itself
a K-class, and every other K-class has order ilKI where <= <-IKI.

Proof. That K is itself a class is clear because if h K, then so does k + h + k’ for
any k, k’ K. That the maximum order of any class is IKI2 is also clear because the
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TABLE 2

g4

g5

g6

g7

g2

g3

gl

g2

g3

g4

g5

g6

g7

g2

g3

0

0 gl

g7

g4 g7

g5

g6

g4

g5

g3

g2

g6

g7

g4

g4

g5

g6

g7

g5

g4

g3

g2

g6

g7

g4

g5

g7

g4

g5

g6

g2 gl

g3 g2

0 g3

gm 0

class is generated by fixing any h in the class and taking k / h / k’ over all k, k’ K.
To see that the order of any class is a multiple of K is more difficult. One way to form
a K-class is to take the union of any two left-cosets which have a nonempty intersection
with the same right-coset. In this way, we see that K-classes are unions of left-cosets,
each of which has order [K[, completing the proof.

Let us return to the example of Ds. Let

{0, g41, i-- {gl, g3, gs, g7}, 2 {g2, g61.

Then, we can form the table

2 g2 g 0

This table would be an addition table except that

Thus we cannot define homomorphisms using K-classes. Yet our characterization of
facets forces us to consider tables such as the one above. We resolve the difficulty by
defining multigroups.

DEFINITION 5.3. Multigroups. Let t be a set of elements with an operation $
mapping pairs g,/ onto a subset / of elements of t. That is, the "sum" -/ of
two elements is a set of elements, not just one element. The pair (, must satisfy"

(i) $ (/$ ’) ($/) ’ (associativity);
(ii) $;:$={}, for all (zero);
(iii) for eachfi , there exist exactly one/ t such that 6-/ and exactly

one i G such that ’$ , and g= ’ (negative denoted -;);
(iv) if g-i then/ (-’) and ’ (-g)-.

The element 6 t is the zero element of t, and the / in (iii) is the negative of g,
denoted -ft.
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Condition (i) is a set-equality. In order to define expressions, such as in (i), in a
multigroup, define

(5.4) ST= U (s4t), S_+, T_+.
sS
tT

Thus, is extended to operating on subsets of . In fact, we could be consistent by
saying that - is only defined on subsets, and ff S means {} S.

PROPOSITION 5.5. Given a group G and a subgroup K, let ch be the mapping from
G onto K-classes defined by d(g)= ,, the K-class containing g. Let be defined on
K-classes by

,4f= U 4(g’+h’).
g’e,
h’eg

Then {K-classes of G} with 4 is a multigroup.
Proof. We must show 5.3 (i), (ii), (iii), and (iv). To prove (i), we show

(5.6) ,$(f$i)={k(g’+(h’+i’))[g’g,h’h,andi’i},
and then (i) follows by associativity of G. To show (5.6) we use

(5.7) 4(g+ h) b(g) - 4(h),

which should be clear from the definition of + in the statement of Proposition 5.5. In
one direction, the proof of (5.6) is then easy:

6(g’+ (h’+ i’)) d(g’) b(h’+ i’)
_

c(g’) (d(h’) d(i’)) , (f ).

In the other direction, let ’ -(/-’). By the definition in Proposition 5.5 of
applied to / 4 ’,

f 4 th(h’+ i’) for some h’/ and i’ i.

Using the definition of + again gives

f= th(g’ +j) for some g’ and j 4(h’+ i’).

The proof will now be completed if we can show

h i" ’.j e b (h + i’) implies j h + h and

If j b (h’+ i’), then

j= k+h’/i’+k’ forsome k, k’ K.

Let h’= k + h’ and i" i’+ k’. Then, h" f and i" ’, completing the proof of (i).
The proof of (ii) is easy from Proposition 5.2 since 0 K.
To prove (iii), given g let gr be the right-negative of g, i.e., 0 g + gr. Then, clearly

6 qb(g)+ qb(gr). TO show uniqueness, let g’= k+g+ k’, k and k’ in K. We must show
that the right negative of g’ is in b(g). Let g" be this right negative: 0 g’+ g’. Then

O=k+g+k’+g", so

k" g + k’+ g" where k"+ k 0, so k" K,

0 g + k’ + g"+ k again by k"/ k 0.

Hence, g’= k’+ g"+ k and g and g" are in the same K-class.
The proof of (iv) follows easily from (5.7).
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PROPOSITION 5.8. The multigroup defined in Proposition 5.5 is a group (i.e.,
I, f] for all ,, f ) if and only ifK is a normal subgroup of G.

Proof. An alternative characterization of a normal subgroup is that

K=g+K+(-g) for all g K.

All we need to prove here is that if K is not normal, then some I/1 >- 2. If K is not
normal, then there is some g K such that g + K + (-g) K. Then, clearly,

g+K+(-g)C-K, i.e.,g+k+(-g)K, forsomekK.

Consider Iff (-ff)l. Clearly, K 1 ff (-if). But there are other elements in ff (-)
because there is some k K such that g + k+ (-g) K, and g + k ft. Hence, the
proposition is proven.

PROPOSITION 5.9. For g G and as defined in Proposition 5.5, Iff /l I/ l
for all f if and only if

K=g+K+(-g).

In that case, I(-fi) 4/12= I/ (-ff)l 1, for all f , and , 4; {f} is uniquely solvable
for all f and + , {h } is uniquely solvable for all f.

Proof. If K g + K + (-g).,, then Iff (-ff)l->- 2. Conversely, if K g + K + (-g),
then I $/1 (the proof for h $ ff is similar) because g’ ff and h’/ implies

g’+ h’= k+ g + k2q k3q h+ k4

k -t- g + k + h + k4, where k k2 d- k

k + k6 + g + h + k4, where k6 e K exists by K g + K + (-g)
k7 -t- g + h + k4 (g + h), where k7 k + k6.

To show unique solvability,

{x}=(-)$
clearly solves g $ x {/}. To show uniqueness, if x is a solution, then

{x}=)x=((-g)g)x, by {6} (-)

(-) ($ x), by associativity,

=(-);h, by;x={/}.
The proof for the left-solution is similar.

We give one other result which is used in proving Theorem 7.1 to follow.
PROPOSITION 5.10. For G and d as defined in Proposition 5.5, if e and e ,

then there exists some g’ e and h’ e such that g’+ h’.
Proof. If ’ and ’e $ h, then there exist some j e ’ such that

j k’ q- g d- k2) q- k d- h q- k4) for some k’, ka, k3, k4 e g.

Further, there is some ks, k6e K such that k +j + k6. Hence,

k + k’ + g + k2 + k + h + k4 -l- k6, or

g’ + h’, where g’= (k + k’) + g + k2 e ff and h’ k -1- h + (k4 q- k6) e h",
completing the proof.

6. Subadditive characterization for multigroulS. The results in this section could
be stated more generally since Definition 5.3 (i), (ii), (iii), and (iv) need not hold in
order for the subadditive characterization to be valid. Since we do not prove the results
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here, in any case, we state only what is needed here. We follow the development of
Johnson [6] (see also Arfioz and Johnson [1]).

Let G with - be a multigroup (as defined in 5.3) and let/ e (,/ .
DEFINITION 6.1. An expression in G is defined recursively as
(i) E -(g), g G, is a primitive expression;
(ii) given two expressions E and E2, form expression E by E (E $ E2).

We also allow the empty string as an expression. A subexpression of E is defined by:
the empty string and E itself are always subexpressions of E, and if E is defined by
(ii), then any subexpression of E or E2 is a subexpression of E.

DEFINITION 6.2. The evaluation of E is a function y defined on expressions by:
(i) y(E)= {g}, if E =(g) is a primitive expression;
(ii) y(E) y(E) - y(E2), if E E $ E2, where + here is defined on sets by 5.4;
(iii) y(empty string) {6}.

Thus, 3’ maps from expressions to subsets of .
DEFINITION 6.3. An incidence vector (’(), e t) of an expression E is defined

by t(g) equals the number of times (g) appears as a primitive subexpression of E.
DEFINITION 6.4. A solution expression is an expression E such that be y(E). A

solution vector is an incidence vector of a solution expression. Since 0 can be deleted
from a solution expression without^affecting its evaluation, we assume that t,,(0)=0 in
any solution vector and leave out 0 from ’; that i, ’(g) is defined for g e G/.

DEFINITION 6.5. The multigroup polyhedron P is defined by
/$ conv {(’(g), g (+)[ f is a solution expression}

Thus,/$ depends on ( and on b.
THEOREM 6.6. fi iS a polyhedron whose recession cone is R+.
This theorem’s proof is similar to that of [1, Thms. 7.2, 8.7].
THEOREM 6.7. The facets

X ()t() ->_ ()

of , other than ()>=0, are on the extreme rays of ={(,,(),^ +)]’(’)_-<
(g)+ (), if i, g, h G and gS h, and 0<= (g)+ (h), iy0 gSh}. The extreme

rays of ; giving facets are precisely those giving minimal valid inequalities.
The proof of this theorem follows closely the development for additive systems

[6]. The main use of this result here is to show that facets for multigroup problems
have the same sort of characterization as for group problems so that we can prove
lifting theorems.

Example 6.8. We close this section with an example from D, the dihedral group
of order 12. Without detailing the derivation, the multigroup below comes from the
subgroup of D consisting of 0 and the reflection.
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Thus, the inequalities on -, ’’2, ’3 are

7r 7"2

2 =>0
2 -1 =>0

-1->0
-1 1->0
2 ->0

1->0
2_>0

-1

The extreme rays are given by

1 2 3

2

2 3

Which ones are facets depends now on the choice of the right-hand side. If/ 2,
then the facets are

/’1 7r2

2

or tl+ t2 _>1,

tl+2t2+ t32

and the vertices are

t2 t3

Figure 2 shows the polyhedron P.

7. Lifting facets.
THEOREM 7.1. Let G be a group, K a subgroup ofG, and b G- K. Ifr is a facet

for the multigroup of K-classes with right-hand side b dp(b), for the mapping ofg to
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FIG. 2

the K-class containing g, then r given by

zr(g)- (c(g)),g G/,

is a facet , r(g)t(g) >- or(b)
g G+

for the group polyhedron Pfor group G and right-hand side b.
Proof. We rely heavily upon the subadditive characterization for this proof. First,

r as defined here will be shown to be subadditive. This result follows from

r(g 4- h r( dp g 4, h

<_-’(b(g))+ (b(h)) by (5.7) and Theorem 6.7

zr(g)+ or(h) by definition of

When g+ h =0, the same argument shows 0=< or(g)+ zr(h). Hence, r is subadditive.
To show that zr is extreme in the subadditive cone, we follow the argument in [5,

p. 33]. Let S be the matrix with IG/I rows and a column for each subadditive inequality
holding with equality:

r(g+h)=cr(g)+cr(h), or O=r(g)+cr(h), whereO=g+h.

In a typical column of S, we put a + in rows g and h and a in row g + h. In order
for r to be extreme in the subadditive cone, the matrix S must have rank [G+I-1.
Thus, if we can show that the solution set to

AS =0

has rank l, we will be done. That is, we must show that every solution A is some
multiple of zr, which does satisfy AS 0. Suppose that A is a solution to AS 0.

We first show that A (k)= 0 must hold for all k K. This result follows from the
fact that or(k) 0 for all k K so every addition relation k" k 4, k’ for k and k’ in K
(and hence k" in K) corresponds to a column in S. But K is a subgroup, and there
is no real solution to A (k") A (k) + A (k’) for all k, k’ K except A (k) 0 all k K.

Next, we show that A(g)= A(h) whenever g and h are in the same K-class. But
then g k + h 4- k", for k and k" in K, so g 4. k’ k + h, for k’ -k" K.

Let g’-g 4-k’. Since g, g’, and h all are in the same K-class

or(g) r(g’)= or(h) by definition of or.
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Hence, the relations

7r(g’) 7r(g) + 7r(k’) and r(g’) 7r(k) + 7r(h)

must hold since r(k) r(k’) 0 by k, k’ K. Hence,

A(g’)=A(g)+A(k’) and A(g’)=A(k)+A(h)

must hold. We have just shown that

A(k) A(k’)=0 for k, k’ K.

Hence, A(g)= A(g’)= A(h). Thus, A(g)= A(h) for any two g,p in the same K-class.
If A is not some multiple of r, then we can define on G+ by

() A (g) for any g with d(g),

since A(g) is the same on every K-class. This will not be a multiple of - since A
was not a multiple of 7r. Yet satisfies

where ; has a column for each inequality holding with equality:

$

0 ()+ zr(h) when 6 /.

Thus, a contradiction of extremality of in the subadditive cone for t, is reached.
Hence, 7r must be extreme in the subadditive cone for G.

It remains to show minimality of the valid inequality:

Y 7r(g)t(g) >- 7to (= 7r(b)) for all solution vectors t.
g G+

Suppose that it were not minimal. That is, suppose some r(h) could be lowered to
zr’(h) < r(h) and the inequality remained valid for all solution vectors t. We reach a
contradiction by showing that (b(h)) could also be lowered while maintaining

(=
ff G+

valid for all solution vectors ’. What we need to show is that if 7r(h) can be lowered,
then so can all other 7r(g) for g in the K-class h be lowered at the same time while
still maintaining validity of

In order to show that all r(g), g e h, can be lowered at the same time, let us
consider solution vectors and their solution expressions E. If g and h are in the same
K-class, then

g k + h + k’ where k and k’ are in K,

so any time g appears in E, we could substitute k + h + k’ in place of E without changing
except that t(k) and t(k’) increase. Since 7r(k)= r(k’)=0, and 7r(g)= 7r(h) this

change does not affect

E 7r(g)t(g).
gG+

Thus, there is a certain symmetry in the values of t(g), g h, among all solution vectors
and r(g)t(g) is the same among all solution vectors having the same value of

E t(g).
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It should be clear that if 7r(h) can be lowered so can every r(g), g /. The proof is
thus completed.

We conclude this section with an example for DiE the dihedral group of order
12. If we take the rotation r and the reflection m, then this group is given by 0; gi r,

l, 5 g6+i rim, 0, , 5. The defining relations are r6 0, mr rSm, mE O.
The subgroup K {0, g6 gives K-classes.

6-- (0,

From Example 6.8, we have a facet for the multigroup , , 2, 3 given by

for a right-hand side/ ff. The lifting theorem says that

tl + 2tz + t3 + 2t4+ t5 + t7 + 2t8 + t9 + 2to+ t >_-- 2

is a facet for D with right-hand side b g (or g4, or g8, or go)-

8. Facets with zero coefficients.
THEOREM 8.1. Let G be a group, be G/ be the right-hand side, and (Tr(g), g G+)

give a facet (other than t(g) >- 0);, 7r(g)t(g) >-_ 7r(b)
gG+

of the group polyhedron P. If any r(g)=0, g G+, then 7r(g)=0 if and only if g K,
for some subgroup K, and r is derived by lifting a facet r, as in Theorem 7.1, from the
polyhedron for multigroup equal to the K-classes and right-hand side to the K-class
containing b.

Proof. Proposition 3.6 has already shown that 7r(g) 0 for g in some subgroup K.
We next show that r(g)- 7r(h) if g and h are in the same K-class, that is, if

g-k+h+k".

Let k" k’ so that

g+k’=k+h.

Denote g’= g / k’ (- k + h). Then, subadditivity of r assures

7r(g’) <_- 7r(g) + r(k’) or(g) and r(g’) _-< 7r(k) + 7r(h) or(h),

by r(k) 7r(k’) 0 because k, k’ K. Clearly,

7r(g) 7r(g’ + (- k’)) <_- 7r(g’) + r(-k’) r(g’),

and similarly r(h)_-< zr(g’). Hence, 7r(g)= 7r(g’)= r(h), showing that r is constant
on K-classes.

We remark that 7r(b) > 0 so b K,and/ # .
We next show that , defined on G by

,(ff) 7r(g) for any g ff
is subadditive. We can define in this way because 7r is the same for every g if, for

ff any K-class. To show subadditivity of , let g and h G/ and let i-g + h. Then,

7(’) 7r(i)<-- 7r(g) + r(h)= 7(ff) + 7(/).

However, there may be other K-classes f ff $/ whenever there is some j G/ given
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by
j k + g + k’ + h + k", k,k’,k"eK,

not in the same K-class as i. By subadditivity of 7r, generalized to more than two
elements,

-(f) 7r(j) =< 7r(k) + 7r(g) + 7r(k’) + 7r(h) + r(k")

Hence, is subadditive, and

by 7r(k) 0, all k e K

eG+

is a valid inequality for ( with right-hand side b".
It should also be clear that this inequality is minimal because if any (g) could

be lowered, we could lift it back to a valid inequality smaller than contradicting
being minimal. It remains to show that is extreme in its subadditive cone.

Suppose that is not extreme in the subadditive cone for . Then

for ,/.1 and ,.2 in the subadditive cone and not equal to a multiple of ". We can lift, and .2 by defining

7ri(g) i(ff), 1, 2, ff the K-class containing g.

As in the proofofTheorem 7.1, both r and 7r
2 are in the subadditive cone for G. Clearly,

71" 7/"1 -[- 7/"2,
and r and 7r

2 are not multiples of zr, contradicting 7r being extreme in the subadditive
cone for G. The theorem is thus proven.

Appendix. Double cosets and multigroups. Our motivation for this work has been
to characterize facets of group polyhedra having zero coefficients. In order to do so,
we have been forced to consider algebraic objects consisting of a set and an addition
table with multiple entries for sums. Having done so, we could now set the whole
question in terms of such objects. Here, we discuss the nature of this extension and
give an example.

To begin, let us consider addition + to be over subsets of G, where G is, for our
purposes, a finite set. Then, g+ h is defined to mean {g}+{h} for singletons {g} and
{h}. One already has used + in this way, e.g. in defining cosets to be g + K. Addition
need only be defined on singletons since we want to define

S+ T=U {s+ t[seS and te T}.

We now allow the sum of two singletons to be an arbitrary subset of group elements,
but always require 5.3 (i), (ii), (iii) and (iv) to hold; that is, (i) associativity; (ii)
existence of zero; (iii) existence of negative; and (iv) solvability. Thus, when + is
single-valued, G must be a group.

Let us now define a homomorphism from one multigroup G to G to be a mapping
b such that

(A.1) b(0)=, the zero of .
(A.2) b(j) /, ,/ t, if and only if j g’+ h’ for some g’, h’ G with

(g’) and b(h’)=/.
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(A.3) For b(j)-// and a given hG with th(h)=h*, there exists g and
k G with b(g) g*, b(k) =/, and such that j g + h + k.

The multigroups we are interested in are double-coset groups G whose elements
are ofthe form K + g / K for some subgroup K of G and all g G. The homomorphisms
we are interested in are mappings from a group G to one of its double-coset groups

{K / g / K lg G and K a fixed subgroup of G}. In fact, the multigroups which
are homomorphic images of groups are precisely these double-coset groups. Even more
is true, as stated in the next proposition. First some definitions are needed.

DEFINITION A.4. For a multigroup G, a subset H is a subgroup of G if
(i) gHand hHimpliesg/h_H;
(ii) h H implies the negative (see Definition 5.3 (iii)) of h is in H.
DEFINITION A.5. If G is a multigroup and K is a subgroup, then the double coset

group of G from K has elements K + g + K, g G, with addition + defined from G by

(K+g+K)-(K+h+K)= (A {K+g+k+h+K}.
kK

It is true that the double cosets K + g + K in this more general setting still partition
G, because K-equivalence"

K
g--.h if gK+h+K,

is still an equivalence relation. For this result, Property 5.3 (iv) is needed.
PROPOSITION A.6. If^G is a^ double-coset group of. G from K and if ch is a

homomorphism from G to G, for G any multigroup, then G must be a double-coset group
of G from some subgroup H of G, H_ K.

Proof. Let K
_
G be defined by

K={kGi4,(k)=6 the zero of }.
Then K is a subgroup to G because if k, k_ e K, then b^(k)$ b(k) -6+ 6 {6}. For
any ke k+k, we must show that ke K, i.e. b(k) =0. By ke k+k, (A.1), and
b (kl) b (k) 0, we have

b(k) {6}, so b(k) 6.
Next, we must show that the negative (-k) of k is also in K, i.e. b(-k)=. From
(A.1), b(0) 6. From k + (-k) 0,

b(0) b(k) + b(-k) {b(-k)},

by b(k) = and 5.3 (ii). Hence, $(-k)=6, and K is a subgroup.
We next show that $(g) is equal for all g K / h + K, for any fixed h G. For

any such g,

and hence

gkl+h+k2, somekl, k2K,

b(g) th(kl)- b(h) th(k2), from (A.2) applied twice.

By b(k,)= 4(k2)-0, th(g){4(h)} so th(g)-- b(h).
We next show tha,t (g) ft,(h) implies that g K + h + K. Suppose that b(g)

th(h). Clearly, th(g)0+4(h)+.0, and by^ Property (A.3) of homomorphisms, there
exist k, k’ G such that b(k) 0, 4(k’) 0, and g k+ h + k’. Thus g K + h + K. In
fact, the only use made of (A.3) is here so we could weaken it to =/--.



MAPPINGS AND FACETS FOR NON-ABELIAN PROBLEMS 187

It remains to show that addition $ must be that defined by double-cosets. By
(A.2), b(j) / if and only if j g + h for some g, h G such that b (g) ff and
b(h) h. IQg+ h for some g, h G, then the double-coset K +j + K is in K + g + K +
h+K so ff + H is a subset of those K+j+K in the sum(K+g+K)+(K+h+K).
Conversely, ifjK+^g+K+h+K for b(g) =ff and b(h) h", then dp(k+g+k’)=ff,
and b(k"+ h + k’") h for all k, k’, k", k’" K. Hence, j g’ + h’ for some g’, h’ with
b(g’) and b(h’)=/, and, thus, b(j) ff /.

COROLLARY A.7.^If G is a group and dp is a homomorphism from G to , for
any multigroup, then G must be a double-coset group of G for some subgroup K of G.
The image G of dp is another group if and only if the kernel K of dp is a normal subgroup
of G.

COROLLARY A.8. If GO is a group and d is a homomorphism from GO to , for
any multigroup, then there are homomorphisms dp from GO to some multigroup G and
cb 2 from G to such that ch 2 dp ifand only if the kernel H ofqb contains a subgroup
g" The meaning of these results is that we could have begun by considering the class
of double-coset groups. Within this class, we can lift facets from homomorphic images
and get all facets with zero coefficients. However, for a group G, the only facets we
get are from double-coset groups coming from subgroups of that G since the
homomorphisms from such double-coset groups are always onto another such double-
coset group.

We conclude with an example from Dl2 the dihedral group of order 12. In Example
6.8, we gave an example of a double-coset group with kernel K {0, s}. That table is

{O,s}

{ r, r5, sr, srs}

r r4, Sr2, Sr4}

r sr3}

(r, r, sr, sr}

{0, s}, { r, r4, sr, sr4}

{ r3, sr3}, { r, r5, sr, sr5}

r r4, Sr2,$r4}

r r4, Sr2, Sr4}

{ r3, $r3}, { r, r, sr, sr}

{0, s}, { r, r4, srz, sr4}

{ r, r5, sr, sr5}

r sr3}

{ r, r4, sr2, sr4}

{ r, r, sr, sr}

On letting {0, s}, = { r, r, sr, srS}, 72= {r2, r4, sr2, sr4} and 73= { r3, sr3}, we have

2 ^3 2r, 6,

3 2 6

Now, {6, 3} is a subgroup for this table, and forming/-}if/-} gives

{, e’} {e, e}, e} {, }, { , }
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We get the same table by letting

and forming HgH, g G:

{0, S, r3, sr3}

{r, r2, r4, r5, st, sr2, sr4, sr5}

H={0, s, r3,st3}

{r, r2, r4, r5, sr, sr2, sr4, sr5}

(0, S, r3, st3}, {r, r2, r4, r5, st, sr2, sr4, srS).

This example illustrates Corollary A.8 in that the sequence of mappings having kernels
{0, s} and {0, r3} is equivalent to the mapping^having kernel {0, s, r3, sr3}.

There is another interesting^subgroup of G, namely, H {0, r2}. This subgroup is

"normal" in in that ff + H H+ g, all ^, and in fact the addition table obtained
from G by forming double cosets H + g + H is

{6,

which is the same addition table as C2, the cyclic group of order two. We thus have
illustrated a generalization of Proposition 5.9 to the case where G is already a
dotable-coset group. The proof there carries over to this more general case. That is,
the image of a homomorphism from one double-coset group G onto G is isomorphic
to a group if and only if the kernel K is a normal subgroup of the double-coset
group G.
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PROBABILISTIC ANALYSIS OF GEOMETRIC LOCATION PROBLEMS*

EITAN ZEMEL

Abstract. We analyze the behavior of the k center and median problems for n, points randomly
distributed in an arbitrary region A of R a. Under a mild assumption on the region A, we show that for
k <= k(n) o(n/log n), the objective function values of the discrete and continuous versions of these problems
are equal to each other almost surely. For the two-dimensional case, both these problems can be solved by
placing the centers or medians in an especially simple regular hexagonal pattern (the "honeycomb heuristic"
of Papadimitriou). This yields the exact asymptotic values for the k center and median problem, namely,
(IAI/k)1/2 and/3(IAI/k) 1/2 where IAI denotes the volume of A, a and/3 are known constants, and the
objective of the median problem is given in terms of the average, rather than the usual total, distance. For
the three- and four-dimensional case, similar results can be obtained for the center problem to within an
accuracy of roughly one percent. As a byproduct, we also get asymptotically optimal algorithms for the
two-dimensional p-norm k median problem and for the twin problems of minimizing the maximum number
of vertices served by any center and similarly for maximizing the minimum.

Key words, geometric location problems, probabilistic analysis, heuristics, k center, k median

AMS subject classifications. 68A, 90C

Introduction. Many NP-complete optimization problems whose worst case
asymptotic behavior is dismaying tend to have asymptotic average complexity which
is very satisfactory. In particular, this is the case for various geometric optimization
problems where the data consists of the Euclidean (or other Lp norm) distances between
vertices randomly scattered in a region A of the d-dimensional space. The first algorithm
of this type is Karp’s work on the travelling salesman problem [11], [12] which builds
on the findings of Beardwood, Halton and Hammersley [3] concerning the asymptotic
value of the objective function. Since then, several new algorithms and results of this
type have emerged. In particular, the k median problem was analyzed by Fisher and
Hochbaum [10] and Papadimitriou [16]. Also, a general technique for analyzing the
optimal solution values was developed by Steele [19] using the concept of subadditive
functionals.

In this paper we discuss in a unified way the k center and median problems for
n points scattered uniformly and independently inside a region A of R d, under very
mild qualifications concerning this region. The motivation for this work, as well as
several important elements in the discussion below, are due to Papadimitriou’s work
on the k median problem inside a square region A of the two-dimensional plane [16].
The main result of Papadimitriou’s paper is that for k which grows slower than
o(n/log n), one can solve the k median problem by placing the medians in a simple
regular hexagonal pattern (the "honeycomb heuristic"). He has shown that the relative
error of this heuristic tends to zero with probability one when n tends to infinity. This
result is based on two main observations. First, when a large number of points are
scattered uniformly and independently in a square region A

_
R2, there is a close

relationship between the solutions of the discrete and continuous problems. Second,

* Received by the editors September 29, 1982, and in final revised form November 1, 1983. This
research was supported, in part, by the National Science Foundation under grant ECS-8121741, and by
the Israel Institute of Business Research, Tel Aviv University. Part of this work was done when the author
was visiting Tel Aviv University. This paper was presented at the I.I.S.O. Conference on Stochastics and
Optimization, Gargnano, Italy, September 1982.

t J. L. Kellogg Graduate School of Management, Department of Managerial Economics and Decision
Sciences, Northwestern University, Evanston, Illinois 60201.

189



190 EITAN ZEMEL

for large k, the solution of the continuous problem can be very closely approximated
by the above-mentioned hexagonal pattern. We can strengthen and generalize these
observations in several directions. We show that the first observation is valid not only
for median problems in a square region of R 2, but is satisfied also for both median
and center problems within an arbitrary region of R d (under very mild qualifications).
Furthermore, the closeness of the continuous and discrete versions can be asserted in
the strong sense of almost sure convergence as opposed to the weaker notion of
convergence in probability used in [16]. (On the difference between these two notions,
and the relevance of the stronger one to optimization problems such as are considered
here, the reader is referred to [17] and [19].) The second observation of [16], namely
the optimality of the hexagonal pattern for the k median problem in a square region
A of R 2, can also be generalized. In fact, both median and center problems in a general
region of R2 (under the same mild qualifications) are solved with high probability
within arbitrary accuracy by the honeycomb heuristic. Thus, the main result of this
paper for the two-dimensional case can be summarized in the following theorem:

MAIN THEOREM. Let A be a compact region in R 2 of volume IAI (and which

satisfies some mild condition to be specified later). Let n points be distributed uniformly
and independently in A. Let M* and m* be the optimal values of the k center and
median problems respectively. Let c (2/3x/) 1/2 0.620400. , /3 0.377196. .
Then, for k <-_ k(n) o(n/log n):

(a) M* a almost surely,

m* almost surely.

(b) The optimal asymptotic values indicated in part (a) are achieved almost surely
by placing the centers or medians in a regular hexagonal pattern throughout A. (The
same solution is optimal for both center and median problems.)

The precise details and terms used in the statement of this theorem will be clarified
in the subsequent sections. An almost as strong result for the three- and four-
dimensional k center problem is also obtained. We note that while the result on the
median in R 2 is a relatively straightforward generalization of Papadimitriou’s work,
the one concerning the center is new and is rather surprising. The objective function
of the center problem is of a different type than that of the median problem or

Travelling Salesman Problem in that it is not a minisum problem but rather is a minimax
problem. Thus, its objective function is potentially sensitive to the location of every
single point of V, in contrast to the median problem where we can ignore the position
of a small subset of the points. As a consequence, in order to provide a heuristic with
diminishing error for the center problem, one needs to take into account the location
of every individual point inside A. This is accomplished (asymptotically) by Lemma
5. It is this lemma which also restricts the results of this paper to the range k(n)=
o(n/log n). For higher values of growth of k, Papadimitriou provides a different
heuristic for the median problem in R 2. However, for the reasons just outlined, his
methods do not seem to carry over to the center problem.

While the continuous problem is well solved for the two-dimensional plane, we
have only partial results for higher dimensions. Almost-optimal solutions for the center
problem can be obtained from the results of [1], [4], [7], [13], [18] concerning the
covering of R d by spheres. However, it is not known whether the solutions obtained
are actually optimal and whether the optimal solutions for median and center problems
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still coincide in higher dimensional spaces, as they do in the case of the R e Several
other geometric location problems for which the continuous version is solvable could
be addressed using the same methodology. In particular, we consider the p-norm k
median problem and the twin problems of minimizing the maximum number of vertices
served by any center and similarly for maximizing the minimum.

2. Preliminaries. Let A be an arbitrary but fixed compact region in R a of volume
IAI and let V { Vl," Vn} be a given set of points in A. For every pair of two points,
x, y in R a, let d(x, y) be the Euclidean (L2) distance between them. Similarly, for
y R a and for each set X {Xl," , Xk} of points in R a let d(y, X) minx,X d(y, xi).
Let

(1) MA(X)=max d(y,X)
yA

and

(2) mA(X) d(y, X) dy

be the maximum and average distance respectively of a point of A from X. Similarly,
we can define maximum and average distances with respect to V, namely

(3) My(X) =max d(vi, X),
vi V

(4) my(X)
1 y d( v, X).
n vieV

The discrete (or, more precisely, discrete supply/discrete demand) k center and
median problems with respect to V seek a subset V’_ V of cardinality k which
minimizes My(V’) and my(V’) respectively. We denote the optimal objective values
of these problems by Mvv and mvv respectively. Three additional versions of the
center or median problem can be naturally defined--namely,

(5) MAA min MA(X),
XA

(6) MAv min Mv(X),
XA

(7) MVA min MA(V’),
V’_ V

and similarly for the median. We refer to these problems as the continuous supply/con-
tinuous demand, continuous supply/discrete demand, and discrete supply/continuous
demand problems respectively. All four versions of both median and center problems
are either prime suspects or known to be, NP-hard. (See Papadimitriou [16] for mvv,
Megiddo and Supowit [14] for MAy and mAy, Nasuyama et al. [14] for MAy and
MvV.) Our main interest in this paper is the relationship between the optimal solutions
to these four versions when n is very large.

Our starting point in this discussion is the optimal solution to the continuous
supply/continuous demand problems (or, "continuous problems" for short). Note that
the optimal values for these problems, mAA and MAA, respectively, depend on A but
not on V. Lemmas 1 and 2 below yield useful lower and upper bounds on these optimal
values:
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LEMMA 1. There exist positive constants y and (which depend on the dimension
d but not on k or A) such that

(8) MAA "y

(9) maa N

Pro@ The dependence on the volume A follows from the homogeneity of the
functions involved. Assume that IAI 1. The bound onM is obvious since from the
definition of M it follows that k d-dimensional spheres of radius M each must
cover the entire region A and thus their combined volume must at least equal 1. For
the bound on m, let A,..., A be the partition of A into Voronoi cells induced
by the optimal solution x,..., x e A which yield the value of m. Thus

m d(y, xi) dy
i=1

clearly,

d(Y, X,) dy->_ I_ d(y, u) dy,
/S

where Si denotes a d-dimensional sphere whose volume equals JAil and with ui as its
center. Let be the value of this integral for a sphere of volume 1. Thus,

i=1

kwhere the second inequality follows the fact that i= IAil 1.
Upper bounds on MAA and mAA of the same functional form but with constants

and which depend on A as well as on d can be easily derived (proof omitted)"
LEMMA 2. There exist positive constants and (which depend on A) such that

(10) M

(11) maNg

3. The relation between discrete and continuous problems. Our general strategy
is to approximate the optimal solution to a discrete problem by the solution to its
continuous counterpart. Obviously, the quality of such approximation depends crucially
on the extent to which the discrete set V is "spread evenly" throughout the entire
region A. One measure of the extent of "evenness" is the maximal distance between
an arbitrary point of A and its closest neighbor in V, A MA(V). Obviously, when A
is small, so is the difference between the continuous and discrete values:

LEMMA 3.
(a) Centerproblem. The absolute value of the difference between the objective values

of any two versions of the k center problem is bounded by 2.
(b) Median problem.

Imvv-mAVlNA,
[rgAA-- reVAl <- A.
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Proof. Consider two versions of the k median or center problem which share the
same demand set (i.e., are both either continuous demand or discrete demand) but
whose supply set is different. Consider the solution to the continuous supply problem,
say X={Xl,..., Xk}, xiA, i= 1,’’’, k. We can generate from X an approximate
solution for the corresponding discrete supply problem by replacing each center xi A
by its closest vertex viii) V. Since by assumption, d(xi, vj))<= A, we get the assertion
of part (b) together with the corresponding assertion on the center problem. To obtain
the remaining results concerning center problems consider two problems with the same
supply set (V or A) but with different demand sets. We note that for any supply point
xi E X

d(x, V) <= d(x, A) <= d(x, V) + A,

so that the objective functions cannot vary by more than A.
In order for Lemma 3 to be useful, A must be small. We now proceed to assess

the magnitude of A when n is large and V is scattered randomly in A. But first we
have to make an additional assumption on the region A. As will shortly be revealed,
the assumption is mild and is easily seen to be satisfied by any region of practical
interest. We note that the assumption is necessary for some of the lemmas which
follow; nevertheless, we believe the ultimate results of this paper are true in general.

We now state our assumption. Let I(s) be an infinite grid of cubes of mesh size
s, with faces parallel to the coordinate system. For any region A let A-(s) and A/(s)
be the set of cubes of I(s) which lie entirely in A and those which intersect A,
respectively. Obviously, the volume of A-(s) and A/(s) tend to that of A (from below
and above respectively) when s tends to zero. We require that these sets approximate
A in a stronger sense.

Let Bx, be a sphere of radius r centered at x and let Ax, "-A t3 Bx.r. For a set
A
_
R d let IAI denote its volume.
Condition A. There exist positive constants r0, y, 8, m such that for r <= ro, s <= r! m,

and for each x A we have

A+ =<(a) ,,r(S)l Tra,
(b) IA-,r( s) >-_ 6ra.
It is straightforward to demonstrate that condition A is equivalent to the require-

ment that for each point x A, the regions Ax, and B(x,r) have volumes which are
within a constant of each other and similarly for their surface areas. The condition
eliminates from discussion regions A which contain "sections" which are less than full
dimensional or where the ratio of surface area to volume is unbounded. The condition
is satisfied by every compact convex region in R a as well as by nonconvex regions of
bounded curvature. In particular, it is satisfied by regions bounded by a finite number
of planar faces. We call a compact region which satisfies condition A, proper, and
restrict our attention in the sequel to proper sets without further mention of this
qualification.

One simple consequence of condition A is extremely useful for bounding the
magnitude of A MA(V).

LEMMA 4. There exist positive constants So, To (which depend on A) such that for
every s <- So

MA-()(A) <= yoS
i.e., every point x A is within a distance of at most a constant number of cubes from
A-(s).
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Proof. Using the notation of condition A, let r =< ro and let s < r m. Then A-(x,r)(S)
contains at least one cell. Thus, the lemma holds with Yo m.

In order to couple Lemma 4 with Lemma 3, we have to find mesh size s which
would ensure that each cube in A-(s) contains at least one vertex of V. Clearly, if
this condition is satisfied, then we can bound A by a.s for some appropriate positive
constant a. To this end we study the number of points which fall in each cell of A-(s),
when the set V is uniformly and independently scattered in A. Lemma 5 below indicates
that for s values which are not too small (unsymptotically with n) each cube of A-(s)
contains more or less its "fair share" of vertices of V, almost surely. A similar type of
lemma, for a square region A_ R2, and using the weaker notion of convergence in
probability, is central to Papadimitriou’s paper [16] which motivated this research.

We note that Lemma 5 can be obviously tightened in various ways. However, the
following simple version is sufficient for our purposes"

LZMMA 5. Let n points be distributed uniformly and independently in a region
A_Ra of volume 1. Let A1,’’’,At(n) be a partition of A into t(n) equal volume
disjoint subregions, and let ni be the number ofpoints in subregion Ai. Then, the following
t(n) inequalities hold simultaneously almost surely:

hi--t- _--<x/12 log n. t()"
Proof. Let P7 denote the probablity that the ith inequality is violated and let P

be the probability that one or more of these inequalities is violated. Obviously,
t(n)P<--i= ri-t,n)P1. Note that under our assumptions, n is a binomial random

variable with n trials and probability of success 1/t(n). It follows from the normal
approximation to the binomial distribution, [17] that

2
P’ < 2 e-12 log n/4_ 2 e-3 log

n

Thus, pn< 2/n2 and therefore
It follows from Lemma 5 that if < n/12 log n each subregion Ai, i= 1,...,

contains at least one vertex of V almost surely. Consider a grid of mesh size s d! t.
Each cube of A-(s) contains at least one vertex of V almost surely. From Lemma 4
we know that each point x A is within a distance of as from A-(s). Thus, we can
conclude:

LEMMA 6. There exists a positive constant )’o (which depends on A) such that

MA(V) =- A <__ 3’o almost surely.

Lemma 6 bounds the absolute error associated with the approximation of a solution
of a discrete supply problem by the solution to its continuous supply counterpart. In
order to get a bound on the relative error, we use the bound of Lemma 1. Let M*
be the optimal solution to any given version of the k center problem and let MApp be
the objective function value for this problem obtained from the optimal solution for
any of the other three versions. We have thus shown:

THEOREM 1. Let k <= k(n) o(n/log n). Then

MApp M*
tends to zero almost surely with n.

M*
We now proceed to derive a similar result for median problems. Note that part

(b) of Lemma 3 takes us part of the way towards that goal. However, we still need
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to bound the difference between mvv and mVA and similarly between mAA and mAV.
This requires some further study of the structure of the optimal solution for median
problems. We open the discussion by investigation of the solution for the continuous
case. Let X {x,. , Xk} be the optimal location of medians for this problem. Lemma
7 below indicates that each point in X is "serving" a region Ai of a volume roughly
equal to IA[/k. Let

R max d(y, X),
yea

r= min d xi, xj
li<j<=n

be the maximal distance between a point and its median, and the minimal distance
between two medians respectively:

LEMMA 7. There exist constants ko, aa, a2, a, [2 (which depend on A) such that
for every k >= ko

<-R <=ce2

<=r<:fll

Proof. We may assume without loss of generality that IA[ 1. Note that k spheres
of radius R must cover the region A and hence their combined volume is at least one.
This yields the constant a2> 0 such that R >-a2/k a/a. On the other hand, k spheres
of radius r centered at the xi’s are mutually disjoint, and each has at least a given
fraction, say 3, of its volume within A (condition A). Thus, the combined volume of
these spheres cannot exceed 1/3, and we get r_-</31/k aid. To complete the proof we
need to show that there exists a constant ca such that r >= caR. Let c denote the volume
of the unit sphere in R d. Consider any two medians, xa and x2 with d(xl, x2)= r. Let
A be the Voronoi cell served by xa. By the definition of R, the volume of this cell
does not exceed cR a. Thus, the incremental cost of cancelling the center at xl (assigning
the region A to x2) satisfies

A+<= c. Rd r.

Now consider a point y whose distance from its center is R. Consider the reduction
in cost obtained by establishing an additional center at y. Clearly all the region of A
which is within a distance R/3 from y would be closer to y than to any of the old
centers by at least R/3. Thus we obtain that the reduction in cost by such assignment
satisfies

A__->6

The required result follows from the optimality requirement A_ _<_ A+.
Lemma 7 can be used to provide the following interesting result. Let A1," , An

be the k Voronoi cells associated with an optimal solution xl,. , xn. We say that A
and A are neighbors, if they share a common (d- 1)-dimensional face. Let m be the
number of neighbors of A. The lemma asserts that rn is bounded by a constant
independent of k:

LEMMA 8. There exists a positive constant 6 (which depends on A) such that

mi<--6, i-- 1,..., k.
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Proof. Let r and R be as in Lemma 7. Consider a given Voronoi cell, say Ai. The
faces of this cell are generated by the bisectors of the k- 1 line segments [xi, xj], j i.

By definition d(y, X)<= R for every y A. Thus, all bisectors generated by points xj,

] i, with d(xi, xi)>= 2R, do not contribute a face to Ai. Therefore, m is bounded by
the number of distinct centers x, j which are within a distance of 2R from xi. Let
this number be ffti. Since d(x, x)>= r for iS , we get that fft spheres of radius r
centered at the neighbors of x are disjoint. The combined volume of these r spheres
is rcra and all this volume is contained in a sphere of radius 2R + r centered at x. Thus,

rhicra <= c(2R + r) a <- c[(2Cl + 1)r]a

where R <= clr as per the proof of Lemma 7. It now follows easily that rh -<

(2cl + 1)a= &
LEMMA 9. There exists a constant O> 0 (which depends on A) such that the

combined surface area of the Voronoi cells A1, Ak is bounded by O ([A[(d-1)/ak) 1/.
Proof. The surface area of A itself is finite, say S. In addition we have at most 8k

additional planar faces, where the longest dimension is bounded by R <- a(IAI/k)/.
Thus, the total additional surface area is bounded by

kR- <-o+ k =- Ok/. Inl-/.

Lemmas 7-9 relate to the continuous supply/continuous demand median problem.
However, analogous assertions are valid almost surely for the other three versions of
the k median problem as well. In order to demonstrate this, it suffices to show that
assertions analogous to this of Lemma 7 are valid almost surely since Lemmas 8 and
9 are simple consequences of Lemma 7. But the proof of Lemma 7 can be easily
adapted to yield the required result by using Lemma 10 below which essentially states
that, for large enough spheres, the volume of a given sphere and the number of vertices
of V within it, are more or less proportional to each other. We use the notation
f(n)=a(g(n)) to indicate the relation limn_.oof(n)/g(n)=oe.

LEMMA 10. There exist positive constants 01, 02 such that if

r > r(n)= f[(log n) 1/a]n

the number nr of vertices of V in any sphere of radius r centered at a point ofA satisfies
almost surely

01nra <-- nr <- 02nra.
Proof. Let s(n)= ,/(log n/n) 1/a for some 3,> av/ as per Lemma 5. Consider a

sphere Bx.r of radius r centered at x e A. The number of vertices of V inside Bx, is
bounded from above and from below by the number of vertices within A/x.r( S) and
A-,r(S) (see condition A for definitions). Condition A ensures that the number of cells
within each of these two sets is bounded from above by y(r/s) a and from below by
,(r/s) a respectively. Lemma 5 ensures that each one of these cells contains at least
cln sa and at most c2n sa vertices of V almost surely. The required result now follows
by substitution.

Using Lemma 10, the reader should have no difficulty verifying that Lemmas 7-9
can be generalized for all four versions of the k median problem. In the sequel we
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refer to these lemmas in this wider context. We now come to the second main theorem
of this secton. Let m* be the optimal solution to any version of the k-median problem
and let mApp be the objective function value for this problem obtained from the optimal
solution for any of the other three versions:

THEOREM 2. Let k <= k(n) o(n/log n). Then

mApp m*
tends to zero almost surely with n.

Proof. We consider a region of volume 1. Part (b) of Lemma 3 takes care of
errors generated by the difference between discrete supply and continuous supply
problems. We now assess the difference between the optimal values of any two problems
which vary from each other by their demand set. Since Lemmas 7-9 apply to all four
problems, it suffices to examine just one case. Let X ={xl,’", Xk} be an optimal
solution to the continuous-continuous problem with corresponding Voronoi cells
At,..., Ak, and objective function value:

(i.e., m*= mAA). Let

m*= IA d(xi, y)dy
i=1

1 k

fit=- Z Z d(xi, vj)= mx(v)
n i=11)jEmi

be the value of this solution when assessed with respect to the discrete demand version.
Let

for we wish to bound the magnitude of 3’.
Consider a grid I(s) with s UxUv/i/t where is to be specified later. Let I+ and I-

denote respectively the index sets of the cubes of I(s) which fall in A/(s) and A-(s).
Similarly, for each Voronoi cell Ai, i= 1,..., k, we let I, and I- denote the index
sets for the cubes in A-f(s) and Ar,(s) respectively. Let aq be the volume of cube q
inside cell A and let nq be the number of vertices there. Finally, for each cell cj,
j N/, let k be the center point of the cell. Obviously, there exists a constant 3 > 0
such that

and similarly,

k

m*- i=, / a,d( k, xi)

k nq
fit- Z E --d(k, x,)

i=1 jE; rt

To complete our assessment of 3’ Ira*-rnl, we will need a bound on

k

 0=Z Z
i=1

nq
aq

We note that by Lemma 7, d(k)x)) is almost surely bounded by al(1/kl/a). We now
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assess the magnitude of

k

i=1 j=I-

nj k k

+aonn i=l jeI n je I-i

< niJ--sd-I- I (--+-aij)
E --x/i2(1g n)sd

+ E p,(c s + sa)
je- n i=

where p is the number of cells broken by the boundary of region A and Cl is a positive
constant. By Lemmas 8 and 9, we know that

k

Pi a" kl/a/S
i=1

for some constant & Thus, we get constants 8 and a2 such that

/log n
al

nsa
+ ak/as

and therefore for positive constants a3, 84

/logn 1

Note that T has the same asymptotic form. Now choose such that s l/t satisfies
s= o((1/k)l/a), s O((log n/n)/a). This choice ensures that T O((1/k) /a) and the
result now follows Lemma 1.

4. Soltion o the continuous problem. We are finally faced with the last phase
in our chain of approximations. Theorems 1 and 2 enable us to approximate the
solution of the discrete problem by the solution to its continuous counterpart. We now
wish to solve the continuous problem. For the two-dimensional plane, the situation is
especially attractive. Both center and median problems can be solved by the same
heuristic, namely, placing the centers Xl,’’’, x in a regular hexagonal pattern. The
optimality of the hexagonal pattern for various continuous location problems over the
entire 2-D plane has been known for some time, e.g., [5], [6], [13]. The asymptotic
optimality of this pattern for the median in a square region of R 2 is proven by
Papadimitriou [15]. His proof can be generalized to any proper region A g R2 for
both median and center problems. We summarize these results in the following theorem
which we bring here without a proof. The constants /3 0.6204003... and
=0.3771967... used in this theorem correspond to the optimal values of the
continuous one center and median problems respectively in the regular hexagon of
area one.

Tuzoz 3. Let A gR2, kk(n)=o(n/log n). For every e >0, there exists
k0> 0 such that for k ko the following relations hold almost surely:

(a) + e >-- MAA >-- (Or 8)

"st- 8, >= mAA e ( 8

(b) The lower bounds of part (a) are realized by the "honeycomb" heuristic.
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For higher dimensions, the results are somewhat weaker. Nevertheless, for d 3
or 4, we can use the findings of Bambah, Barnes, Few and Coxeter, Few and Rogers
[1], [2], [7] (see [18] for a summary) concerning the density of covering of space by
spfieres. Let ra denote the radius of a sphere of volume one in R d. Let a3 1.1268 ,
c3 1.1354 , o4 1.1347 , t,4 1.1526. .. The reader may note that for d 3,
4, a and c are within 1% or so from each other.

THEOREM 4. Let A
_
R, d 3 or 4, k <-_ k(n) o(n/log n). For every e > O.there

exists ko > 0 such that for k >-ko the following relation holds almost surely"

(__) lid (_) lid

Oldl"d E) MAA adl’d + e)

It seems likely that Theorem 4 can be generalized to higher than 4 dimensions
and to the median problem as well. It is interesting to check whether an exact asymptotic
value for the objective function exists for 3, 4 or higher dimensions, and whether the
optimal solutions for the median and center problem coincide as they do in R 2.

5. Extensions. The results of this paper can be obviously generalized to various
other geometric location problems for which the continuous problem is solvable. A
particularly straightforward example is that of minimizing the maximum number of
vertices in each Voronoi cell or maximizing the minimum. More specifically, let
X {Xl,""" Xk} and let A1,’", Ak be the set of induced Voronoi cells. Let ni be
the number of vertices of V in Ai. Let

Nvv min max hi,
V’_ V i=l,...,k
W’=lkl

nvv max min ni.
V’ V i=l,...,k

Obviously, Nvv >- n k, nvv <- n k. Theorem 5 below indicates that for k <= k(n)
o(n/log n), these bounds can actually be achieved. (Any positioning of the x’s such
that the volumes of the cells Ai are "close" to IAI/k will do; in particular, the centers
can be chosen so that these cells correspond to identical cubes of I(s) for some
appropriate s.)

THEOREM 5. LetA
_
R, k <- k(n) o(n/log n). For every e > 0 there exists ko> 0

such that for k >= ko the following relations hold almost surely

n n
<_ ,,1Vvv <

k-

n n

The proof of Theorem 5 follows easily from Lemma 5.
We finally mention the p-norm k median problem, namely the problem

Zp min min d(vivj)P
V’_ V

vi V v.i V’

It is straightforward to demonstrate that the analogues of Theorems 1 and 2 are valid
for this problem as well. Also, for the two-dimensional case, we have the following
analogue of Theorem 3.



200 EITAN ZEMEL

THEOREM 6. LetA c_ R 2, k <= k(n) o(n/log n). For every e >0 there exists ko>0
such that for k >-ko the following relations hold almost surely:

(1 e)cn/p <_- Z _<- (1 + e)cn/

where ce is the value of the continuous p-norm one center problem inside a regular
hexagon of area one.
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THE EFFECT OF THE PERTURBATION OF HERMITIAN MATRICES
ON THEIR EIGENVECTORS*

JOHN DE PILLIS" AND MICHAEL NEUMANN:

Abstract. We show that under some appropriate normalization, the eigenvectors corresponding to the
maximal and minimal eigenvalues of a hermitian matrix subjected to a small perturbation.by a positive
semidefinite matrix decrease and increase in length, respectively. It is also shown that an eigenvector of a
general matrix corresponding to an eigenvalue which increases in modulus must, if normalized in some
particular fashion, eventually decrease in length if the matrix undergoes a sufficiently large perturbation.

AMS(MOS) subject classification. 15A18

1. Introduction. Despite the broad literature on the theory and applications of
the spectral properties of hermitian matrices, there do not seem to be many papers
found specifying the effect on the eigenvectors of the perturbation of a hermitian
matrix by a positive semidefinite matrix. In a sequence of papers by Davis 1], [2] and
by Davis and Kahan [3], and in Parlett’s book [5], studies are conducted of the angular
gap between the eigenspaces corresponding to, say, the maximal eigenvalue of the
unperturbed matrix and the maximal eigenvalue of the perturbed matrix, respectively.
Most of the results in these works either do not require that the eigenvectors under
examination be normalized in some particular fashion or, if normalization is applied,
then the (euclidean) length of the eigenvector is set to unity.

In this paper we wish to point several results concerning the effect of the perturba-
tion of hermitian matrices on their eigenvectors in the following directions: 1) If the
length of a component or of a group of components of the eigenvector is held fixed,
how does the length of the vector formed from the remaining entries of the eigenvector
behave as a function of the perturbation parameter. 2) If all the components of the
eigenvector are allowed to vary in some controlled fashion, how does the length of
the eigenvector behave as a function of the perturbation parameter. Roughly speaking,
it will be shown that under some moderate restrictions on the perturbation matrices
and subject to an appropriate normalization, the length of the eigenvector correspond-
ing to /max reduces as the hermitian matrix is perturbed in the positive semidefinite
direction, while the length of the eigenvector corresponding to Amin increases when
the hermitian matrix is subjected to a similar type of perturbation and when the
eigenvector is similarly normalized.

In Theorems 2, 3 and 4 we shall assume that the eigenvalues /min and /max’" of
each member of a family A(t), J, of hermitian matrices are simple. Under these
assumptions, Wilkinson [6, pp. 66-67] shows that, subject to certain arbitrary, but
fixed, normalization strategies, the components of the corresponding eigeaavectors are
analytic functions of the matrix entries in some open set in C n’n containing A(t), J.

In Theorem 2 we exhibit the results indicated in the opening paragraph for the
perturbation in a single diagonal entry. In Theorems 3 and 4 we consider much more
general perturbations. Theorems through 4 are given in 2 while numerical examples
illustrating our findings are given in 3.
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$ Department of Mathematics, University of California, Riverside, California 92521 and Department
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Theorems 2 through 4 describe the effect of the perturbation on the eigenvectors
locally. In Theorem we show that if h(t) is an eigenvalue of an n n matrix A(t)
such that Ih (t)[ increases with t, then eventually the corresponding eigenvector subject
to an appropriate normalization decreases in length.

For brevity in the presentation, we have stated results here for perturbations by
positive semidefinite matrices. Parallel results can be stated for perturbations by
negative semidefinite matrices. In addition, our results here can be generalized to
infinite-dimensional settings.

2. The main results. As mentioned in the introduction, our first result is concerned
with the eventual effect of the perturbation on certain of its eigenvectors of a general
matrix.

THEOREM 1. Suppose that

(2.1) a( t) ( B( CE)
are n n matrices, where B( t) are k k, k < n, matrices whose elements are continuous

functions in on the interval [a, oo). Let A(t) be an eigenvalue of A(t) and let

x(t)=
z(t)

be a corresponding eigenvector partitioned in conformity with (2.1) and normalized such
that ify( t) O, then Ily(t)ll <- Mforsomefixed constantM > O. t)l-, as t-, then

(2.2) lim z(t) 0.
t---

Proof. For t[a, oo) let rt := Ilz(t)ll. If for some toe[a, oo), rt =0 for all -> to there
is nothing to prove. Assume therefore that for any [a, ) such that r, =0, there
exists a to> such that r 0. Let

S { tit [a, o) and r, 0}.

S is clearly an unbounded set. For S define the (n- k)-vector

(t) := Z( t)/ rt,

so that II(t)II and z(t)= r,(t). Then from the eigenvalue-eigenvector relation for
S, namely,

we have that

(2.3) IlDy(t)+ r,EF.(t)ll- r, lA(t)l [l(t)ll- r, lA(t)l,
in which case on dividing both sides of (2.3) by r, we obtain that

Dy(t)+ E(t) IA (t)[.

Now let t-->o through values in S. As I(t)l- and as IIDy(t)[I and IIE(t)ll are
boundid for all S, we must have, in fact, that Dy(t)=/= 0 for S sufficiently large
and that rt->O as S tends to . Thus because rt =0 outside S, the limit (2.2) is
valid. [3
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In contrast to the above results, all our subsequent statements are concerned with
the local effect of the perturbation on the eigenvector. In the next theorem we shall
assume that anytime an eigenvector has its first component nonzero, then that eigenvector
has been normalized so that its first component is I. We mention that both the theorem
and its proof are in the spirit of the results in Eisner, Johnson and Neumann [4].

THEOREM 2. Let

be a family of n n hermitian matrices, where f(t) is a strictly increasing differentiable
function in some interval J. Suppose that h(t):= hmax(A(t)) and Ix(t):= Amin(A(t)) are
simple eigenvalues of A(t) and suppose that their corresponding eigenvectors x(t) and
y(t), respectively, have a nonzero first component throughout J. Then:

(i) Ilx(t)ll2 is decreasing in over J, and
(ii) Ily(t)ll= is increasing in over J.
Proof. We shall let (t) and 37(t) denote the vectors formed from the 2nd through

nth components of x(t) and y(t), respectively.
(i) For J consider the eigenvector relationship

(A( t) A t)I)x( t) O.

Differentiating both sides of (2.5) with respect to and rearranging yields that

(2.6) (A( t) A t) I)x’( t) A’(t)x(t) A’( t)x( t).

We next argue that A’(t) > 0 throughout J, an observation which will be needed further
along. On premultiplying both sides of (2.6) by x*(t) we obtain that

A’(t)[[x(t)l]2-f’(t)- A’(t)llx(t)ll-f’(t)(x(t))2--O,
where x(t) denotes the first component of x(t). Then

f’(t)
;t’(t)= llx(t)[[>"

Next, as x](t) =0 for tJ, from (2.4) and (2.6) we observe that

(2.7) (D-A(t)I)’(t): A’(t)(t).

Because of the interlacing properties ofthe eigenvalues of hermitian matrices, D A (t) I
is negative semidefinite and so, on premultiplying both sides of (2.6) by (’(t))* we
have that

A’( t)(( t))’92 (t) (’( t))*(O- A (t)I)’(t) _-< 0.

Thus (g’(t))*:(t)_-<0 since A’(t)>0. Hence, recalling the Xl(t)= 1, we conclude that
IIx()ll= is decreasing in over J.

(ii) Just as in part (i) we argue that Ix’(t)> 0 throughout J. Next, in place of A (t)
and x(t) in (2.5) through (2.7), substitute A (t) and y(t), respectively. Then, similarly
to (2.7), we obtain that

(2.8) (D- Ix( t)I)fi’: Ix’( t)fi( t).

This time D-Ix(t)I is positive semidefinite and so premultiplying (2.8) by (97(t))*
yields that

Ix’(t) (37’(t))*)7(t) (y’(t))*[D Ix(t)I])7’(t) -> 0.

Thus, because Ix’(t) > 0, (97’( t))*)7( t) 0 and so Ily(t)ll- is increasing in over J. [3
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For convenience we have stated Theorem 2 with the perturbation occurring in the
(1, 1) entry. It is clear that a perturbation in any single diagonal entry will yield similar
effect on x(t) and y(t) provided that a similar normalization strategy is applied.
Consider then the following conjecture.

Conjecture. Suppose that

(2.9) a( t) ( B( CD)
is a family of n n hermitian matrices over an interval J with the following properties"

(i) Amax(A(t)) is a simple eigenvalue of A(t) for each tJ.
(ii) B(t) are k k, < k < n, positive semidefinite and B(t) < B(t2) for t, t2 J

with t < t2.
(iii) B(t) is ditterentiable throughout J.

Suppose that the first k entries of an eigenvector of A(t) corresponding to ,max(A(t))
contain at least one nonzero entry for every J and let

z(t):
w(t)

be a corresponding eigenvector of a(t) normalized so that Ilu(t)[12: 1. Then IIz(t)ll2
is a decreasing function in over J.

The conjecture, which if true would have provided a particular extension of
Theorem 2, appears to be false as Example ofthe next section demonstrates. However,
as we shall show next, provided A’(t) satisfies a mild nonnegativity condition on J
(see condition (iv) of the following theorem) and provided A"(t) exists and is positive
semidefinite, A(t) does possess an eigenvector whose length decreases with subject
to a modified strategy of normalization.

THEOREM 3. Suppose that A(t), [a, hi, is a family of n n hermitian matrices
with the following properties:

(i) A (t) := A (A(t)) is a simple eigenvalue ofA(t) throughout J := (a, b).
(ii) A(t) =< A(t2) for tl <= t2 with t, t_ J.
(iii) A"( t) exists and is positive semidefinite throughout J.
(iv) If x( t) is an eigenvector of A( t) corresponding to A t), then

(2.10) (x(t))*A’(t)x(t)>O for tJ.
Let cb (t) be a positive decreasing (nonincreasing) differentiablefunction on J and let x(t)
be an eigenvector ofA( t) corresponding to A t) normalized so that

(2.11) (x(t))*A’(t)x(t)=ch(t), {b’(t)<0 or b’(t)_-<0 as the case may be}.

Then the length Ilx(t)ll= is a decreasing (nonincreasing) function in over [a, b].
Proof. To facilitate the proof we shall assume that the real part of the components

of x(t) are forbidden to reverse their sign (e.g. through multiplication of x(t) by -1)
except when passing through the value 0. The assumption (i) together with the
normalization (2.11) ensures then that x(t) is differentiable with respect to in J.

Throughout the proof we shall assume that b’(t)<0 in J. Consider then the
eigenvalue-eigenvector relation on J,

(2.12) (A(t) A (t)I)x(t) O.

Differentiating both sides of (2.12) we obtain, after some rearranging, that

(2.13) (A(t)-A(t)I)x’(t)= A’(t)x(t)-A’(t)x(t),
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and premultiplying both sides of (2.13) by x*(t) yields

,’(t) x( t)H (x( t))*A’( t)x( t).

Thus, because of assumption (iv), A’(t) > 0. Continuing, as A(t) A (t)I is negative
semidefinite, it follows from (2.13) that

(2.14) A’(t)(x’(t))*x(t)-(x’(t))*A’(t)x(t)=(x’(t))*(A(t)-A(t)I)x’(t)<-_O.

But then, because by (2.11) and (iii),

(2.15) 2(x’(t))*A(t)x(t) <= 2(x’(t))*A’(t)x(t) + (x(t))*A"(t)x(t) dp’(t) < O,

we see that (2.14) and (2.15) yield

2(x’(t))*x(t)<O.

Hence IIx(t)ll= is decreasing throughout [a, b]. D
It may happen that the first derivative of A(t) in the above theorem has A’(t)- 0

as, say, t- a. Then because b(t) 0 is nondecreasing and so does not tend to 0 as
t- a, the eigenvector x(t) satisfying the equality (2.11) will require scaling close to

a by ever increasing factors to maintain the equality. For stability purposes, this
situation can be overcome by considering the eigenvectors corresponding to the
maximal eigenvalues of the shifts A(t)- A(t)+ tL Such shifts have no effect on the
eigenvectors under consideration, but merely stabilize the computation of x(t) as - a.

Theorem 3 contains an important special case to which we devote the following
corollary.

COROLLARY. Let A be an n n hermitian matrix such that Amax(A) is simple. Suppose
that D is a positive semidefinite matrix such that x*Dx O, where x is an eigenvector of
A corresponding to Amax(A). Set

A(t)=A+tD

and let dp(t) be a positive decreasing (nonincreasing) differentiable function in some
neighborhood J oft=O. Then there exists a neighborhood J’ J oft=O such that IIx(t)[[2
decreases (does not increase) in over J’, where x( t) is an eigenvector corresponding to
A (t) Amax(A(t)) normalized so that

(2.16) (x( t))*Dx( t) d( t).

Comments. a) An example illustrating the results of Theorem 3 and the corollary
will be provided in 3. We remark that under the assumption of Theorem 3, if z(t)
is an eigenvector of A(t) such that

z( t) o( t)x( t)

for some differentiable function a(t), then Ilz(t)ll= is decreasing in J if and only if

(2.17) (z’(t))*z(t)- ’(t)(t)llx(t)ll/((t))(x’(t))*x(t)<=O.
Suppose now that the family of hermitian matrices of Theorem 3 has the form

(2.18) A(t)=(B(t) )C*
tEJ,

where the B(t)’s are k k, k < n, matrices. Partition the eigenvector x(t) of the theorem
in conformity with (2.18) into

X(t)=(x’(t))\X2(t)
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Because of (2.13), x(t) 0 throughout J. Define

(2.19) z(t) =x(t):= a(t)x(t).
IlXl(t)[12

Then, in reference to the Conjecture and (2.17), Example 3 shows that in general

(z’( t))*z( t) -(X( t))*X( t)l]x2( t)]] + I[x,(t) 22(X( t))*x2( t) 0.

We therefore raise here the question of characterizing the situations for which hermitian
matrices A(t) of the form (2.18) and which satisfy the requirements of Theorem 3 have
a family of eigenvectors normalized as in (2.18) and which satisfy (z’(t))*z(t)0 in J.

b) We observe that the function b(t) in (2.16) can be chosen to be a positive
constant, say k. In this case Corollary determines that a reduction in the length of
x(t) is achieved as x(t) traces a certain path on the quadratic surface ’*D’-k.

We close this section with a theorem parallel to Theorem 3 which gives conditions
for the growth locally of the length of the eigenvector of A(t) corresponding to
Amin(A(t)). Because of the similarity of the proof of this theorem to that of Theorem
3, it will not be given here.

THEOREM 4. Suppose that A(t), [a, b], is a family of n n hermitian matrices
with the following properties:

(i) /.(t):= Amin(A(t)) is a simple eigenvalue of A(t) throughout J:= (a, b).
(ii) A(tl) - A( t2) for t <-_ t2 with tl, t2 J.
(iii) A"( t) exists and is positive semidefinite throughout J.
(iv) Ify( t) is an eigenvector ofA( t) corresponding to I( t), then (y( t))*A’( t)y( t) > 0

for all J.
Let O( t) be a positive increasing (nondecreasing) differentiablefunction on J and let y( t)
be eigenvector ofA( t) corresponding to t.t(t) normalized so that

(y( t))*A’( t)y( t) b( t), [@’(t) > 0 or @’( t) >-_ 0 as the case may be].

Then the length [[y(t)]])_ is an increasing (nondecreasing) function in over J.

3. Numerical examples. To obtain numerical evidence for the results of the pre-
vious section we have examined a varied sample of examples using the MATLAB
Package (written by the Department of Computer Science of the University of New
Mexico at Albuquerque) on the VAX 11/750 with the UNIX Operating Syetem.
Typically our examples were constructed by generating a random matrix C and then
forming a hermitian matrix A by taking some matrix function of C*C.

For the examples displayed in this section, we consider a perturbation of the form

(3.1) A(t)=A+tD,

where A and D are the 6 6 positive definite and the 6 6 positive semidefinite matrices,
respectively, given by

0.8892
0.2833

-0.0489
A

0.1850
0.1240

_-0.1767

0.2833 -0.0489 0.1850 0.1240 -0.1716-
1.2114 0.1915 0.0762 0.0017 0.0797
0.1915 0.6443 0.0589 0.0703 0.0146
0.0762 0.0589 0.8243 -0.3024 -0.1150
0.0017 0.0703 -0.3024 0.7578 -0.0691
0.0797 0.0146 -0.1150 -0.0691 0.8234_
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and by

1.2700 0.6611 -0.2348 -0.0397
0.0611 0.5712 -0.3650 0.0794

-0.2348 -0.3650 0.6127 -0.3000

-0.0397 0.0794 -0.3000 0.6823

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

0.0000 0.0000-
0.0000 0.0000
0.0000 0.0000

0.0000 0.0000

0.0000 0.0000
0.0000 0.0000

Example 1. This example provides a counterexample to the Conjecture of 2. Let

x( t)
w( t)J

be the eigenvector of (3.1) corresponding to Amax(A(t)), where u(t) is a 4-vector and
where x(t) has been normalized so that its first entry is nonnegative and so that
Ilu(t)ll=- . Table illustrates that for a(t) of (3.1) and for

w(t)]
Amax(A(t))

w(t)

IIw(t)ll2 is increasing in length.

TABLE

w(t)ll2 w(t)ll2

0001 8.7870d-02 .01 8.9143d-02
.0002 8.7883d-02 .02 9.0405d-02
.0003 8.7896d-02 .03 9.1641d -02
.0004 8.7908d-02 .04 9.2849d-02
.0005 8.7921d-02 .05 9.4026d-02
.0006 8.7934d-02 .06 9.5172d-02
.0007 8.7947d-02 .07 9.6284d-02
.0008 8.7960d-02 .08 9.7360d-02
.0009 8.7973d-02 .09 9.8400d -02
.0010 8.7986d-02 .10 9.9401d-02
.0011 8.7999d-02 .11 1.0036d-01
.0012 8.8012d-02 .12 1.0128d-01
.0013 8.8025d-02 .13 1.0216d -01
.0014 8.8038d-02 .14 1.0299d -01
.0015 8.8051d-02 .15 1.0378d-01
.0016 8.8064d-02 .16 1.0453d-01
.0017 8.8077d-02 .17 1.0523d-01
.0018 8.8090d-02 .18 1.0588d-01
.0019 8.8103d-02 .19 1.0649d-01
.0020 8.8116d-02 .20 1.0705d-01

Example 2. In this example the normalization strategy applied to x(t) in the
previous example was altered to the normalization stipulated in Theorem 3 and the
corollary. Specifically, here x(t) is the eigenvector of the matrix A(t) given in (3.1)
corresponding to Amax(A(t))."

Ax(t) Amax(A(t))x(t),
normalized so that

(x(t))7A’(t)x(t)=(x(t))TDx(t) b(t) 1.
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Table 2 illustrates the decreasingness in length of this eigenvector.

TABLE 2

IIx(t)ll IIx(t)ll=

.0001 1.2372d + 00 .01 1.2273d + 00

.0002 1.2371 d + 00 .02 1.2174d + 00

.0003 1.2370d + 00 .03 1.2077d + 00

.0004 1.2369d + 00 .04 1.1980d + 00

.0005 1.2368d + 00 .05 1.1885d + 00

.0006 1.2367d + 00 .06 1.1792d + 00

.0007 1.2366d + 00 .07 1.1700d + 00

.0008 1.2365d + 00 .08 t. 1610d + 00

.0009 1.2364d + 00 .09 1.1521 d + 00

.0010 1.2363d + 00 .10 1.1435d + 00

.0011 1.2362d + 00 .11 1.1349d + 00

.0012 1.236 ld + 00 .12 1.1266d + 00

.0013 1.2360d + 00 .13 1.1184d + 00

.0014 1.2359d + 00 .14 1.1105d + 00

.0015 1.2358d + 00 .15 1.1027d+ 00

.0016 1.2357d + 00 .16 1.0950d + 00

.0017 1.2356d + 00 .17 1.0876d + 00

.0018 1.2355d + 00 .18 1.0804d + 00

.0019 1.2354d + 00 .19 1.0733d + 00

.0020 1.2353d + 00 .20 1.0665d + 00

Example 3. Our final example illustrates Theorem 4. Here the normalization

(y(t))rA’(t)y(t)= y(t)rDy(t) d/(t)=

was applied to the eigenvector y(t) corresponding to Amin(A(t)):

A(t)y(t) Amin(A(t))y(t),

TABLE 3

0001 1.2252d + 00 .01 1.2351 d + 00
.0002 1.2253d + 00 .02 1.2455d + 00
.0003 1.2254d + 00 .03 1.2565d + 00
.0004 1.2255d + 00 .04 1.2679d + 00
.0005 1.2256d + 00 .05 1.2799d + 00
.0006 1.2257d + 00 .06 1.2924d + 00
.0007 1.2258d + 00 .07 1.3055d + 00
.0008 1.2259d + 00 .08 1.3192d + 00
.0009 1.2260d + 00 .09 1.3334d + 00
.0010 1.2261 d + 00 .10 1.3482d + 00
.0011 1.2262d +00 .11 1.3636d +00
.0012 1.2263d + 00 .12 1.3797d + 00
.0013 1.2264d + 00 .13 1.3963d + 00
.0014 1.2265d + 00 .14 1.4134d + 00
.0015 1.2266d + 00 .15 1.4312d + 00
.0016 1.2267d + 00 .16 1.4496d + 00
.0017 1.2268d + 00 .17 1.4685d + 00
.0018 1.2269d + 00 .18 1.4879d + 00
.0019 1.2270d + 00 .19 1.5079d + 00
.0020 1.2271 d + 00 .20 1.5284d + 00

IlY(t)ll2 IlY(t)ll
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where, once again, A(t) is given in (3.1). Table 3 illustrates the increasingness in length
of this eigenvector.

Acknowledgment. The authors are very grateful to Professor Dr. Ludwig Eisner
for his constructive criticism on the original draft of this paper, and in particular on
a previous version of Theorem 3.
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INCREMENTAL PROCESSING APPLIED TO MUNKRES’ ALGORITHM
AND ITS APPLICATION IN STEINBERG’S PLACEMENT PROCEDURE*

H. W. CARTER’, M. A. BREUER: AND Z. A. SYED

Abstract. In this paper we indicate how the concept of incremental processing can be applied to
Steinberg’s procedure for the placement of modules. In this procedure Munkres’ algorithm is repeatedly
used to solve linear assignment problems. We consider each assignment problem (matrix) to represent an
incremental change with respect to the previous one, and present new techniques for solving a new assignment
problem given the results of the previous one. We refer to this new algorithm as the incremental Steinberg
algorithm. Experimental results indicate that this new algorithm produces results equally as good as the
classical technique but at a substantial reduction in CPU time.

Key words, incremental processing, layout, Munkres’ algorithm, PC cards, placement, Steinberg’s
algorithm

Introduction. The concept of incremental processing was introduced by Breuer
[2] as a means of reducing computation time. The basic concept is that when executing
an algorithm for similar pieces of data, the intermediate or final results from processing
one set of data may be useful when processing the next set. In this paper we apply
this concept to the classical problem of placing components either on a circuit board
or in a gate array LSI circuit. The algorithm which we chose to study for solving this
problem is due to Steinberg [6], which in turn employs Munkres’ [5] assignment
algorithm. It is this latter algorithm for which we have developed an incremental
processing version.

1. Review of Munkres’ and Steinberg’s algorithms.
1.1. Munkres’ algorithm. The linear assignment (LA) problem deals with assigning

n objects to n locations, where aij is the cost of assigning the ith object to the jth
location, such that the total cost of the assignment is minimal. The matrix A [aij] is
called the assignment matrix. The problem can be reduced to selecting n elements of
A such that

l) the sum of these n elements is minimal, and
2) the selected elements are independent, i.e., only one element is selected from

each row and column.
By subtracting appropriate constants from the rows and columns of A, it can be

shown that the LA problem can be solved by selecting n independent zeros from the
resulting matrix [4].

Munkres’ algorithm is an efficient way of selecting the n independent zeros from
the modified assignment matrix. The complexity of this algorithm is O(n3). We assume
the reader is familiar with this algorithm.

1.2. Steinberg’s algorithm. The placement problem can be defined as follows [3].
Given a set of modules with signal sets defined over subsets of these modules, and a
set of locations (slots) with distance do defined over all pairs of locations, assign the
modules to the locations so as to minimize some objective function. Let C [cj] be a
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COSt or connection matrix, where cij is the weighted sum of the signals common to
modules and j. Then we will take as our objective function the expression
j>icdpip, where p is a permutation, p(i) is the location of module i, and dxy is
the distance between locations x and y. Hence, for this choice of C, the placement
problem can be formulated as a quadratic assignment problem. Steinberg’s algorithm
is a heuristic procedure for solving this problem. Steinberg observed that for most
practical placement problems there are a large number of sets of modules which are
unconnected. The placement cost of a module in any set of unconnected modules is
independent of where the remaining modules in this set are placed. This observation
led to the idea that starting from an initial placement, the placement cost could be
monotonically decreased if a sequence of better placements for sets of unconnected
modules could be found. The placement of sets of unconnected modules is called a
subplacement problem.

Due to the independence of the placement cost of modules in an unconnected
set, each subplacement problem can be formulated as an LA problem.

In most implementations of Steinberg’s algorithm, Munkres’ algorithm is used.
In this paper we will show that for this application, a modified version of Munkres’
algorithm can be developed which is significantly more efficient than the classical
procedure. We gain this efficiency because Steinberg’s algorithm repeatedly executes
the Munkres’ algorithm, hence creating the environment for incremental processing.
Our modified Munkres’ method is called the Multiple Value Change (MVC) algorithm.
Incorporating this modified version of Munkres’ procedure into Steinberg’s algorithm
produces a new algorithm which we call the incremental Steinberg algorithm.

2.0. Linear assignment updating algorithms. In this section we will be concerned
with solving the linear assignment updating problem which is defined as follows: Given
an assignment matrix A and an optimal LA solution for A, find the optimal LA solution
to A’, where A’ is obtained from A by modifying a few of the entries in A. (These are
called incremental changes.) The conventional method of solution to this problem
would be to take A’ as a new assignment matrix and apply to it standard LA techniques,
e.g. Munkres’ algorithm. We will show that often a more efficient procedure exists.
Two algorithms for the LA updating problem will be presented in this section. The
complexity of these algorithms for small number of changes in A is O(n2).

The general form for our updating algorithm has inputs and X (S, A, T, U, V)
and output X’= (S’, A’, T’, U’, V’). In Munkres’ algorithm one starts with a matrix A,
and via a process of row and column subtractions, produces a final matrix T from
which a solution S is obtained. U and V represent vectors whose elements provide
the information on how T was constructed from A, namely ti a- u- vj. S consists
of a set of n pairs of the form (i,j) which indicates that row is assigned to column
j. represents the change in A which produces A’. If X (S, A, T, U, V) and X’=
(S’, A’, T’, U’, V’), then the LA updating algorithm calculates X’ given X and 8.

Before describing our algorithm for the general case, we will first present results
for the special case when only one element in A is changed. Though this case is not
used in our final version of the incremental Steinberg algorithm, we present it here
for several reasons, namely: 1) it represents the most elementary incremental type of
change possible, and can be processed in a special way significantly faster than that
required for the general case; 2) the proof for this case can be easily extended to cover
the general case; and 3) it most clearly illustrates the elegance ofincremental processing.

2.1. The Single Value Change (SVC) algorithm. The SVC algorithm updates X to
produce X’, where (a, p, q) represents a single change to the element apq of A by
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+ a. The SVC algorithm can be executed repeatedly inan amount a. That is, apq apq
order to process a sequence of changes.

The procedure first determines the type of change based upon the sign and
magnitude of a, and whether or not (p, q) is in the solution S. If the type of change
is a nontrivial update of matrix T to T’, then one iteration of the main loop of Munkres’
algorithm is performed. Otherwise the procedure exits immediately without performing
any part of Munkres’ algorithm. For example, if apq is decreased (increased) in value,
and (p, q) was (was not) in the solution, then it remains in (out of) the solution. Figure
indicates the possible cases which may occur in the execution of the SVC algorithm.

modify element
apq of A

by an amount a

(poq)S (p,q)’S

a>O a>O a<O

x*’-a x*a lals tpq lal>tpq
FIG. 1. Conditions for, and types of modifications required to produce X’ from X and 5 using the SVC

algorithm. " Solution S unaltered, algorithm exists after making a few changes in A, T and sometimes in U and
V. : Solution may be altered, algorithm executes one iteration of the main loop of Munkres’ procedure. x* is

the minimal element in row p andor column q of T after replacing tpq by a.

In the procedure a covering line in a matrix is an imaginary line indicating that
at least one zero exists in the row or column defined by this line. As was done in [5],
some zero elements will be distinguished by means of asterisks (stars) and primes.

The SVC procedure. Given an initial state vector X (S, A, T, U, V) and a change
(a, p, q) to A, where c 0, the SVC updating algorithm produces the new state

vector X’= (S’, A’, T’, U’, V’). We assume A is n n.
Step 1. Obtain A’ and T’ from A and T by replacing apq and tpq by 171pq-" Ol and

tpq " Ol respectively.
Step 2. There are three cases that have to be considered (refer to Fig. 1).
(i) nodes 8, 9" solution is unaltered and no further processing is needed.
(ii) nodes 2, 4" again the solution is unaltered. If t’pq is the minimum element in

row p, then subtract it from each element in row p and add it to Up, otherwise
subtract it from each element in column q and add it to Vq.

(iii) nodes 5, 10" the solution may be altered. Subtract from row p its minimal
entry and add this entry to uv; similarly subtract from column q its minimal
entry and add this entry to Vq. Now cover all columns except q and apply
Steps 3-5.

Step 3. Select a noncovered zero in T’ and prime it. (There must be at least one
the first time through this step.) Consider the row containing the selected zero. If there
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is no 0* in this row go to Step 5, otherwise cover the row and uncover the column
containing the 0* in this row. Repeat Step 3 until all zeros are covered.

Step 4. Let h be the smallest uncovered element in T’. Add h to each element in
each covered row and subtract h from the corresponding element ui in U. Also
subtract h from each element of each uncovered column j, and add h to the correspond-
ing element v in V. Go to Step 3.

Step 5. Construct a sequence of alternating starred and primed zeros as follows.
Let Zo denote the starting 0’ found in Step 3. (This 0’ has no 0* in its row.) Let Z1
denote the 0* in Zo’s column (if any). Let Z2 denote the 0’ in Zl’s row. Continue until
the sequence stops at a 0’ which has no 0* in its column. Unstar each starred zero and
star each primed zero in the sequence. Remove all primes. If n starred zeros are
obtained then exit. (These represent the solution S’.) Otherwise go to Step 3.

Note that Steps 3, 4 and 5 are derived from Munkres’ procedure.

2.1.1. Establishing the validity of the SVC algorithm. Two assignment matrices A
and T are considered to be equivalent if an optimal assignment for one is also an
optimal assignment for the other. The validity and optimality of the SVC algorithm
rests on the following observations.

Given A, T, U, V where o ao -ui- v, then T and A are equivalent [1]. Clearly
for the following cases, S’= S:

(1) (p, q) S, a <0,
(2) (p, q) S, a > 0,
(3) (p, q) S, a > 0 and x* a, where x* is defined in Fig. of the SVC algorithm,
(4) (p, q) S, a <0 and tpq > [a[.
Finally note that the execution ofStep 2 ofthe SVC algorithm preserves equivalence

of T and T’. Hence when Munkres’ algorithm is entered it converges to an optimal
solution to A’.

2.1.2. Complexity analysis for the SVC algorithm. The speed advantage to the
SVC algorithm is given by the following results.

THEOREM 1. n O*’s are obtained the first time Step 5 is executed.
Proof This result follows from the fact that when Step 5 is entered (n- 1) 0*

elements already exist in T’, hence only one new 0* element is required. Since each
iteration of Step 5 adds at least one new 0* element, the theorem follows. [-1

Note that the locations of the initial (n- 1) 0*’s do not necessarily correspond to
the locations of the final 0*’s.

Consider unit operations to be the following: scan a row or column; cover or
uncover a row or column; star, prime, unstar, or unprime a zero; add to or subtract
from a row or column.

The worst case path for the SVC algorithm requires (n- 1) iterations of Steps 3
and 4, and the total number of operations is 4n2+ 4n- 5 and hence this procedure is
O(n2). When Steps 3, 4 and 5 are not required, then the number of operations varies
from constant time to O(n).

2.2. The Multiple Value Change (MVC) algorithm. The MVC algorithm updates
an optimal LA solution when r rows and c columns of the original assignment matrix
A are modified producing the matrix A’. In fact, the dimensions of A and A’ need not
be the same.

The MVC procedure. Let A’ be obtained from A by changing rows i, i2,"" ", ir
and columns j,jE,’",jc. Let A-A’-A; then A may have nonzero entries only in
these rows and columns.
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Form the matrix T"- T+ A; note that some entries of T" may be negative. For
each (p, q) S for which p i, i2, , ir and q jl, j2, ",jc, star the zero at position
(p, q) in T". Now subtract from each row of T" that does not contain a 0* its minimal
entry (which may be negative) and add it to the corresponding element of U. Now
subtract from each column that does not contain a 0* its minimal entry and add it to
the corresponding element of V. The result is T’. Now cover each column containing
a 0* and then apply Steps 3-5 of the SVC algorithm.

Note that if A’ is obtained by changing k rows and/or columns of A, where
k--r + c, then one begins the Munkres’ algorithm with at least (n- k) 0* entries.

Complexity analysis of the MVC algorithm. The total number of operations for
the MVC algorithm is T(n,k)-t(n,k)+n+3k, where t(n,k) is the number of
operations required for Steps 3-5 of Munkres’ algorithm, and k r+ c is the number
of row and column changes. From Munkres [5], the maximum number of operations
required to obtain m + zeros, where m independent zeros have already been deter-
mined, is given by the expression m + 10m + 3 nm n + 4. If this expression is summed
from (n- k) to (n- 1), then we will have the expression for t(n, k); hence

n-1

T(n, k)= n+3k+
m=n-k

(m2+ lOm+3nm-n+4).

In Fig. 2 we indicate the value of T(n,k) for O.l<-k/n<-_l.O, n= 10 and 100,
where the value of T has been normalized by dividing by Tmax-- T(n, n). (T(n, n) is
essentially the time required to solve an n n assignment problem.) We see that there
is very little variation in T(n, k)/Tmax as a function of n, while for k < 0.5 the growth
in T(n, k) as a function of k is almost linear.

n=lO
1.0

.8-

T(n,k/n)
T(n,n) .

.2

0 .2 .4 .6 .8 1.0
k/n

FIG. 2. Number ofoperations (normalized) vs. number ofrows and columns changed expressed as percent
of total number of rows (or columns) in the matrix.

As k approaches n, T(n, k) is of the order O(/13), and there is no advantage in
using the MVC algorithm. We normally do not select to use the MVC algorithm to
replace Munkres’ algorithm unless 0 < k_-< K < n. We have not yet found the optimal
value for K for deciding which of the two algorithms to select.
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FIG. 3. Flowchart of the incremental Steinberg algorithm.

3. The incremental Steinberg algorithm. A flow chart of the modified version of
the Steinberg algorithm using the MVC algorithm is shown in Fig. 3. Here M is a
subset of the set M* of all maximal unconnected sets (MUS). There are two main
conditions which enhance the suitability of the MVC algorithm over Munkres’
algorithm, namely:

(1) The assignment matrices for consecutive iterations should have a large number
of identical rows and columns;

(2) The location of the new solution elements (row and column assignments) for
A’ should be similar to those for A.

Condition can be met in part by careful selection and ordering of the maximal
unconnected sets. Condition 2 cannot be directly dealt with, but hopefully it is partially
satisfied by Condition 1.

Only those parts of the modified Steinberg algorithm which are ditterent from the
classical Steinberg method will now be described.

As in the classical method, the set M* of all maximal unconnected sets is generated.
For most practical problems the number of sets in this set is very large so a subset
M

___
M* is selected and used. As is normally done, the subset is selected using the

following selection criteria:
(1) sets containing large number of modules;
(2) sets such that the union of all selected sets equals the module set.
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In addition, sets are selected so that we maximize the number of elements in
common between consecutive sets. This latter condition is used to satisfy Condition

stated previously. We satisfy these conditions by first selecting sets which have a
large number of modules in common, and then ordering these sets such that the number
of common modules between consecutive sets is maximized. It will be shown later
that this enhancement procedure does indeed reduce CPU time, but unfortunately, in
some cases results in a slightly larger final assignment cost. For the sake of brevity,
we have not included the heuristic procedure used to order the sets in M.

Example. Consider a network which consists of three signal sets:

S={A,B, C,E,H}, S_={B,D,E, G}, S3={B,D,F},

and the eight modules A, B,..., H which are to be placed on a 3 3 slotted board.
The ordered maximal unconnected sets are: MI={E, F}, M2={A,F, G}, M3
{F, G, H}, M4 {C, F, G}, M5 {C, V}, M6 {A, D}, M7 {D, H}. (Some MUSs can
be eliminated if desired.) Because the board has one empty slot, we add the pseudo
element Z to all MUSs.

The initial placement is shown in Fig. 4 where nets are connected via chains and
rectilinear distances are used.

7

F

2 3

C

FIG. 4. Initial placement.

For 1, Mi {E, F, Z} and we have

AI

6 7 5

4 3 F.

0 0 z

4. Experimental results. The algorithms described in this paper have been imple-
mented in PASCAL and executed on a PDP/10. In this section we will present some
of the results obtained. Our main questions to be answered are: how does the incre-
mental Steinberg algorithm compare in both final assignment cost and CPU time to
the classical Steinberg algorithm?
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The final assignment cost and CPU time required to achieve a solution is a function
of the path taken by the algorithm. The solution path depends on such factors as the
initial placement, the selected MUS, the ordering of the selected MUS, and the optimal
solution (more than one may exist) selected for each application of the LA process.

In order to make an accurate timing comparison, both our new and the classical
methods should follow the same path. Hence we used the same initial conditions,
selection, ordering and placement updating algorithms for both cases. In most cases
these conditions forced the two algorithms to follow the same path, but in some cases,
where a choice of optimal LA solutions exist at some stage, different solutions were
selected and the paths did diverge.

Four boards were evaluated. Their properties are summarized in Table 1.

TABLE
Board characteristics.

BOARD NO. TYPE

STEINBERG
REAL*

REAL*

REAL*

NO. OF MODULES

34

31

30

24

NO. OF SLOTS

36

32

32

32

NO. OF
SIGNAL NETS

5O

51

52

THESE ARE ACTUAL BOARDS.

Experiment 1. This experiment uses the following selection and ordering
algorithms for generating M.

ALGORITHM 1. Generation of M.
Step 1. i= 1.
Step 2. If i> number of modules, then exit.
Step 3. Find the largest MUS which contains the module i.

(a) If this set is already selected then set i= i/ and go to Step 2.
(b) If there is no tie then select this set.
(c) If there is a tie then select that set which has the largest number

of common entries with the already selected sets. If a tie still
exists then use the "lower index rule." Set + and go to Step
2.

ALGORITHM 2. Ordering elements in M.
Step 1. Starting with each set in M, find the best ordering in terms of maximizing

the intersection between consecutive MUSs. (Details of how this is done are not given
here.)

Step 2. Select the best of all the orderings generated in Step 1.

Finally the updating criterion used is to update the placement each time a
placement having a reduced cost is found.

The results from this first experiment are shown in Table 2. The results indicate
an average reduction in CPU time of almost 50%, with almost no change in the value
of the cost function. Note, however, that these results are biased in that the elements
in M are both selected and ordered to benefit the incremental Steinberg algorithm.
We rectify this situation in the next experiment.
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BOARD NO.

TABLE 2
Results from Experiment 1.

PREPROCESSING TIME
(% OF TOTAL)NG. OF MUS

IN INCREMENTAL CLASSICAL
ALGORITHM ALGORITHM

23 59 28

29 89 66

18 41 17

16 18

COST

INCREMENTAL CLASSICAL
ALGORITHM ALGORITHM

6131 6131

160 161

2586 2586

1020 1020

AVERAGE

0.62

TOTAL CPU TIME
(SEC.)

INCREMENTAL CLASSICAL ,,%,,.ALGORITHM ALGORITHM

44 88 50

62 81 23

19 43 55

30 77

1INCLUDES GENERATING M*, AND ORDERING

*"%" MEANS IMPROVEMENT

Experiment 2. For this experiment the following changes were made, namely:
l) a new selection rule for generating M is used; and
2) no ordering of the sets in M is used for the classical algorithm, but the elements

are still ordered for the incremental version. Note that the same path will no longer
be followed. The new selection rule is given next.

ALGORITHM 3. Generation of M.
Only Step 3(c) of this algorithm is presented since the rest of the algorithm is the

same as Algorithm 1.
Step 3(c). If there is a tie, then select that set which has the smallest number of

common modules with the already selected set of MUSs. If a tie still exists, then use
the "lower index rule." Let i+ and go to Step 2.

Though this rule is the opposite of that found in Algorithm and gives a worst
case condition for applying the MVC algorithm, we still get very good results (see
Table 3).

TABLE 3
Results from Experiment 2.

NO. OF MUSBOARD NO. IN M

21

17

17

12

PREPROCESSING TIME
(% OF TOTAL)

INCREMENTAL CLASSICAL
ALGORITHM ALGORITHM

55 27

87 65

52 35

12

1INCLUDES GENERATING M*, M AND ORDERING M

*"%" MEANS IMPROVEMENT

COST

INCREMENTAL CLASSICAL
ALGORITHM ALGORITHM

6234 5575

139 149

2772 2934

1039 1039

AVERAGE

-11.8

6.7

7.1

0.0

O.5

TOTAL CPU TIME
(SEC.)

INCREMENTAL CLASSICAL
ALGORITHM ALGORITHM

45 91

61 81

14 21

17

50.7

24.6

30.6

64.9

Our incremental Steinberg algorithm was executed using Algorithm 3 for generat-
ing M with and without ordering. The results indicated a 2% average increase in cost
and a 14% average decrease in run time when ordering is used. The reason for the
reduction in run time is due to the fact that ordering makes the MVC algorithm more
efficient. However, it appears that by making consecutive MUSs similar, we may be
increasing the chances that the placement gets into a local optimal condition and hence
leads to suboptimal results. However, these results are not conclusive since for two
cases there was actually a small decrease in the final cost.



INCREMENTAL PROCESSING AND STEINBERG’S PROCEDURE 219

9OO0

CLASSICAL

COST

INCREMENTAL

____
ALGORITHM

oooo ’o
CPU TIME (SEC)

_I

30 40 50

FIG. 5. Cost vs. CPU time for both algorithms. (No preprocessing time indicated.)

Finally, in Fig. 5 we indicate a plot of the current solution cost vs. CPU time for
both the classical and incremental Steinberg algorithms. Board No. is used along
with Algorithm 1. Here we see that the path taken by the two algorithms is identical;
each cost for the incremental algorithm occurs also for the classical algorithm, except
that for the latter it is shifted to the right.

Conclusion. In this paper we have presented a new version of Steinberg’s placement
algorithm which employs the concept of incremental processing. This new algorithm
deals primarily with reducing the time required to solve the linear assignment problem.

Our experimental results indicate that this new algorithm leads to substantial
savings in computation time. We have also indicated that the method used in selecting
the MUSs to be used as well as their order can influence the performance of the
algorithm.

Acknowledgment. The authors would like to thank the first reviewer, who showed
us how to simplify the presentation of our algorithms.
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NUMERICAL SOLUTION OF NAVIER-STOKES PROBLEMS
BY THE DUAL VARIABLE METHOD*

CHARLES A. HALL

Abstract. Computational fluid dynamics as a research area has attracted mathematicians not only
because of its importance to the engineering community, but also because of the pitfalls that are encountered
in solving various discretizations of the governing Navier-Stokes equations. Such pitfalls are highlighted in
this paper along with methods to circumvent them.

Discretizations of the Navier-Stokes equations often can be viewed as systems defining flows on an
associated network. This observation provides a means of economizing on their numerical solution.

Key words. Navier-Stokes, convection-dillusion, networks, stability, dual variable
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1. Introduction. For centuries man has been intrigued by the mysteries of fluid
flow. Early in the eighteenth century, Daniel Bernoulli initiated the science of hydro-
dynamics which deals with the motion of fluids, d’Alembert introduced the principle
of conservation of mass in a liquid, and a mathematical theory of fluid flow emerged
under the guidance of Euler and Lagrange. It was Navier (1785-1836) and later Stokes
(1819-1903) who derived the basic nonlinear linear differential equations describing
the motion of a viscous fluid. These equations are central to all modern investigations
of fluid dynamics. From these early beginnings there has been a slow and arduous
development of rather complex theories to explain the phenomena of fluid flow. To
be sure, this development, even though spurred on by our 20th century interests in
aerodynamics, is far from complete.

Although analytical methods were first used to solve specialized fluid flow prob-
lems, the advent of high speed digital computers coupled with robust numerical
algorithms has made it possible today to solve complex, large-scale fluid flow problems
arising in diverse engineering applications. Specific applications include:

flow of air around airplanes and automobiles,
flow of water through soil,
flow of steam-water mixtures in heat exchangers,
flow of fuel-air mixtures in combustion engines,
flow of oil through porous rock,
flow of tidewater in lakes and estuaries,
flow of lubricants around bearings,

to name but a few.
Computational fluid dynamics is a research area which has attracted many

mathematicians, especially numerical analysts, not only because of its importance to
the engineering community, but also because of the many pitfalls that are encountered
in solving various discretizations of the governing equations. The nonlinearities in-
volved in such convection-diffusion models give rise to nontrivial questions of the
existence and uniqueness ofa solution. Spatial as well as temporal instabilities may occur.

* Received by the editors July 26, 1983, and in revised form December 10, 1983. This research was

supported by the Air Force Office of Scientific Research under grant AFOSR-80-0176 and was presented as
an invited talk at the 62nd Summer Meeting of MAA, August 23-26, 1982, Toronto, Canada.

t Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics,
University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
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In addition, the equations involved are typically not well structured and the task of
constructing efficient, robust solution algorithms is formidable. Many two-dimensional
and certainly all practical three-dimensional analyses of fluid flow problems tax current
computer capabilities at all but a very few installations.

This paper deals primarily with the dual variable method [1], [8] which uses
network theory to construct matrix transformations of the discrete Navier-Stokes
equations that nominally reduce by a factor of 27 the computational cost in solving
two-dimensional transient fluid flow problems. This method is atypical since the very
construction of the algorithm as well as its analysis embraces rather nontrivial mathe-
matical concepts. The dual variable method has been successfully applied in large
scale production computer codes which have been used to model for example two
phase flow through steam generators of nuclear power plants, flow of combustion gases
through automotive catalytic convertors and flow of binary gas mixtures in gas turbine
engines.

2. The Navier-Stokes equations. The mathematical equations governing the flow
of a viscous incompressible fluid are the well-known 14], 17] Navier-Stokes equations,
which in dimensionless form can be written:

(1)

Ou Ou Ou Op
-ku+ v
Ot Ox Oy Ox

Ov Ov Ov Opw+u--+v
Ot Ox Oy Oy

-x2+Oy2] + F,,

+

where (u, v) is the dimensionless velocity vector, p is dimensionless pressure, R is the
Reynolds number and Fi are source terms. The Reynolds number is defined to be
R =-uodp/lz where/z is the fluid viscosity, p is the fluid density, d is a characteristic
length and Uo is a characteristic velocity. Generally speaking, the higher the Reynolds
number, the more difficult it is to compute solutions to (1). These nonlinear convection-
diffusion partial differential equations can be derived from first principles as represent-
ing a conservation of momentum.

Similarly, the physical law of the conservation of mass gives rise to the constraint
that

Ou Ov
/--0o(2)
Ox Oy

Mathematically, our problem is to find u, v, p satisfying (1)-(2) for (x, y) in some
flow region D c R2, and for time >_-0, subject to a combination of flow specified,
pressure specified and line of symmetry (free slip) boundary conditions. Since (1) is
time dependent we must also specifiy an initial state u(x, y, 0), v(x, y, 0) and p(x, y, 0).

Equations (1)-(2) represent an extremely simplified model, but are sufficient for
our main purpose of illustrating the dual variable reduction technique. More complex
models, such as those solved numerically to obtain results to be shown later, nominally
require that:

A thermal energy or temperature transport equation be added to system (1)-(2)
which predicts the enthalpy h or the temperature T of the fluid.
A state equation be added in which the density p depends locally on the fluid
temperature and/or fluid pressure.
Resistance terms (possibly nonlinear) and gravitational terms be added as
sources F and
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For example, the system investigated in [5] is of the form

O(pu)
Ot
+ (puE)+ (puv) _O___p+ox Ix \-X2+-y] +(alu]+ b)u,

Ot O-- y(pv2)

ap +a(pu)_ a(pv)
(3) + --o,

at ox oy

ay ayE]

o(ph)
Ot

o o
+--(puh + (pvh F3

c3X -y
p=p(h).

Density now varies with enthalpy (so-called thermally-expandable flow) and hence
with position. As such it can not be taken outside the differentiation. For steam-water
mixtures [5], [9] the density may very radically in adjoining flow cells along a steam-
water interface making (3) a much more formidable numerical problem than the
incompressible problem (1)-(2).

3. Discretizations of Navier-Stokes equations. Early analytical approaches for
solving the Navier-Stokes equations gave way to numerical methods early in the 20th
century. Currently, there is a scholarly controversy over which means of discretizing
the Navier-Stokes equations is the "best" approach; finite difference or finite element,
and within each of these methods, heated discussion continues as to various choices
between difference operators and element types respectively [4], [7], [15]. Our purpose
here is in no way to resolve these issues. However, we will illustrate in the next section
that for most reasonable choices, the dual variable method provides a means of
economizing on the cost of solving whatever discretization is chosen.

First though, we illustrate two of the computational pitfalls encountered in the
discretization of convection-diffusion equations such as (1), and the ways in which
one can circumvent these problems. For ease of exposition, consider the one-
dimensional boundary value problem:

au -- u,,, O, 0 < x < 1,

(4)
u(0) 0, u(1)= 1,

where a and R are positive constants. One can verify that the solution to (4) is

(5) u(x) (1 enX)/(1 e’eR).

Suppose we seek a finite difference solution to (4) in a uniform grid 0 Xo < xl <
< xN of gauge Ax 1/N and use the "standard" central difference operators

to obtain the second order consistent finite difference equations

(6) a
2Ax - Ax2

where ui "-u(xi). This set of difference equations has the closed form solution

(7) ui=(1-zi)/(1-zN), O<--i<=N

where Z=(2+aRAx)/(2-aRAx). Note that Z is the (1, 1)-Pad6 second order
approximant to e"Rx’.
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-N=IO
a=0.9
R 50

1_
TRUE SOLUTION J

" CENTER DIFFERENCE
O O UPWIND DIFFERENCE

FIG. 1. One-dimensional convection diffusion.

But, unfortunately the centered difference approximation (7) oscillates unless
Ax < 2/aR. For example, if R 50 and a 0.9 then for N-< 22 the solution oscillates
in space (cf. Fig. 1). Such oscillations, or bounded spatial instabilities also occur in
finite element solutions [4], [7], [12]. In fact, (6) is precisely the system of equations
obtained from the finite element Galerkin method based on linear elements.

An accepted means of avoiding the aforementioned instability is through the use
of upwind differencing [14], in which (4) is discretized as

(8) a( u-uw)Ax -(Ui-l-2U’+Ui+’)Ax= =0, I<i<N1=

where

u={ui if a>0, {u_ if a>0,

Ui+ if a < 0,
uW

ui if a < 0.

The derivative ux is thus approximated by the "gradient" of the fluid entering node
from "upwind". In our case (a>0), the system (8) has solution

(9) u, (1- Y’)/(1- yN), O<=i<= N

where Y (1 + aRAx) is the (1, 0)-Pad6 first order approximant to eaRax. The upwind
difference solution (9) has the highly desirable property that it does not oscillate for
any value of Ax (cf. Fig. 1). Note that if a < 0, then

(10) u,=(1 + Yi)/(1 + YN), 0 <-_ <- N

where Y (1- aRAx)- is the (0, 1)-Pad4 approximation to eaRax. Again the solution
does not oscillate.

Upwind differencing has also been used successfully in conjunction with finite
elements by Christie et al. [4], Heinrich et al. [12] and Heinrich and Zienkiewicz [13].

Our purpose here is not to denigrate the second order consistent, oscillating
scheme in (6), but only to emphasize that spatial instabilities or oscillations do enter
into many such discretizations of Navier-Stokes equations and these must be dealt
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with accordingly. If one cannot afford to choose Ax small enough so as to stabilize
(6), then the first order consistent nonoscillating scheme (9) has much to offer, and in
fact has been used with great success by the author and his colleagues [5], [8], [9] for
two-dimensional Navier-Stokes problems. However, I want to point out that there are
other investigators who advocate not "suppressing the wiggles"; see for example Gresho
and Lee [7].

Next, let us recall that there is also a temporal instability when one discretizes a
time dependent problem such as the Navier-Stokes problem (1). Again for simplicity
consider, the one-dimensional problem (a > 0)

(11) u,+aux--u,x=O, 0<x<l, t>0

subject to initial conditions

(12) u(x,O)={e>O, x=.5,
0, x.5

and boundary conditions u(0, t)= u(1, t)=0 for t->0. The explicit (forward time
difference) discretization of (ll) is

(13)
ui ui ui ui- ui- Ui+l,- + a

Ax -- Ax2
l<_i<=N-1

where At is the time step and u’ u(iAx, mat). By standard arguments we now show
that this finite difference scheme is stable if and only if

(14) At<
RAx2

2+aRAx"

This is called the yon Neumann stability criterian [6]. If (14) is satisfied then from (13)
we have

m+l + aRA 2 + aRAx(15) u, jAt U,-l+ 1-
j
At u, + u,+,

as a convex combination of values of u at the ruth time step. As such u?+ is bounded
above by the maximum and below by the minimum values of u at the previous time
step and the boundary data. Replacing m by m 1, etc. we deduce that u?+ is bounded
above and below by the boundary and initial data.

But if (14) is not satisfied, then by an argument similar to [6, p. 93] one can show
that for some j

(16) ,u l> (2m+ l)-’ [2(2+ aRAx ]
The right-hand side grows exponentially as At 0, and hence the difference scheme
(13) is unstable if (14) is violated.

For large R, (14) requires At <Ax/a, but often a will be quite large forcing At
to be very small.

If such small time steps are computationally prohibitive (and for many applications
they are) then one is led naturally to replacing (13) by an implicit (backward time
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difterencing) discretization of (11) as

(17) u?+l-u? +a
At A’

re+l\-2u+Ax2 +ui+ ) =0, l<_i<_N-1.

That this discretization is stable for all choices of At also follows from standard
arguments [6, p. 102]. To wit, (17) yields

(18) u?+=u,-At +RAx u. RAX RA u,/

m+l > n+lNow suppose j is such that uj u for all k. Then with i=j in (18) we have,
since the quantity in brackets is nonnegative, that

(19)

Again, replacing m by m-1, etc., we deduce that the finite difference approximants

u+ are bounded by the boundary and initial data.
The point of the above discussion is that, for Navier-Stokes type equations, the

choice of implicit (backward) time differencing and upwind spatial differencing leads to

a very robust numerical algorithm.
For the two-dimensional Navier-Stokes problem,.(1)-(2), we follow this course

and use the discretization that was used successfully in [9], [10]. The flow region l’l is
subdivided into a union of rectangular mesh boxes or control volumes whose sides
are parallel to the coordinate axes. A MAC placement of variables Ill] is used in
which a pressure is associated with the center of a control volume and the component
of velocity normal to a control volume side is associated with the center of that side
(cf. Fig. 2).

V(N)

u(w)
P(C)

v(s)

U(E) I y

FIG. 2. A control volume with MAC placement of variables and compass designations (MAC--= Marker
And Cell).

These flows are all oriented in the positive coordinate direction. The centered difference
approximation, at the control volume center, to (2) is

(20)
[U(E)- U( W)]+ V(N) V(S)]

0"
Ax Ay

After multiplying by Ax Ay, (20) simply states that the net flow across the boundary
of the control volume is zero; conservation of mass.

The first (second) component of the Navier-Stokes equation (1) is approximated
at the center of the vertical (horizontal) sides of each control volume. Let us assume
that the time derivatives are approximated by implicit first order backward differences,
the convection terms (e.g., uOu/Ox) are approximated using upwind differences and
that the diffusion terms (e.g., 02u/Ox) are approximated using centered differences.
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Further, these equations are linearized by lagging the convective coefficients one time
step (um/(OU/oX)m/ is approximated by um(Ou/Ox)m/, etc.). The details of this
discretization are given in [1], [8] and are not included here. It suffices to state that
the linearized finite difference approximation to (1)-(2) obtained is of the form

A 0 pm+l Sm
Suppose there are N control volumes with L sides across which a normal com-

ponent of velocity is to be determined (note that the boundary conditions determine
some components of velocity and some pressures). Then, Vm+ is the L x vector of
velocity component approximations at time step (m + 1) and pm+l iS the N x vector
of pressure approximations at time step (m + 1). A is the N x L discrete divergence
operator approximating the divergence in (2), Ar is the L x N discrete gradient operator
approximating the gradient in the term grad p in (1), 0m is the L x L discretization of
the convective and diffusion terms of (1) and Km, Sm are source terms containing
known information such as boundary flows.

It must be emphasized that most other finite difference or finite element discretiz-
ations of (1)-(2) result in systems of equations of the same generic form as given in
(21) and most of what follows is also applicable to those discretizations. In the next
section the dual variable method is presented which replaces the (L+ N)x (L+ N)
system (21) by an equivalent (L-N)x(L-N) system. Note that L’-2N and that
this reduction in dimension is a factor of 3.

4. The dual variable method. Many discretizations of the Navier-Stokes equations
(1)-(2), and in particular that used in [1], [8], lead to a system of the generic form
(21). The second block row is termed the discrete continuity equation

(22) AVm+ =Sin
and the first row the discrete momentum equation

(23) QmVm+l -Arpm+ + Km
For the choices made in 3 it can be shown [8] that Qm is diagonally dominant

and hence of rank L. Further, if there is one segment of 0fl on which the pressure is
specified (normal velocity to be determined) then A is of rank N, ([8], see also 5
below). Hence, the matrix in (20) is of rank L+ N and the system has a unique solution.

Implicit finite difference equations, such as those developed in [8], while relatively
simple to formulate, are a set of (L+ N) equations which are so complicated that the
cost of solution may offset any savings realized by allowing the use of a large time
step. The dual variable method [1], [5], introduces a set of auxiliary variables in the
implicit equations which reduces the computational problem to one of solving a system
of L- N equations.

Assuming that (21) or equivalently (22)-(23) has a unique solution and ignoring
for a moment all motivation for what follows, the dual variable method consists of
the following observations and purely algebraic steps.

Step 1. A solution Vm+ to the N x L system (22) must be of the form

(24) vm+l v+l -F" V_/+1

where Vm+P is a particular solution of (22) and V_/+1 is a solution to the homogeneous
system AVm+H =0. This is sophomoric linear algebra. Hence, the first step is the
determination of a particular solution Vm+, to (22).
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Step 2. Find a basis {C1, C2, CR} for the null space of A and form the L R
matrix C with Ci as its ith column. Then

(25) AC =0

and

(26) V+I CXm+l

for some R vector Xm+l.

(27)

(28)

Step 3. Substitute ,.+1 from (24) into (23) to obtain the system

Q,,CX"+ -A7-p,,,+, + (K,,, Q,,V+I).

Step 4. Multiply (27) by C and use (23) to obtain the R R system

(C’QmC)X’+ Bm
where Bm= CT(Km-QmVn+I). The matrix transformation in (28) is termed the dual
variable transformation and (28) itself is termed the dual variable system.

Step 5. Solve (28) for X’/, recover the velocities V’/ from (24) and the pressures
P"+ from (25).

The following questions should occur to the astute reader’s mind and are addressed
below and in subsequent sections:

How can a particular solution -, to (22) be found efficiently?
What is the dimension R of the null space of A?
How can a basis C,. ., CR for the null space of A be found efficiently?
Can such a basis be found so that C T"Q,,C is sparse and such that C T"Q,,C can
be formed efficiently?
Is CTQ,,C nonsingular and can (26) be solved efficiently?
How can (25) be solved efficiently for P"+I?

The inherent advantage of the dual variable transformation is the considerable
reduction in the size (L+ N to R) of the system to be solved and hence a nontrivial
reduction in the computational cost per time step. If this advantage is to be of any
real consequence then the cost of the subsidiary calculations to obtain V"+, and C
must be minimal. That this latter cost is modest is demonstrated in the next section.
See also [1], [8].

Next consider the solvability of the dual variable system (26). Recalling that C
is L R and of rank R and Qm is L L and nonsingular, we seek conditions on Q,
such that the R R matrix CTQ,,C is nonsingular. The example

shows that the nonsingularity of 0 is not sucient. On the other hand, it is well-known
that C rQ,,,C is nonsingular if Q, is positive definite. Unfortunately, Q, derived as in
3 is not positive definite nor even symmetric. The following results from [2] do

establish sufficient conditions for the nonsingularity of C
THEOREM [2]. If YT"Qm 0 for all nonzero Y in the range (C) of the matrix

C, then CTQ,C is nonsingular.
Proof by contradiction. Let ,0 be an R vector such that CTQ,C =0. Then

Q,,C, belongs to the orthogonal complement of (C). If Y= C/, then Y0, Y
belongs to (C) and

yT"Q,,y yT-QmC I O,
which contradicts the hypothesis. Q.E.D.
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The hypothesis of the above theorem may be difficult to verify. However, the
following theorem which is a corollary of Theorem is directly applicable.to the dual
variable system.

THEOREM 2 [2]. If Q,, has positive diagonal and is row and column diagonally
dominant with strict diagonal dominance in either the rows or columns, then CTQ,,,C is
nonsingular.

Proof. Let Q,,-[qo] and assume for definiteness that it is rowwise strictly
diagonally dominant. Then for any L vector Y,

(29) yTQ,,y 1/2yr(Q,, / Q)y.

But for k= 1,..., L we have Iqkk[> .jk [qkj[ and [qkkl>= "jk [qjk[. Thus

2]qkkl > Y [qkj[ / Iqjkl - [qk + qk].
jk jk jk

Thus 1/2(Q, + QT) is strictly diagonally dominant and consequently positive definite.
Therefore, by (29) YTQ,Y>0 for all Y0 and by Theorem 1, CTQmC is nonsin-
gular. Q.E.D.

In [8, pp. 6-18] it is shown that the matrix Q in (23) satisfies the conditions of
Theorem 2 for all At. It is also shown in [8] that CTQmC is a very sparse matrix when
C is chosen as indicated in the next section.

5. Networks and the dual variable transformation. The essential ingredient of the
dual variable method is the transformation in (26) which recasts the implicit finite
difference equations (22)-(23) into an equation in terms of the vector X/, the entries
of which are termed dual variables. T. Porsching [16] first observed that the matrix A
is an incidence matrix of a directed network associated with the finite difference grid.
Various results from network theory then provide for efficient construction of the
transformations involved, hence preserving the cost savings realized in reducing the
size of system to be solved at each time step.

The directed planar network r of interest has a geometric realization G() in
which the nodes are the mesh box centers, and the interior links connect the nodes of
contiguous mesh boxes and are directed in the positive sense of the x or y axis. The
boundary links of are those links of G() that are normal to segments of where
a pressure is specified.

For example, consider a channel with no slip walls containing an obstacle as
illustrated in Fig. 3.

VELOCITY
SPECIFIED

//////////////

//////////////

//////////////

//////////////

NO-SLIP WALL
//////////////

/////////////
NO-SLIP WALL

FIG. 3. Channel with obstacle.

PRESSURE
SPECIFIED

This flow region is decomposed into 14 control volumes. Assume the boundary
conditions are as specified, then the associated network is as illustrated in Fig. 4.
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"r

)
7 \

N =14- =21

LO=l8

13

FIG. 4. Flow region D and associated network G(/’).

The number N of nodes is precisely the number of unknown pressures and the number
L of links is precisely the number of unknown velocities.

Recall that A- [a0] is an incidence matrix of the directed network " if

+l if link j is incident from node i,
(30) au-- -1 if linkj is incident to node i,

0 otherwise.

The incidence matrix for the network in Fig. 4 is the 14 21 matrix

(31) A:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
-1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

0 0-
0 0
0 0
0 0
0 0
0 0
0 0

0-1 0
0 0-1
0 0 0

0 0
0 0 0
0 0
0 0 l_

2
3
4
5
6
7
8
9
10
11
12
13
14

Notice that the columns of A corresponding to interior links have exactly two
nonzero entries, + and -l, while the columns corresponding to boundary links have
exactly one nonzero entry.

The study of flows on a network is greatly facilitated by the use of the incidence
matrix. It provides a compact, concise way of mathematically stating that the flowing
quantity is conserved at the nodes of the network. The matrix A in the continuity
equation (22) for the mesh in Fig. 4 is, as observed in [16], precisely the incidence
matrix A in (31) for G(ff) and the ith equation in (22) states that the net flow into
the ith control volume is the ith entry of S,, cf. (20). For example, the net flow into
control volume 6 (row 6 of A), (V6 + VI4-V8), is balanced by the specified flow into
this control volume from outside of D. The net flow into control volume 9 (row 9 of
A), (-V7--V8---V17-V21), is zero and the corresponding entry of S, is zero.

That the rank of A in (31) is 14 follows almost by inspection, however, it is also
a consequence of the following result.
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THEOREM 3. If G(./f) has at least one boundary link then the incidence matrix A
is of rank N.

Proof. Suppose oTA- 0. We show (- 0 and hence the rows are linearly indepen-
dent. By hypothesis, there is a node k which is the extremity of a boundary link g
(e.g. node 5 and link 5 in Fig. 4). Since akg is the only nonzero entry in column g of
A we must have ak --0.

Discard node k, as well as any boundary links of which it is an extremity. Assume
for ease of exposition that there is one such boundary link. We create a sub-network
whose incidence matrix is an (N-l) (L-1) submatrix of A. The subnetwork also
has a boundary link which can be used to deduce another entry of a is zero.

Repeating this process a finite number of times, we deduce that (x- 0. Q.E.D.
From Theorem 3 we conclude that the matrix C used in the dual variable

transformation (27) is L (L- N) and has rank R L- N. Further, the dual variable
system is (L- N) (L- N) as promised.

Next consider the task of actually constructing the matrix C, or equivalently, a
basis for the null space of A. Again network theory plays a key role.

A cycle of is a chain of interior links whose extremities coincide and is such
that any other node is encountered at most once during a traverse of the chain. We
can associate a cycle vector Ck (Clk, CLK)T with cycle k by the definition

if link j has a positive orientation during
a counterclockwise traverse of the chain,

(32) Cjk- if link j has a negative orientation during
a counterclockwise traverse of the chain,

0 otherwise.

From Fig. 4, the network A has a cycle containing four links with cycle vector:

(.33) (-1 0 0 0 0 +1 0 0 0 0 0 0 0 -1 +1 0 0 0 0 0 0)T;
and a cycle containing eight links with cycle vector:

(34) (0 -1 -1 0 0 0 0 0 0 +1 +l 0 0 0 -1 +l 0 0 -1 +l 0) T.

THEOREM 4 [3]. If there are L interior links in A then there are L- N+ linearly
independent cycle vectors.

Proof. See [3, p. 124].
For a planar network define a country (or face) of as a finite region of the

plane bounded by links which contains neither nodes nor links in its interior. The
boundary of a country is the cycle formed by the links which surround it. The two
cycle vectors given in (33) and (34) are boundaries of countries, however the following
is not,

(35) (-1 0 0 0 0 0 0 0 +1 0 0 0 0 -1 +1 0 0 -1 +1 0 0) T.

The region bounded by the links in this last cycle contains the link numbered 6 in its
interior.

THEOREM 5 [3]. L- N+ linearly independent cycle vectors are obtainable from
cycles each of which is the boundary of some country.

Proof See [3, p. 136].
With regard to boundary links, there are L-L- chains such that the first and

last links of the kth chain are respectively the kth and (k+ 1)st boundary links. (In
Fig. 4, the boundary links are links 5, 8 and 13.) Such chains are called pseudo-cycles
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and the kth one defines the pseudo-cycle vector Ilk-" (dlk, dLk)T where the dik are
defined similar to the Cjk above. For example, the network W in Fig. 4 has a pseudo-cycle
with pseudo-cycle vector:

(36) (0 0 0 0 -1 0 0 +l 0 0 0 0 0 0 0 0 -1 0 0 0 O) .
Each dk is independent of the other pseudo-cycle vectors and all cycle vectors

since it contains a nonzero component where they do not. Hence:
THEOREM 6 [8]. Let C be the L (L-N) matrix whose columns are (L- N+ l)

linearly independent cycle vectors generatedfrom boundaries ofcountries and L- L
pseudo-cycle vectors. Then, the rank of C is L N and the columns of Cform a basis for
the null space of A.

Proof. That ArC 0 is proven in [8].
The matrix is termed a fundamental matrix of. For the network in Fig. 4 we can

choose C to be the 21 7 matrix:

(37)

2
3
4
5
6
7
8
9
10

C= 11
12
13
14
15
16
17
18
19
20
21

--- o o o o o o-
0 -1 0 0 0 0 0
0 -1 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 0 0 -1 0

+1 0 0 -1 0 0 0
0 0 +l 0 -1 0 0
0 0 0 0 0 +1 -1
0 0 0 +1 0 0 0
0 +1 0 0 0 0 0
0 +1 0 0 0 0 0
0 0 0 0 +l 0 0
0 0 0 0 0 0 +1

-1 0 0 0 0 0 0
+1 -1 0 0 0 0 0
0 +1 -1 0 0 0 0
0 0 +1 0 0 -1 0
0 0 0 -1 0 0 0
0 -1 0 +l 0 0 0
0 +l 0 0 -1 0 0_
0 0 0 0 +1 0 -1_

One can verify directly that AC 0 for A in (31) and C in (37). For the flow region
in Fig. 3, the system (21) is 35 35 while the dual variable system (28) is 7 7.

It is most fortuitous that in practice the fundamental matrix C need not be formed
explicitly as an L (L-N) matrix. The transformed matrix cTQ,,C in (28) can be
formed directly once the labels of the (at most) two countries which share each one
of the L links are known. See [2] for details of this construction as well as a discussion
of the structure of C TQmC. Suffice to state here that CTQmC is a sparse border-banded
matrix and system (28) can be solved efficiently using for example the frontal method.

The first step of the dual variable method requires the construction of a particular
solution to the discrete continuity equation (22). Such a solution is easily determined
by using a spanning tree of W, and algorithms for the determination of a spanning tree
are well known [3]. With the spanning tree available, one sets the velocities on the
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links of which are not in the tree equal to zero. Also, the velocities are set to zero
on boundary links.

Beginning with its outermost extremities, one then proceeds through the nodes of
the tree so that as each node is encountered, all but one velocity component associated
with links incident on that node has been determined. The continuity equation is used
to determine the remaining velocity, taking into account any specified boundary velocity
components.

2 3 4

19 2

"" VELOCITYSPECIFIED

For the network in Fig. 4, a spanning tree is given in Fig. 5. If the continuity
equations in (22) are ordered as the nodes are encountered above in the tree, (14, 9,
8, 13, 12, 10, 11, 7, 6, l, 2, 3, 4, 5), then the unknown velocities can be ordered (12,
7, 20, l, 10, 9, 19, 6, 14, 1, 2, 3, 4) so that the system to be solved is triangular.

Hence, the construction of a particular solution of the discrete continuity equation
is an easy task once a tree is determined. This same tree can be used to recover the
pressures from the pressure drops ATpm+l-- -Qmvm+l d-Km (cf. equation (23)).

Two final comments on the dual variable method. First, numerical experimentation
[5], [9], [10] indicates that there is considerable cost savings when the dual variable
method is applied to two-dimensional transient problems. Second, the dual variable
method can also be applied to compressible flow, steady flow and three-dimensional
flow problems.

6. Sample ttow problems. Three examples are now presented in which the dual
variable method has been successfully applied on a rather large scale to practical, real
world engineering fluid flow problems. The reader is referred to [8], 10], 16] for more
details.

A. Flow of exhaust gases in an automative catalytic converter. Fig. 6 illustrates a
cross-section of a GM bead-bed catalytic converter. These converters are packed with
some 250,000 one-eighth inch porous spheres on which have been deposited small
amounts of platinum. Hot engine exhaust gases pass into the c.onverter and then down
through the matrix of pellets where catalytic oxidation takes place to reduce the
constituent CO and HC emissions.

The accurate prediction ofthis chemical process requires knowledge ofthe dynamic
behavior of the exhaust gases as functions of converter geometry, pellet diameter, etc.
Ignoring the feedback of the chemical reaction, a reasonable flow pattern can be
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PACKED BED CONVERTER

FIG. 6. Catalytic converter geometry and flow field.

achieved by an incompressible forced flow model. Fig. 6 contains the velocity profile
for such a problem. The number of flow cells is N 743, there are L= 1,412 interior
links and L 1,423 total links. Hence, the implicit finite difference system (21) is of
order L+ N 2,166 while the dual variable system (28) is of order L-N 680.

B. Flow of a two-phase mixture in a preheater section of a steam generator. Simula-
tion of two-phase flow is essential for accurate prediction of the transient and steady
state performance of the nuclear steam supply system components of nuclear power
plants. The system of equations given in (3) model such flows under the assumption
that the two phases, steam and water, are a single homogeneous mixture. The mixture
is assumed to be thermally expandable; density varies with enthalpy.

Figure 7 is a schematic of the preheater section of a steam generator. Thousands
of tubes containing the primary "hot" fluid intersect this flow region in the vertical
direction. These tubes are modeled by resistance terms in the momentum equations
and they provide sources of heat for the thermal energy equation. We are modeling
the secondary fluid which is returning "cold" through the feed water nozzle, circulates
through this region from bottom to top, and exits through openings in the tube support
plate. The secondary fluid is heated as it passes around the "hot" tubes. The baffles
slow the flow, so that sufficient heat is transferred to produce steam near the top of
the flow region. These baffles are interesected by the tubes around which there are
openings permitting some vertical flow.

The side walls and deflection plate are modeled as free-slip walls, while the baffles
and support plate are modeled by means of form loss terms in the momentum equations.

This problem involved N 385 flow cells L= 715 interior links and L 735 total
links. Hence, equation (21) is of order 1,120 while the dual variable system (28) is of
order 350.

The steam-water interface is of great interest in such applications. Fig. 7 contains
illustrations of the two phases for different times. The shaded region is steam.

C. Flow of a two gas mixture through an axially symmetric centerbody combus-
tor. Mathematical combustor models of combustion tunnels are being employed to
provide information about performance trends of gas turbine engines and to predict
velocity, pressure and thermodynamic property profiles in simulated practical combus-
tion environments.
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GEOMETRY 4.5 SECONDS

5.0 SECONDS 6.0 SECONDS

8.0 SECONDS lo.o SECONDS

PREHEATER SECTION

FIO. 7. Transient development of steam in a preheater section of a steam generator.

Figure 8 is a schematic of an axi-symmetric centerbody combustor consisting of a
0.4592 ft diameter cylindrical bluff-body placed concentrically in a 0.8332 ft diameter
duct. Air is forced through the duct around the centerbody and gaseous fuel (propane)
or an inert gas (CO2) is injected at the center of the centerbody downstream face
through a 0.01575 ft diameter tube.

For noncombusting flows predictions ofthe mixture velocity, pressure, temperature
and density as well as the fuel concentration are sought in the region immediately
downstream of the centerbody as illustrated in Fig. 8. The system of partial differential
equations consists of axially symmetric (r, z) analogues of (3), the ideal gas law and
a transport of fuel concentration equation.

Figure 8 shows typical streamlines for flow past the centerbody. There are two
torodial vortices; the fuel vortex is trapped in front of the air vortex forcing the two
gases to be mixed.

This problem involves N 390 flow cells, L- 739, and L- 769. Hence, the system
(21) is of order 1,159 while the dual variable system (28) is of order 379.
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FUEL DUCT
LINE SCREEN . CENTERBODY WALL

AIR
LOW

CENTERBODY COMBUSTOR GEOMETRY

FIG. 8. Centerbody combustor geometry and sample flow field.
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A DECOMPOSITION AND SCALING-INEQUALITY FOR
LINE-SUM-SYMMETRIC NONNEGATIVE MATRICES*

GEORGE B. DANTZIGt, B. CURTIS EAVESt AND URIEL G. ROTHBLUM

Abstract. A matrix B is called line-sum-symmetric if it is square and the sum of elements in each row
of B equals the sum of elements in the corresponding column. Results from the theory of network flows
are used to obtain a decomposition of nonnegative line-sum-symmetric matrices. The decomposition is
employed to prove the following inequality: Assume D(x)AD(y) is line-sum-symmetric where A is a square
nonnegative matrix and D(x) and D(y) are diagonal matrices whose diagonal elements are the coordinates
of the nonnegative vectors x and y, respectively. Then yrAx >-xrAy.

AMS(MOS) subject classifications, primary 15A39, secondary 15A63

1. Introduction. A (real) matrix B is called line-sum-symmetric if it is square and
the sum of the elements in each row of B equals the sum of the elements in the
corresponding column of B. A scaling of an n x n nonnegative matrix A is a matrix
having the form DAE where D and E are n n nonnegative diagonal matrices. For
a nonnegative vector x in R", let D(x) denote the corresponding n x n diagonal matrix
whose diagonal elements are the coordinates of x. The purpose of this paper is to show
that if the scaling D(x)AD(y) ofthe n x n nonnegative matrix A is line-sum-symmetric,
where x and y are nonnegative vectors in R", then y rAx >= xrAy. This inequality is
used in Eaves (1984) to compute an equilibrium for the linearization of a pure exchange
economy with Cobb-Douglas preferences.

Our proof of the above inequality relies on a decomposition of nonnegative
line-sum-symmetric matrices. Specifically, we call an n n matrix C a simple circuit
matrix if there exist distinct integers il,’", ik, in {1,..., n} such that

Bq={10 if(i,j)=(it, it+l) forsomet{1,...,k},
otherwise,

where ik+ 1. We use known results concerning network fl.ows to show that every
nonnegative line-sum-symmetric matrix is a nonnegative combination of simple circuit
matrices. Of course, this decomposition resembles Birkhoti’s celebrated result that
every doubly stochastic matrix is a convex combination of permutation matrices.
Implicit in this decomposition of nonnegative line-sumosymmetrie matrices is a charac-
terization of the extreme rays of the cones of such matrices as the sets of the form
{aC: a->0}, where C is a circuit matrix (cf. Saunders and Schneider (1979, p. 532)).

Necessary and sufficient conditions for the existence of a doubly stochastic scaling
of a square nonnegative matrix, where the corresponding diagonal matrices have
positive diagonal elements, were obtained by Brualdi, Parter and Schneider (1966)
and, independently, by Sinkhorn and IOaopp (1967). In particular, such scalings exist
for matrices all of whose components are positive. Of course, every doubly stochastic
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MCS-7926009, ECS-8012974, MCS-8121838, U.S. Department of Energy contract DE-AMO3-76SF00326,
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matrix is line-sum-symmetric; thus, the above results establish sufficient conditions for
the existence of line-sum-symmetric scalings of square nonnegative matrices. Necessary
and sufficient conditions for the existence of a line-sum-symmetric scaling of a square
nonnegative matrix are given in Eaves, Hoffman, Rothblum and Schneider (1984).

2. Line-sum-symmetric matrices. Let n be a positive integer, let N--{1,.-., n}
and let G be the complete graph with node set N and arc set N x N. A flow on G is
a function z which assigns a nonnegative number to each arc of G such that for e N,

(1) z(i,j)= z(j, i).
jN jN

If z is regarded as an n n (nonnegative) matrix, (1) states that this matrix is
line-sum-symmetric. Indeed, it follows that there is a one-to-one correspondence
between flows on G and n x n nonnegative line-sum-symmetric matrices.

Let i,..., ik, with k>_-0, be a sequence of distinct integers in N. We call the
collection of arcs {(i,, i,/t): 1,. ., k}, where ik/ i, a simple circuit on G. Given
a simple circuit C

_
N N on G, we define the simple circuit flow corresponding to C

by
1, aC,

z(a)=
0, aNxN\C.

Evidently, under the one-to-one correspondence between flows on G and n x n line-
sum-symmetric matrices, simple circuit flows correspond to n x n simple circuit
matrices.

The theorem below is concerned with expressing a nonnegative line-sum-symmetric
matrix B as a nonnegative combination of simple circuit matrices, i.e., it is shown that
for such a matrix B there exist simple circuit matrices C,..., C,, and nonnegative
numbers 0, , 0,, such that B i=l OiC. We say that C is used in such a combination
if the coefficient 0 is positive.

THEOREM 1. Let B be an n n nonnegative matrix. Then B is line-sum-symmetric
ifand only ifB is a nonnegative combination ofsimple circuit matrices. Moreover, Bo 0

if and only if Ci 0 for each simple circuit matrix C used in such a combination.

Proof. It is well known that every flow on a graph is a nonnegative combination
of simple circuit flows (e.g., Denardo (1982, p. 99)).Thus, the correspondence between
n x n nonnegative line-sum-symmetric matrices and flows on G immediately yields the
asserted decomposition of such matrices. The characterization of the above matrices
for which given coordinates vanish follows immediately, l-1

The following are immediate conclusions of Theorem I. Let a c N x N. Then
there exists an n x n nonnegative line-sum-symmetric matrix B 0 with Bo -0 for all
(i,j) a if and only if there exists such a simple circuit matrix. Also, for a

_
N x N,

there exists an n x n nonnegative, line-sum-symmetric matrix B with Bo > 0 for each
(i,j) a if and only if for every (i,j) a there exists a simple circuit matrix C with

Ci> 0. These results were obtained by Saunders and Schneider (1979, Thms. 2.3
and 2.5).

3. The inequality concerning line-sum-symmetric scalings of square nonnegative
matrices. Before establishing the inequality concerning line-sum-symmetric scalings
of square nonnegative matrices, we need a few additional definitions.

Given a vector x R", we denote by D(x) the n n diagonal matrix whose diagonal
elements are x,. , xn, i.e.,

if =j,
D(x)i= 0 ifij.
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Also, we denote by x* the vector in R" defined by- ifxi 0,(x*)i
0 if xi 0.

Evidently, for x R",

(2) D(x)e=x,

where e= (1,..., l)r. Also, for A R"" and x, ye R", we have that

(3) [D(x)AD(y)],j x,A,jy, i,j 1,..., n.

Finally, for x R n, we have that D(x)D(x*) D(x*)D(x) is the n x n diagonal matrix

whose iith component is if x, 0 and 0 if x, 0. In particular,

(4) D(x)D(x*) D(x*)D(x) <= L

THEOREM 2. Let A be an n x n nonnegative matrix and let x andy be two nonnegative
vectors in R" where D(x)AD(y) is line-sum-symmetric. Then y tAx >- x rAy.

Proof. We first establish the conclusion of the theorem for the case where
D(x)AD(y) is a simple circuit matrix. In this case there exist distinct integers, say it,
i2," ik, such that

{(i,j): Ao 0} {(i,j)" [D(x)AD(y)]# 0}= {(i,j)" [D(x)AD(y)]o 1}

{(i, i2), (i2, i3),""", (ik, ik+)},

where ik+t =- it. In particular, withK {1,. , k}

(5) xi,Ai,i,+yi,+, 1, K.

We conclude that

(6)

and that

xAy . x,Aijyj Z x,,A,,,,/y,,/ k
i,j N t K

(7) YtAx=
i,jN t_K

In particular, (7) and the fact that the arithmetic mean is always larger than or equal
to the geometric mean imply that

k-yrAx k-1

tK tK
(8)

Ilk Ilk Ilk Ilk

We conclude from (8), (5) and (6) that

completing ur proof in the case where D(x)AD(y) is a simple circuit matrix.
We finally consider the case where D(x)AD(y) is an arbitrary line-sum-symmetric

matrix. As A O, D(x)AD(y) O, and therefore Theorem implies that D(x)AD(y)
is a (possibly vacuous) linear combination with positive coecients of simple circuit
matrices. Thus, there exist positive numbers 0,..., O and simple circuit matrices
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C(I)," ., C(m) such that

(9) D(x)AD(y)= OqC(q).
q=l

Allow m 0 in order to cover the trivial case where D(x)AD(y)=0.
For q 1,. ., rn, let A(q)= D(x*)C(q)D(y*). We next claim that

(10) D(x)A(q)D(y) C(q), q 1,..., m.

First observe that if x, # 0 and yj O, then for q 1,. , m, A(q)ij (x*)iC(q)o(y*)j
(x,)- C(q)o(y)-, implying that C(q),j xA(q)oy [D(x)A(q)D(y)]. Alternatively,
if either x 0 or yj O, then " OqC q o D(x AD(y ]o x,A,y O, implying thatq=!

for q 1,..., m, C(q)j =0 and therefore [D(x)A(q)D(y)] x,A(q)yj =0= C(q),.
This completes the proof of (10). We next conclude from the established conclusion
of our theorem for simple circuit matrices, from (10) and from the fact that each C(q)
is a simple circuit matrix, that

(11) yrA(q)x >= xrA(q)y, q 1,’’ ", m,

and therefore

(12)

(13)

r OqA(q) y.Y E OqA(q) x>=xr
q=! =1

We next observe that (2), (10) and (9) imply that

x r OqA(q) y erD(x) OqA(q) D(y)e
=1 =1

e r OqD(x)A(q)D(y) e= e
=1

, OqC(q e
q=l

erD(x)AD(y)e= xrAy.

Next, by (4), D(x*)D(x) <- I and D(y)D(y*)<= L These facts combined with (9)
and the definition of A(q), q- l,..., m, imply that

(14) E OqA(q)= E OqD(x*)C(q)D(yt)=D(x*) OqC(q) D(y*)
q=l q=l =1

D(x*)D(x)AD(y)D(y*) <-_ A.

We finally conclude from (14), (12) and (13) that

q=l q=l

Acknowledgment. The authors acknowledge R. N. Kaul for pointing out to them the
fact that an earlier proof of Theorem 2 was incorrect.
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A NOTE ON THE NUMBER OF INVARIANT CAPITAL STOCKS*

CHIA-SHIN CHUNGf

Abstract. This paper explores a different aspect of the invariant capital stockmdetermining the number
of invariant capital stocks. In a 2 2 model, it can be shown, that, under some reasonable assumptions, that
number is odd. More restrictive condition is also given for it to be unique.

Key words, invariant capital stocks-boundary type and interior type, r-productive

1. Introduction. There has been continuing interest in the problem of computing
optimal invariant capital stock, which will be referred to as an optimal stationary
program (OSP) in this paper. Different solving procedures have been proposed by
many under different sets of assumptions; see Hansen and Koopman [3] and Dantzig
and Mann [2]. In this note, we will shift our interest to a different aspect of this
problem--determining the total number of invariant capital stocks. In a 2 2 model
similar to [2] and [3], we can show that, for a general concave utility function, the
number of optimal invariant capital stocks is odd. It is in fact unique under more
restrictive assumptions. Proofs of some lemmas in this paper can be found in Chung
[1], hence will be omitted in this paper.

2. The model. We first formulate our model as follows"
Given an initial stock X(0), find a program (X(t), C(t))=o that will solve the

following optimization problem:

max r’u(C(t))
t=0

subject to" AX( + + C( t) <- X( t),

eX(t+ 1)_--< 1,

X(t+l),C(t)>-O, t=0, 1,2,....

Here e=(1,1), re(0,1), X( t) (x( t), y( t)) >= O, C(t)=(c,(t),c2(t))_->O and A=
( db). We also assume that b, c>0 and Vu(C)=(Ul(C), u2(C))>0, for all C=>0.

We now define the two different types of OSPs as follows:
DEFINITION. A feasible program is an OSP, if it is optimal and (X(t), C(t))=

(X, C) for all t->_ 0. An OSP (X, C) is called a boundary OSP if either cl 0 or c2 0,
and it is called an interior OSP if both cl and c: are positive.

We need the following assumption.
Assumption. A is r-productive, which means that rI-A is a Leontief matrix.
The following lemma gives a necessary and sufficient condition for the existence

of an OSP; its proof can be found in Jones [4].
LEMMA 1. (X, C) is an OSP if and only if there exists (p, w)>=O such that the

following conditions are satisfied:

(a) (AI 0/)() <_ (01),
* Received by the editors July 19, 1983, and in final revised form March 5, 1984. This work contains

portions of the author’s Ph.D. thesis. The work was supported in part by the National Science Foundation
under grant SES-7805196.
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(b)

(c)

(P’W)(A-rle I0)( 0
> ))Vu(C

Note 1. By assumption on u and Lemma (b), p _-> V u(C) > 0, hence Lemma (c)
implies (A- I)X + C O.

LEMMA 2. Let (X, C) be an OSP; then x + y-- 1. Here X (x, y).
Proofi If x + y < l, then by Lemma (c), w 0. Lemma (b) implies p(r/- A) <_- 0

and p>_-Vu(C)>0. The assumption implies that (rI-A)-1>-0, hence p=
p( rI A)( rI A)- <- O, which is a contradiction.

3. Main result. We will first find necessary and sufficient conditions for both types
of OSPs. From Lemma 2, we see that for a boundary OSP to exist, it has to be one of
the solutions to the following two systems of equations"

(A-I)X+C=O, (A-I)X+C=O,

x+y= 1, x+y= 1,

c2 O, c O.

Their respective solutions can be computed as follows:

(X, cl)-((1-d)/(l+c-d),c/(l+c-d),det(A-I)/(l+c-d),O),

(Xa, C2)=(b/(l+b-a),(1-a)/(l+b-a),O, det(A-I)/(l+b-a)).

THEOREM 1. (a) (X , C) is an OSP iffUl(C)/ua(C)>-(r+c-d)/(r+b-a).
.(b) (Xa,C2) is an OSPiffu,(Ca)/ua(C2)<-(r+c-d)/(r+b-a).
Proof. By assumption, b, c > 0. Hence X > 0 and c > 0. By Lemma (c), (p, w)

Ul(C)(1, (r+ b-a)/(r+ c- d), det (rI-A)/(r+ c- d)). For (p 1, wl) to satisfy Lemma
(a) (b), it is necessary and sufficient that u(C l)/ u2( C 1) _>_ r + c d / r + b a). This

proves (a). Similarly, (b) can also be shown.
For the interior OSP, we have the following theorem.
THEOREM 2. A stationaryprogram (X, C) is an interior OSP iffthere exists g (0, 1)

such that (a)(X,C)=(1-g)(X,C1)+g(X2, C2), (b) u(C)/u2(C)=(r+c-d)/
(r/b-a).

Proof Sufficiency can be easily proved, so it will not be shown here. Let (X, C)
be any interior OSP. By Lemma 2 and Note l, Cl can be expressed as a decreasing
function of ca. Since c < Cl, it implies that there exists g (0, 1) such that c (1 g)cl.
By note l, (a) can now be shown. (b) follows immediately from Lemma (c).

Using Theorems and 2, we are now ready to prove our main result.
THEOREM 3. Except in degenerate cases, the number of OSPs is odd.
Proof Let C (1 -g)C + gCa; then Ul(C)/ua(C) is a function of g for 0_-< g-_< 1.

We rewrite the function as F(g). We now divide the problem into the following two
cases:

Case 1. Only one of (X, C ) and (X2, C2) is an OSP.
By Theorem l, both endpoints of the graph of F(g) are either above or below

the horizontal line y (r+ c- d)/(r+ b- a) atthe same time. Hence, except in degener-
ate cases, the graphs of F(g) can cross the lines an even number of times. By Theorem
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2, this means there are an even number of interior OSPs. Hence the total number of
OSPs is odd.

Case 2. Both (X, C) and (X2, C2) are OSPs or both are not.
This implies one of the endpoints of F(g) is above the line y=

(r+c-d)/(r+b-a) and the other endpoint is below the line. Hence, except in
degenerate cases, the graph of F(g) would cross the line an odd number of times.
This proves the theorem.

For some special cases, the number of OSPs is unique.
COROLLARY. If U12(C) 0 for all C >-O, then there exists a unique OSP. In par-

ticular, if u is separable, it has a unique OSP.
Proof. It is easy to show that u/u2 is an increasing function of g. The corollary

follows immediately.
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1. Introduction. To solve the system of n linear equations

(1.1) Ax=b,

where A Cn’n is a nonsingular complex matrix, we consider the splitting of A,

(1.2) A=D-L-U,

where D, -L and -U denote the diagonal, strictly lower and strictly upper triangular
parts of A.

The Symmetric Successive Overrelaxation (SSOR) iterative method [6, p. 461] is
defined by

(1.3) x(k+l)=,cflox(k)+to(2-to)(D-tou)-lD(D-toL)-lb, k=O, 1,...,

where
,o := D tou)-l{(1- to D + toL}(D toL)-l{(1- to D + toU}

is the SSOR iteration matrix associated with the matrix A.
If O is an iteration matrix, then it is known that the associated iterative method

converges for any choice of initial vector if and only if the spectral radius, p(G), of
O is less than unity.

The semi-iterative method was first introduced by Varga [4] in 1957.
Consider the iterative procedure

(1.4) X
(k+l) Ox(k) +g, k 0, 1, 2," ,

where G is a fixed n x n iteration matrix corresponding to the system (1.1). The error
vector of the kth iterate is

(1.5) E(k) := x(k)- x, k 0, 1, 2,. ,
where x is the unique solution of (1.1). Given the sequence ak, satisfying

k

(1.6) E ak,, l, k O, 1,2," ",
i=O

we define a sequence of vectors
k

v(k) E Olk, x(i)"
i=O

If

(1.7) l](k) v(k) X, k=0, 1,2,...,

* Received by the editors June 30, 1983, and in revised form February 10, 1984.
Department of Mathematical Sciences, University of Akron, Akron, Ohio 44325.
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then

(1.8) 1(k)= ak,iE(i)
ak,iG E(m,

=o =o

and in particular (o)= E(O).
Define

k

(1.9) pk(X) E ak,,X’.
i=0

Then from (1.8),

(1.10) (k= pk(G)E(m-

Suppose G has all real eigenvalues h and lies in the range

(1.11)

If

(1.12)

then T(a)=-I and T(fl)=l.
Moreover,

a=<h-<fl<l, where /3>a.

2a-(+t)

2-(a+fl)
(1.13) z:= T(1)= > 1.

Let

(1.14) Qk Y P’ ( fl a Y + fl + a)
Then

(1.15)

and

pk(h)--Qk(2A --(ct+fl))__Qk(T)
(1.16) max Ip,(a)l= max IQ()I.

By Young [6, p. 302, Thm. 3.1] and Varga [5], since Qk(Z)=pk(1)= and z> 1, the
polynomial Qk(Y) which minimizes the right-hand side of (1.16) is given by

Tk(y)
Qk(Y)

Tk( z)

where Tk(Z) is the Chebyshev polynomial of degree k in z. An easy calculation [6]
shows that

(1 17) lk+l)=ok+,(G)Em=[Tk+’(2G-(fl+a)I)/(fl-a)]E
Using a three-term recurrence formula for Chebyshev polynomials, we have for

k=>l,

2[2G-(/3L + a)I’] Tk(Z ,(k)__ Tk-I(Z) (k-l)(1.18) ,l
(k+l)

a ] Vk+,(z) Tk+,(z)
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Therefore, from (1.7),

(1.19) v(k+’) 2
a Tk+,(z) Tk+,(z)

v -- a Tk+,(z)
g"

On simplification, we get

(1.20) v(k+’)

where

k+l

2-(a+fl)
)v(k-’){(2G--(+a)I)v(k)+2g}+(1--1k+,

( )-’2z
lk+ lk k 2, 3,(1.21) l=l, 12-2z2-1’ 4z2

So the SSOR semi-iterative method applied to (1.1) will be given by

(1.22)

V
(k+l) k+l

2-(a+fl)
{(200, -(fl + a )I)v(k) + 2g} + (1 Ik+,)v(k-l),

k=O, 1,2,...,

where g=to(2-to)(D-tou)-lD(D-toL)-lb and 0, is the SSOR iteration matrix

associated with matrix A.
DEFINITION 1.1. If A is a Hermitian positive definite matrix, then the A-norm of

a column vector x is defined by

IlxllA :-(x*ax)’/2.
DEFINITION 1.2. For any matrix B [bia] e R"’" with bia <= O, j, <-_ i, j <= n, we

define a matrix C=[cia]eR"’" such that B=rI-C, where r=max,__<i=, {b.} and
c,=r-b.i>-O, l<-_iNn, c.,=-ba>-O, ij, <-i,j<=n.

The matrix B defined above is called a nonsingular M-matrix if r > p(C), where
p(C) is the spectral radius of the matrix C. This definition was given by Ostrowski
[3]. We remark that a nonsingular symmetric M-matrix is also positive definite.

2. Main results. In the following theorem, we give the error bounds for the A-norm
of the error vector at the kth iteration of the SSOR semi-iterative method in terms of
the spectral radius of the SSOR iteration matrix 5e0,.

THEOREM 1. For the system (1.1), let:
(i) A be an n n Hermitian positive definite matrix and w be any real number in

(0,2);
(ii) 1

k) be the error vector at the kth iteration of the SSOR serni-iterative method

defined by (1.8);
(iii) A be the spectral radius of the St’0,, i.e., A p(0,).
Then

(2.1) n[(k)[[a< 2hk
Iil(o>il---- (1 + /1- A)2k + (1- /’1 ;()zk’ ’I() O"

that
Proof Define := D-IL, := D-tL*, where U= L*. Then from (1.3), it follows

(2.2) 0, (I to 0)-’((1 to)I + tof)(I w/_7,)-’ ((1 w)I + toO).
Since ((1-w)I+wf)(I-w)-’=(I-wf)-’((1-w)I+to.), then

(2.3) ,5t’0, (I toO)-’(/- o/_7,)-’((1 to)I + o/7,)((1 to)I + toO).
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Set

(2.4)

D
(l- toL)(l wU),

D
((I to)I + toL)((1 to)I + toU).

So
(2.5)

Let

A= M-N0, and ,_0,= MIN.

(2.6) P := (D toL)D-1/2

40,(2-0,)
Then

(2.7) M0, PP*.

Moreover, ,5’0, I-M21A and (2/h)St0,-I=(2/h-1)I-(2/h)mToA. Set t:= Tk(Z),
the Chebyshev polynomial of degree k in z. For 0 < to < 2, all eigenvalues A, of 5t’o, lie
in the range 0-<h,-<h p(50,), l<-i<-n. From (1.17),

(2.8) (k)=Tk((Z0,--hI)/A)()=Tk(((Z/h)-l)I-(Z/’)M’la)(),
Tk(Z)

where

2
(2.9) z=---1.

Multiplying both sides of (2.8) by P*, it follows that

(.10 P*= --1 --e-’P-* P%.

Set := P-I AP-*. Since is Hermitian, we can write og ^ ,, where o, ,
I and

with/zt, t, ", . eigenvalues of . Note that eigenvalues of are the same as those
of M,A. Moreover,

and multiplying both side of (2.10) by o/,/,,1/2 gives

*’l/2P*(k) t/’*/21Tk [(-- l) I-2It
_

p.q(o)

2 l/2p,(o)
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If we set

(2.12)

then

(2.13)

and

,l(k) :_ o//.,/2p,,q(k) A1/2o//.,p,,q(k), k=0, 1, 2,.",

(2.14) IIIIX=II*’/=P%II=IIII=7 -**, ,
i=1

where o is the ith component of the vector {o} defined in (2.12). The eigenvalues
of and are related by

(2.15) , 1, 2, , n.

If y (2a/a)- 1, then -1y 1, i= 1,2,. ., n. So from (2.14),

i .(o)II()ll [r(yi)]2(0)<= max [T(yi)] i
i= l,2,...,ni=l i=l

Or,

I1<)11 i=max,,2,...,,, T(Y’)]2’

Since max_l<__y_<_, T(y)I 1,

(2.16) II<)IIA_< 1_ (o) #0.IIl)lla t’

So from (2.8),

l() # O.

I[I()IIA rk(R/A 1)

But it follows [6, p. 302] that

({) [({ )2 k 2 1/2Tk = +--(1h -h)l/2 + 1---(1h -h)
Hence, from (2.16),

2

II(IIA (2/a + (2/a),/l a) + (2/a (l/a),/1 a)

2a () O. 13=(1 +41 )t)k + (1-4i- A)-k’

Now we state the following theorem when A is an n x n nonsingular symmetric
M-matrix; the proof is given in [2]. We remark that a nonsingular symmetric M-matrix
is also positive definite.

THEOREM 2. Let A be an n x n nonsingular symmetric M-matrix and to
2/(l+x/1-/x2), where /x=p(B) and B= I-(diag A)-lA. Then (wl-1)2--<p(b"o,,) -<
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As a consequence of Theorem and Theorem 2, we can state the following
corollary.

COROLLARY 3. Let A be an n n nonsingular symmetric M-matrix and o
2/(1 +/1 -), where tz p(B) and B I- (diag A)-A. Then the A-norm of the error
vector k) after the kth iteration of the SSOR semi-iterative method is bounded by

IIll(k)[[ 2(091 1)A (0) O.
II()lla (1 +2- Wl)z +(1 -2 2Wl)=’

3. Conclusions. Let a p() be the spectral radius of the SSOR iteration matrix
associated with a Hermitian positive definite matrix A for a given w in (0, 2). If

we apply the SSOR semi-iterative method to solve (1.1), then the process can be
terminated after K iterations, where K satisfies

2
N 10

(1

for some preassigned positive integer s.
Young [7] has shown that the SSOR semi-iterative method offers a substantial

reduction in the number of iterations required, as compared with the SOR iterative
method, for many problems, in paicular for the general class of elliptic boundary
value problems.

However, Alefeld [1] has shown that if A is an M-matrix of the form

(3.1) A=[D, HIK O2
where D and D are diagonal matrices, then

min p() p(,).
0<<2

In the case (3.1), the Gauss-Seidel semi-iterative method [6] should be used to solve
(1.1). The same is true if the matrix A is an Hermitian positive definite matrix and
has the form (3.1) [6, p. 464, Thm. 2.2].
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RANDOMLY NEAR-TRACEABLE GRAPHS*

JOHN FREDERICK FINKS"

Abstract. A walk generated by a (not necessarily completed) depth-first search of a graph is called a
DFS walk. A connected graph is randomly near-traceable if it admits no DFS walk W: Wl, w2, , w, having
consecutive vertices Wk and Wk+l that both appear on the subwalk wl, w2," ", Wk_; thus, in a depth-first
search of a randomly near-traceable graph, whenever we backtrack to a previously visited vertex, that vertex
is adjacent to at least one unvisited vertex. We characterize the bipartite randomly near-traceable graphs
and show that for every randomly near-traceable graph G that is not a cycle, the radius of G is at most 2.
Other results are also presented.

AMS(MOS) subject classification. 05C

1. Introduction. In [2] Chartrand and Kronk defined a graph G to be randomly
traceable if for every vertex v of (3 every path beginning at v can be extended to a
Hamiltonian path beginning at v. They characterized randomly traceable graphs as
follows:

THEOREM A. A graph G of order p is randomly traceable if and only if G is the
cycle Cp, the complete graph Kp, or the regular complete bipartite graph K(p/2, p/2), the
last being possible if and only ifp is even.

In this paper we will define and investigate a related class of graphs that we refer
to as randomly near-traceable graphs. The development of this topic will be based on
the concept of a depth-first search of a connected graph. We will see that the definition
of a randomly traceable graph can also be stated in terms of the depth-first search
procedure and, as a consequence, that every randomly traceable graph is randomly
near-traceable. (All terms not defined herein are as defined in [1].)

Since the depth-first search procedure for a connected graph can be formulated
in several ways, it is convenient for us to describe what we mean by a depth-first search
of a connected graph. A depth-first search of a connected graph G is a step-by-step
method for generating a walk that visits (i.e., includes) each vertex of G. At a given
step in a depth-first search of G, the vertex which is currently being visited is designated
the active vertex.

To begin a depth-first search of a connected graph (3, we randomly select a first
vertex to visitmthis is the first active vertex and the first vertex of our walk. Next we
select, at random, a vertex adjacent to our first active vertex and visit it; this becomes
the new active vertex and the second vertex in our walk. In general, if va denotes the
current active vertex in our search, and if the walk generated so far is not a spanning
walk, we proceed as follows. If there are unvisited vertices adjacent to va, select one
at random, visit it, designate if the new active vertex, and append it to our walk. If
each vertex adjacent to v has been visited, we backtrack to (i.e., revisit) the vertex
that was the active vertex immediately before v was first visited, designate this the
current active vertex and add it to our walk. We repeat the foregoing general procedure
(using the new active vertex) until each vertex of G has been visited. As soon as each
vertex has been visited, the depth-first search terminates.

A walk generated by a (not necessarily completed) depth-first search of a graph
is called a depth-first search walk, or, more briefly, a DFS walk. We see now that a
graph (3 is randomly traceable if and only if (3 is connected and every DFS walk in

* Received by the editors September 1, 1983, and in revised form January 16, 1984.

" Department of Mathematics, University of Louisville, Louisville, Kentucky 40292.
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G is a path. Thus, every completed depth-first search of a randomly traceable graph
yields a Hamiltonian path in G. Reformulated, this means that a connected graph G
is randomly traceable if and only if every depth-first search of G is completed without
backtracking (i.e., revisiting a vertex).

If no depth-first search walk W: wl, w2," , wn in a connected graph G contains
consecutive vertices Wk and Wk/l both of which appear on the subwalk wl, w2, , Wk-1
of W, then G is said to be randomly near-traceable. Thus, in a depth-first search of a
randomly near-traceable graph, whenever we backtrack to a previously visited vertex,
that vertex is adjacent to at least one unvisited vertex. To illustrate this concept, we
will demonstrate that, of the two graphs in Fig. 1, only G is randomly near-traceable.

)’U 1) (

/’/5 1)6

FIG. 1.

1)2

To show that Gl is randomly near-traceable it suffices, by symmetry, to examine
only those DFS walks which begin at u and proceed next to either u2 or u6. It is easily
seen that every DFS walk which begins as Ul, u6 is a Hamiltonian path. Hence, we
now consider only those DFS walks that begin as u, u2. The two DFS walks which
begin as u, u2, u3 are Hamiltonian paths. Thus, we now consider those DFS walks
which begin as u, u2, /,/5; these are

Wl: Ul, /’/2, //5, U6, //4, //3,

W2: //1, //2, //5, //4, //3, U4, //6,

W3: Ul, U2, //5, //4, //6, U4, U3"

Among these walks, backtracking occurs only in W2 and W3. In each of these two
walks, we backtrack to u4 and find an unvisited vertex (u6 or u3 respectively) adjacent
to it and continue our depth-first search by visiting that vertex. We conclude that GI
is randomly near-traceable.

To see that G is not randomly near-traceable, we consider the nonspanning DFS
walk

/)1, I)4, /)5, /)2, /)3

in G2. Since each vertex adjacent to/)3 is on this walk, it is necessary now to backtrack
to v2. However, it is now the case that every vertex adjacent to the previously visited
vertex v2 has already been visited. Thus, G2 is not randomly near-traceable.

By definition, whether or not a given graph is randomly near-traceable depends
on the structural characteristics of each depth-first search of the graph. As we shall
see from the next lemma, a depth-first search walk in a randomly near-traceable graph
has a very explicit structure.

LEMMA 1. A graph G is randomly near-traceable if and only if every spanning
depth-first search walk W: w, w2, w,, in G is either a Hamiltonian path or satisfies
the condition that for some integer k, with <= k <- n -3, the subwalk Wl, w2, Wk/ is
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a path, wk wk+2 Wk+4 Wn_l, and {wk+t, Wk+3, Wk+5," Wn} is an independent
set of vertices.

Proof Suppose that each depth-first search walk in G is either a Hamiltonian
path or satisfies the condition stated above. Then, on no DFS walk W: Wl, w2," -, w,
do there appear consecutive vertices w and Wl/l that are both visited on the subwalk
Wl, w2,’", Wl_. Hence, by definition, G is randomly near-traceable.

For the converse, suppose that W: Wl, w2," ", w, is a DFS walk in a randomly
near-traceable graph G and that W is not a Hamiltonian path. Let k be the largest
integer for which P" w, w2, , Wk+ is a path. since P cannot be extended to a longer
path beginning at Wl, each vertex of G that is adjacent to Wk/l must be on P. Also,
since G is randomly near-traceable, it follows that Wk Wk/2 and that the vertex Wk/3
is not on P.

Note that if i< k, then wi is visited only once on W. To see this, assume to the
contrary that for some < k, vertex wi is revisited on W. Let be chosen so that w
represents the second occurrence of wi on W. Since P is a path, and since Wk/2 Wk
and Wk/3 is not on P, it follows that l> k + 3. Since G is randomly near-traceable, it
follows from the definition that the vertex labelled Wl-i does not occur on
Wl, w2, , w_2. Thus, on the initial visit to W_l in the depth-first search corresponding
to W, it was necessary to backtrack to the vertex proceeding wt-i on W, namely w_2.

Hence wt_2 wt w. This, however, is a contradiction since i< l-2 < implies that
w does not represent the second occurrence of w on W.

Now, since

WI, W2, Wk, Wk+3, Wk+4, Wn-l, Wn

is a DFS walk containing every vertex of G except Wk+ and since Wk+ is not adjacent
to wn, it follows that Wk/l must be adjacent to wn_. Since Wk/l is adjacent only to
vertices on P and since none of the vertices w, w2," ’’, Wk- is revisited on W, we see
that wn_ Wk.

Since G is randomly near-traceable and since w,_ does not represent the first
occurrence of Wk on W, it follows that w,_2 does not appear on the subwalk
Wl, WE," ", W,-3. Thus, W,-3 w,_ Wk. By continuing to argue in the above manner,
we conclude that (n- 1)-k is an even number and that Wn_ --Wn_ -’-Wn_

Wk+2 Wk"
Since Wk Wk+2-- Wk+4 Wn_l, we see that Wk+2j_ is not adjacent to Wk+21_

for any integersj and/where 1-<j < l<-(n k+ 1)/2. Hence {Wk+, Wk+3, Wk+5,""", Wn}
is an independent set of vertices.

If G, W and k are as in the statement of Lemma l, then we will usually denote
the DFS walk W by

W: Wl, w2, wk -- (Wk+l, Wk+3, Wn).

Usually we will label the ith newly visited vertex in W as u. Hence, if G has order
p, then

W: u, u,’.’, u- (U+l, u+2,"’, up)

denotes the DFS walk

W: U l, U2, Uk_l, Ilk, Uk+l, Uk, Uk+2, Uk, Up_l, Uk, Up.

The tree induced by a spanning DFS walk W in a randomly near-traceable graph G
will, by Lemma 1, necessarily have one of the forms illustrated in Fig. 2.
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Up-I, Up

Ul U

Uk

t/k //k

up

W:/,/i,//2, /’/k (t/k+l, /’/k+2, Up)

U2

U

W: u (u2, u3,""", Up)

FIG. 2.

Also from Lemma 1, it follows that a DFS walk in a randomly near-traceable
graph that results from an incomplete depth-first search in which at least one backtrack
step has occurred has the form

/’/1 /’/2 /’/k /’/k+l /’/k /’/k+2 blk l’lk+m

this will be denoted by

/’/1 /’/2 /gk -’ (/’/k+l Ilk+m)"

2. n-partite randomly near-traceable graphs. Since there is no backtracking in a
depth-first search of a randomly traceable graph, it follows that every randomly
traceable graph is randomly near-traceable. Thus, by Theorem A every cycle, complete
graph and regular complete bipartite graph is randomly near-traceable. The complete
graphs and regular complete bipartite graphs are therefore examples of randomly
near-traceable complete n-partite graphs (for appropriate values of n). The following
theorem asserts that in fact every complete n-partite graph is randomly near-traceable.

THEOREM 1. Every complete n-partite graph is randomly near-traceable (n >= 2).
Proof. Let W: w, w2," , w, be a spanning depth-first search walk in a complete

n-partite graph G, where n-> 2. Suppose that W is not a Hamiltonian path, and let k
be the least integer such that the vertex Wk is visted more than once on W. Then, since
W is a DFS walk, the subwalk

Wo: w1, w2 Wk Wk+l

is a path which cannot be extended to a longer path beginning at w. Thus Wk- Wk+2
and each vertex of G that is not on Wo is not adjacent to Wk+; hence each vertex not
on Wo belongs to the partite set of G that contains Wk+l. Since G is a complete n-partite
graph, this implies that each vertex not on Wo is adjacent to Wk and that Wk Wk+2
Wk+4 W,_, while Wk+, Wk+3, Wk+5, ", W, are distinct. Since W was an arbitrary
DFS walk in G, we conclude that G is randomly near-traceable.

Thus, randomly traceable graphs and complete n-partite graphs are randomly
near-traceable. These are however not the only such graphs. For example, the graph
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G of Fig. and the graph obtained by joining one pair of nonadjacent vertices in
K(m, m), where m-> 3, are examples of tripartite randomly near-traceable graphs.
Thus Theorems A and do not provide all examples of randomly near-traceable
tripartite graphs. As the next theorem shows, however, they do include all bipartite
randomly near-traceable graphs.

THEOREM 2. A bipartite graph G is randomly near-traceable if and only if G is a
cycle or a complete bipartite graph.

Proof. Let G be a randomly near-traceable bipartite graph. Let U and V be the
partite sets of G and suppose that[U[-<[V[. Furthermore, suppose that G is neither
a cycle nor a regular complete bipartite graph; hence, by Theorem A, the graph G is
not randomly traceable.

Since G is not randomly traceable, there is a spanning DFS walk W of G having
the form

W’. x1, x2, ", xk .- (Xk+l, Xk+2, ", Xp),

where p is of the order of G. (Note that if k 1, then G K(1, p 1); Hence we shall
assume that k >_- 2.) since p k ->_ 2, and since G is bipartite with UI--<IVI, we conclude
that gl <lvI and that X+l, x+,. , xp e V. Moreover, it follows that x_ e V if and
only if k-j is odd. It is this condition that leads us to consider two cases.

Case 1. Suppose k 2n. We relabel the vertices as follows: for _-<iN n we set

v x_ and u x; and forj 1, 2, , p k we set v+ x+. Thus W has the form

W:/)1,//1,/)2,//2, /)n, /’/n (/)n+l, /)n+2, /)n+p-k)-

The tree induced by W is illustrated in Fig. 3.

)n+l

/).

/i )n

1)n +p-k

FIG. 3.

Observe now that U {u,/’/2, Un} and V {v, /)2, /)n+p-k}" With this fact
and the nonspanning DFS walk

1112, /)3, /)n, //n

we see that v u, is an edge of G. Using this edge to construct the nonspanning DFS walk

/)1, Un, /)n, /)2, Ul,

we see that //l/)n+j is an edge of G for <_-j <-p-k.
We now proceed inductively to show that for 1, 2, , n the edges uiv and

uiv,,+j are in G for =<j_-<p-k. Assuming that Ui-lVl and all edges U_lV,,+j are in G,
we consider the nonspanning DFS walks

/)i, //i-2, /)2, I’ll, /)n+l, tin, /)n, /)i+l, //i, for 1, 2

and see that each of the edges uiv and uv,,+ must be in G for 1-<_j-< p- k. Thus, for
i= 1, 2,. ., n- the edges UVl and uv,,+ are in G, for all j, where -<j-< p-k. In
particular, v, the first vertex of W, is adjacent to each vertex in U. By repeating the
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foregoing arguments for each spanning DFS walk of the form

/)j, /’/j, /)j+l, /’/j+l, Vn, Un, /)1, Ul, /-)2, U2, /)j-l, /’/j-1 - (/)n+l, /)n+2, /)n+p--k),

where j 2, 3, , n, we see that each vertex vj is adjacent to every vertex in U. Thus
G is isomorphic to the complete bipartite graph K (n, n +p- k).

Case 2. Suppose k 2n + 1. Relabel the vertices of W as follows: for =<i=< n,
set ui x2i_ and v x2; set Un+ Xk and for j 1, 2, , p- k set v,+j Xk+j. Then
U={u, u2,’’’, u,+}, V={v, v2,’’’, V,+v-k} and W has the form

W: Ul, /)1, u2, /)2, Un, /)n, Un+l " Vn+l, /)n+2, /)n+p-k)"

The tree induced by W is shown in Fig. 4.
Dn

13n

tl 131 U2 132 Ui

13n +p
FIG. 4.

Since u is not adjacent to u,+ the two DFS walks

/)1, U2, /)2, 1"t3, Vn, /’/n+l, /)n+l and /)1, /’/2, V2, /’/3, /)n, /Jn+l, /)n+2

imply that uv,,+; is an edge of G for each j 1, 2,...,p-k. Similarly, for each
i= 2, 3,..., n, the nonspanning DFS walks

/)i--1, /’/i--1, /)i--2, /’/i--2, Vl, /gl, /)n+l, /’/n+l, /)n, /’/n, /)i,

and

/)i--l, /Ji--1, /)i--2, /’/i--2, /)1, /’/1, /)n+2, Un+l, /)n, l’ln, /)b

imply that uiv,+j is an edge of G for each j 1, 2,..., p-k. In particular, we have,
for each fixed j 1, 2,..., p- k, that v,+j is adjacent to each vertex in U.

The nonspanning DFS walk

/Jl, /)n+l, /J2, /)n+2, Un+l, /)n, Un, Un-l, U3, /)2

implies that VlU3 is an edge of G. In general, for 4<=j =< n, the nonspanning DFS walk

’/1, /)n+l, U2, /)2, //3, /)3," ", /)j--2, /’/j--l, /)n+2, Un+l, /)n, Un, /)n--l, /’/n--l, Uj, /)j--I

implies that vu is an edge of G. Thus, vt is adjacent to each vertex in U.
By applying arguments similar to the foregoing to the spanning DFS walk

W/: /’/i, /)i, /’/i+1, /)i+l, /’/n+l, /)n+l, Ill, /)1, lg2, /)2, Ui-1

"-) (/)i--1, /)n+2, /)n+3,

we see that vi is adjacent to each vertex of U for each i= 1,2,..., n. Thus, G is
isomorphic to the complete bipartite graph K (n + l, n +p- k).

For the converse, we see from Theorem A that any cycle is randomly near-traceable,
and from Theorem that any complete bipartite graph is randomly near-traceable.

3. Radius and diameter of randomly near-traceable graphs. If u and v are any two
vertices of a connected graph G, then the distance from u to v, denoted d (u, v), is the
length of a shortest u-v path in G. The diameter of G, denoted diam G, is the
maximum distance between any two vertices in G. The radius of G is denoted tad G
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and defined by

rad(G)= min {max d(u,v)}.
uV(G) vV(G)

Thus, if rad G =r, then there is at least one vertex u in G such that d(u, v)<= r for
every v V(G).

Each randomly near-traceable graph that we have discussed so far has radius at
most 2. As the next theorem shows, this is not coincidental.

THEOREM 3. If G is a randomly near-traceable graph that is not a cycle, then
rad G<-2.

Proof. If G is also randomly traceable, then, by Theorem A, either G is a complete
graph or a regular complete bipartite graph. In either instance rad G <= 2. Thus, we
henceforth assume that G is not randomly traceable.

Suppose also that G has order p and that rad G 1; that is A(G)--<_ p-2. Then,
by Lemma 1, there is a depth-first search of G which yields a spanning walk of the form

W’. Ill, u2,""", Uk " (Uk+l, Uk+2,""", Up).

The spanning tree induced by W is indicated in Fig. 5.

/dk+l

/dl /’/2

FIG. 5.

Clearly, if 2-<k_-<4 then d(Uk_,ui)<--2 for i=l,2,’’’,p, so that radG<-2.
Suppose then that k=<5. We shall show that d(Uk/i, uj)<--2 for all i= 1,2,... ,p-k
and j 1, 2, , p. We consider two cases.

Case 1. Assume that UUk is an edge of G. Then d(Uk/i, u)--<2 and d(Uk/i, Uk_l)<=2
for 1, 2, , p k. Also, if for each j 1, 2, , k 2, the vertex Uk/ is adjacent
to either uj or u/ then d(Uk/, u)_<--2. Assume then, to the contrary, that for some j
in the range <=j<=k-2, and some i= 1,2,... p-k neither U;Uk/ nor U+lUk/ is an
edge of G. Now, however, the DFS walk

Ilj+2, Ilj+3, Uk, Ul, U2,’’’, Ilj, Ilj+l

cannot be continued to include every vertex in the independent set {Uk+l, Uk+2, Up}
without backtracking to a vertex preceding uj. This is a contradiction. Hence, for
every j= 1,2,. .,p and every i= 1,2,... ,p-k, we have d(u;, Uk/)--<2.

Case 2. Suppose that UlUk is not an edge of G. Then the DFS walk

U2, /’/3, Ilk-l, Ilk, Ilk+i

for any in the range -< iNp-k, together with the fact that {Uk+l, Uk+2," ", Up} is
an independent set, implies that Ul is adjacent to each vertex in {Uk+, Uk+2,’’’, Up}.
(See Fig. 6.)

Now, if 2-<_j-<_ k-2, then the DFS walks

Wl: Ilj+2, Ilj+3,""", Ilk, Uk+l, Ill, Il2, Uj, Uj+

and

W2: Ilj+2, Ilj+3,""", Ilk, /’/k+2, Ill, Il2 Ilj, Uj+
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FIG. 6.

together with the fact that {Uk+l, lik+2, ", lip} is an independent set, imply that either
uj or Uj+l is adjacent to each of the vertices Uk+l, Uk+2,’’’, and Up. Thus, for each
j 1, 2, , p and each 1, 2,. , p k, we have d (u, Uk+i) <- 2.

From Cases and 2 we conclude that rad G_-< 2.
Since it is always the case that diam G -< 2 rad G, we have the following corollary

to Theorem 3.
COROLLARY 1. If G is a randomly near-traceable graph which is not a cycle, then

diam G _-< 4.
We see that if G is a randomly near-traceable graph which is not a cycle, the

distance between any pair of vertices in G is at most 4. Each example of a randomly
near-traceable graph (which is not a cycle) that we have investigated herein has diameter
or 2. In light of this observation, we close with the following:

Conjecture. If G is a randomly near-traceable graph that is not a cycle, then
diam G -< 2.
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OPTIMAL WEIGHING DESIGNS*

CHING-SHUI CHENG, JOSEPH C. MASARO: AND CHI SONG WONG:

Abstract. A technique is developed for finding optimum designs for weighing n objects in N weighings
(N => n) on a chemical balance. Certain designs are shown to be optimal with respect to a large class of
criteria (including the A- and D-criteria) for sufficiently large N 2 or 3 (mod 4). For small N, the result
allows the elimination of a large number of competitors, and those that remain can be checked by a computer.

Key words, optimum designs, A-optimality, D-optimality, p-Optimality, Hadamard maximum deter-
minant problem
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1. Introduction. Let N and n be positive integers with n =< N and let @(N, n)
denote the set of all N n matrices X {xij} with xij 1, -1 or 0; such a matrix will
be called a weighing design matrix. If X* minimizes (X’X) over (N, n) for some
real-valued function , then X* is said to be -optimum. The problem of characterizing
such matrices X* arises in the study of weighing designs and 2 fractional factorial
designs; for details see Cheng (1980) or Galil and Kiefer (1980). Another important
application is to Hadamard transform optics in spectroscopy; we refer readers to the
book of Harwit and Sloane (1979).

The well-known D-, A- and E-optimality criteria are obtained by taking (X’X)
to be det (X’X) -1, tr (X’X) -1 or the maximum eigenvalue of (X’X)-, respectively. All
three criteria are functionals of the spectrum of X’X, i.e. of the eigenvalues
/x,/2," ", kn of X’X. A more general criterion is given by

(I)p(XtX) n -1 -P where p > 0.
i=l

Obviously A-optimality is the l-criterion. Furthermore, E-optimality is the limit of
the p-criteria as p-> , and D-optimality is equivalent to the limit of the p-criteria
as p -> 0. Among these three, the E-criterion is the easiest to handle, and the A-criterion
is perhaps the most difficult. For historical and technical reasons the D-criterion has
been studied most extensively. The search for D-optimal designs is directly related to
the Hadamard maximum determinant problem (see Brenner and Cummings (1972)).
Furthermore, the D-criterion has the nice property that there always exists a D-optimal
design matrix with :t:l entries; see Galil and Kiefer (1980). Thus the search for
D-optimal designs can be reduced to the set ’(N, n) of all N n matrices (x) with
Xij--- or -1 only. This may not be true for other criteria.

This paper is concerned with optimal designs when N-= 2 or 3 (mod 4). Readers
are referred to Cheng (1980) for a discussion of results for N-= 0 or (mod 4). When
N 2 (mod 4), Payne (1974) showed that if there exists an X2 such that

(1 1) XX2=[(N-2)Ik+2Jk O ]0 (N 2)In-k + 2Jn-k
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" Department of Statistics, University of California, Berkeley, California 94720. The work of this author
was partially supported by the National Science Foundation under grant MCS-82-00909.

University of Windsor, Windsor, Ontario, Canada N9B 3P4. The work of these authors was partially
supported by the Natural Sciences and Engineering Research Council of Canada under grant A8518.

259



260 CHING-SHUI CHENG, JOSEPH C. MASARO AND CHI SONG WONG

where k [n/2], Ik is the identity matrix of order k, and Jk is the k k matrix of l’s,
then X2 is D-optimal over 9(N, n). Using Cheng’s (1980) result, Jacroux, Masaro and
Wong (1983) showed that the above X2 is also optimal over ’(N, n) with respect to
a large class of criteria including all the p-criteria. However, except for the D-criterion,
their result does not carry over to (N, n); e.g., X2 is E-worse than the E-optimal
design X which satisfies X’X (N-1)I,.

Our knowledge about optimal designs for N 3 (mod 4) is even more limited. So
far the best result in this case is due to Galil and Kiefer (1980) who showed, improving
a result of Payne (1974), that if N->_ 2n- 5, then a design X3 such that

(1.2) XX3 (N+ 1)l,-J,

is D-optimal over (N, n); such a design, however, is not always D-optimal when
N < 2n 5. Indeed, other than the D- and E-criteria, the problem of optimal designs
in 9(N, n) for N 2 or 3 (mod 4) is largely unexplored. Results of this kind virtually
do not exist. The present paper is an attempt in this direction.

Throughout this paper, matrices satisfying (1.1) and (1.2) will be denoted by X2
and X3, respectively. It will be shown in 2 that for sufficiently large N, if X3 exists,
it is A-optimal over (N, n). This result is extended to all p-criteria with 0<=p=<
in 3. The key result is Theorem 3.1 which shows that ifX3 is A-optimal over (N, n),
then it is also optimal with respect to a large class of criteria including all the p-criteria,
0_-< p_-< l; in particular, it is D-optimal. It is also noted in 2 that A- and D-optimal
designs do not necessarily agree and that X3 is not always A-optimal. In the last section,
the p-optimality ofX_ is established for sufficiently large N and 0 -_< p <_- 1. A discussion
of the existence and construction of X2 and X3 can be found in Galil and Kiefer (1980).

For convenience, we shall denote the set of all matrices of the form X’X where
X (N, n) (or ’(N, n)) by CO(N, n) (or c’(N, n), respectively).

2. A-optimality of X3. Throughout this section, we shall assume that N-= 3
(mod 4). The following lemmas are useful for establishing the A-optimality of X3.

LEMMA 2.1. Let C c’(N, n) be such that [cijl c for all i#j. Then C is similar to
(N+ c)I, cJ, or (N c)I, + cJ,.

Proof. Let C =X’X ’(N, n) be such that ]cij] c for i#j, and let the ith column
of X be c. Define a matrix Y such that Y (b, b2,’’’, b,), where b =c if c has an
even number of -l’s, and b -c if c has an odd number of -l’s. Then X’X is similar
to Y’Y and each column of Y has an even number of-l’s. Let dij be the (i,j)th entry
of Y’Y. Then by the proof of Ehlich (1964, Lemma 3.1), di=3 (mod 4) for all i,j.
Furthermore, Id01 Ic01 c for all # j. Since c and -c cannot both be congruent to 3
(mod 4), we have d c for all i#j or dj =-c for all i# j, i.e., Y’Y (N + c)l,- cJ,
or (N- c)I, + cJ,,.

LEMMA 2.2. Let C ’(N, n). Then C is similar to a matrix De ’(N, n) such that
if ]dl 1, 3 or 5, then d =-1, 3 or -5, respectively.

Proof. Again by Ehlich (1964, Lemma 3.1), C is similar to a matrix D with all
di 3 (mod 4). Then D has the desired properties.

2>LEMMA 2.3. Let C’(N,n). If Y,,c=n(n-1)N2/(N-n+2)2, then
tr{(N+ 1)l,-J,}--<tr C-l, where trC-l is defined to be + if C has no inverse.

Proof. For any C ’(N, n), we have trC= nN and nN2<=trC2<=naN2. For any
B such that nN2 <= B <= n2N2, let t(B, N, n) be the set of all the symmetric nonnega-
tire definite n xn matrices n such that trn=nN and trn2=B. Let Z=
{(nB-n2N2)/(n-1)}/a. Then from Cheng (1978, Lemmas A2, A3, A6) trC->_-
(n- 1)/g + l/A, where/x =(nN-Z)/n and A {nN+(n- 1)Z}/n. It suffices to show
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tr{(N+l)I,-J,}-’<=(n-1)/tx+l/A, i.e., (n-1)/(N+l)+l/(N-n+l) <-

(n- 1)//x + 1/A. On substituting the expressions for/z and A, this reduces to

(2.1) (N- n + 2)Z2- n(n -2)Z- n2N >- O.

Since nN/(N-n+2) is the positive root of the equation (N-n+2)x--n(n-2)x
nZN=0, (2.1) holds provided Z>-nN/(N-n+2). This is equivalent to B-nN2>-

2 C2n(n-1)N2/(N-n+2)2. Since for CC’(N,n), Y.iCjc0=tr -nN, the result
follows.

Now we are ready to prove"
THEOREM 2.1. For each n, there exists a positive integer No(n) such that for all

N _-> No(n), X is A-optimal in 9(N, n).
2Proof Let C c’(N, n). If Y’.iCj c n(n-1), then by Lemma 2.1, C is similar

2 > n(n 1) + 16. It is straightforwardto (N+ 1)l,-J,. Thus we may assume Y’. c=
to see that if N>-(n-2)[nZ-n+16+{n(n-1)(n2-n+16)}/2]/16, then n(n-1)+

216> n(n-1)NZ/(N-n+2)2; therefore Yico> n(n-1)NZ/(N-n+2)2 and by
Lemma 2.3, tr c-l> tr (XX3)-.

For CC(N,n)\’(N,n), we have trC<_-nN-1. Thus trC-l>-n2/trC>=
nZ/(Nn 1). Comparing the last term with tr (XX3)-l (n 1)/(N + 1) + 1/
(N- n + 1), we conclude that if N >_-/12- 2, then tr C- >- tr (XX3)-l.

The proof is completed by taking

or

No(n) max {(n -2)[n2- n + 16+ {n(n 1)(n2- n + 16)}1/2]/16, n2- 2},

max {(n-2)(n2-n+ 16)/8, n2-2}
for simplicity.

Thus X3 is A-optimal in 9(N, n) if N is sufficiently large. Later we shall give an
example showing that X3 is not always A-optimal. We remark that Lemmas 2.1, 2.2
and 2.3 are useful in proving or disproving the A-optimality of X3 over 9’(N, n) when
N is smaller than (n-2)(n2-n+ 16)/8 since the three lemmas allow us to eliminate
a large number of competitors; those that remain can be checked by a computer, as
we shall illustrate in the examples below.

Consider N= 15 and n =6. In this case n(n-1)N2/(N-n+2)2=55.8. It is easy
< 55 must have [cij{ for all # jto see that all the matrices in c,(15, 6) withYci=

except for at most a pair of off-diagonal elements with Icl 3. By Lemmas 2.2 and
2.3, the only competitor in ’(15, 6), up to equivalence, is the matrix

-15 3 -1 -1 -1 -1-
3 15 -1 -1 -1 -1

-1 -1 15 -1 -1 -1

-1 -1 -1 15 -1 -1

-1 -1 -1 -1 15 -1

-1 -1 -1 -1 -1 15

Computer calculation gives trC- =0.4151, while tr (1616-J6)- =0.4125. Thus X3 is
A-optimal in 9’(15, 6).

Similarly one can show that X3 is A-optimal in 9’(15,7). Since N ->

(n-2)(nZ-n+ 16)/8 for N= 15 and n=2, 3, 4, 5, it follows from Theorem 2.1 that
X3 is also A-optimal in ’(15, n) for n 2, 3, 4, 5. Thus we have shown that X3 is
A-optimal in 9’(15, n) for all n <= 7.
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To save space, we remark that it has been shown that X is A-optimal in 9’(N, n)
for all N-> 15, N--3 (mod 4) and all n-< 7.

To show the strength of our results, we conclude by giving an example which
shows that in general (N+ 1)I,-J, is not A-optimal in c’(N, n). This example points
out that a matrix that is A-optimal in c,(N, n) need not be D-optimal in c,(N, n).

Let N l, n 7. From a theorem of Galil and Kiefer (1980, p. 1299), the matrix
1217-J7 is the unique D-optimal matrix in cO,(1 l, 7). It should be noted that 1217-J7
can be realized as X’X, where X is an 11 7 matrix with x0 + 1. Indeed, any X such
that

is a Hadamard matrix of order 12 will do. Such an H can be found in Hedayat and
Wallis (1978). However let

then

ZrZ

-1 -1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1 -1

-1 -1 -1 -1
-1 -1 -1 -1

-1 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1
-1 -1 -1 -1 -1

11 3 -1 -1 -1 -1 -1

3 11 -1 -1 -1 -1 -1
-1 -1 11 -1 -1 -1 -1

-1 -1 -1 ll -1 -1 -1
-1 -1 -1 -1 ll -1 -1
-1 -1 -1 -1 -1 ll -1

-1 -1 -1 -1 -1 -1 ll

It is well known that if

is a nonsingular matrix then

P

X Y
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where S P- +P-Q(R- Q,p-Q)-Q,p-l, u (R- Q,p-Q)-i and T -P-IQ(R-
Q’P-Q)-. Applying this result to Z’Z we obtain

(ZtZ)_l._. \-98/4312 441/431
T’ (1/12)15 + (1/66)‘15

Then tr (Z’Z)- =441/2156+65/132=.69696. But tr [1217-‘17]- =.7. Thus 1217-‘17 is
not A-optimal in rg,( 11, 7). Also the A-optimal matrix in cg,(11, 7) cannot be D-optimal
since 1217-,17 is the unique D-optimal matrix in cg’(11, 7).

3. ,-optimality of Xa, 0<-_p<=l. In this section, we shall extend the main result
of 2 to other criteria. A technique is developed to show that if a certain design is
A-optimal, then it is also optimal with respect to a large class of other criteria. The
method used is a modification of the result of Cheng (1978).

Throughout this section, we shall denote tr (XX3)- by S*.
LEMMA 3.1. For any positive numbers A, S and r such that S > n2/ A, 0 <-_ r <- n, the

system of equations (n r)lz + rh A and (n- r)/tz + r/h S, <- A, has exactly one
solution h r A, S) > I r A, S) > O.

Proof. By solving for/z in the first equation and substituting into the second, we
obtain the equation Srh 2 + n2 2nr SA)A + rA O. The discriminant of the quadratic
is h(S)= (n2-2nr-SA)2-4ASr2. The result now follows by noting that h(n2/A)=0
and h’(S) 2A(SA n2) + 4A( nr rE) > 0 if S > n2/A.

LEMMA 3.2. Let/.,(r; A, S) and h(r; A, S) be as in Lemma 3.1 with A <- nN. Let
f be a real-valued function defined on [0, nN] such that

(i) f is continuous on (0, nN) (we allow limx_o f(x) =f(O) +oo);
(ii) g"<0 on (1InN, oo), where g(x)=f(1/x)’,(3.1) (iii) f">0 on (0, nS);
(iv) for a<b in (O, nS), {f(b)-f(a)}/(b-a)<{af’(a)+bf’(b)}/(a+b);

and F(r’, A, S) (n- r)f{tz(r; A, S)}+ rf{h(r; A, S)}. Then F is a strictly decreasing
function of r, strictly increasing function of S and strictly decreasing function of A.

Proof. By differentiating the equations (n r)/z + rh A and (n r)/tz + r/h S
with respect to r and S, and then solving the resulting equations for Otz/Or, Oh/Or,
Ol/OS and OA/OS, we obtain

a (, -) aa (a -)x
),Or (n- r)(h + tz Or r(h + l)

c3 h2/2 0h h22

0S (n-r)(A2-/x2) OS r(A2-/z2)"

Thus

O/z OhO__F_ _f(tz + n r)f,(tz _r +f(h + rf’(h) O--Or

=f(a) -f()-
(a ){t,f’(t,) + af’(a )}

A+/

< 0, by (iv).
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Similarly it follows from (iii) that

OF

We remark that if f"< 0 on (0, nN), then F is a decreasing function of S. This fact
will be used below in the proof of the decreasing monotonicity of F in A.

To show that F is a decreasing function of A, we write F (n r)g(ix’)+ rg(h’),
where Ix’=ix-, h’=h -I and g(x)=f(x-). Then (n-r)ix’+rh’-S and (n-r)/ix’+
r/3,’= A. By (ii) and the remark in the last paragraph, we conclude that F is a strictly
decreasing function of A. This completes the proof.

LEMMA3.3. Let H {(Xl, X2, Xn)" xi > O, Ei= xi A, ’7= xT1 S}, where A <-
nmand S > n2/A. Also let Ff" H-> R be defined by Ff(xl, x2,’’’, x,)= i=l f(xi), where
f is a real-valued function defined on [0, nN] which satisfies (3.1) and the following
condition:

(3.2) The equation x2f’(x) + ax2- 0 has at most two solutions in (0, nm) for all
real numbers a and ft.

Then the minimum of Ff(Xl, X2,’’’ ,x,) on H occurs at the point (Ix(n-1; A,S),
h (n l; A, S),. , h (n l; A, S)), where Ix (r; A, S) and h (r; A, S) are as in Lemma
3.1.

Proof. Since H is compact, the minimum of Ff on H is attained at some point
(al, a2, , an). Clearly not all the ai’s are equal (since S> n2/A), so by the symmetry
of Ff, we may assume al<a2. Letting gl(Xl, XE,’’’,Xn)=i=lXi-A and

-2 a2 # 0.g2(xt, x2, ", x,) =i= x7-S; then det {Dgi(ai, a2, ", an)},-_l,2 ai
So by Lagrange’s theorem (see Apostol (1974, p. 381)), there exist numbers a and/
such that al, a2,""", an satisfy the following equations:

(3.3)

0

Ox
--{Ff(Xl, x2,... Xn)"+ ag(x, x2, xn) + flg2(xl, x2, x.)} 0,

i=l,2,...,n.

Now (3.3) simplifies to f’(x)+a-xT2=O, i- 1,2,..., n. By (3.2), each x can take
on at most two possible values. So the point (a, a2,. , an) must be such that a al
or a2. The result now follows from Lemma 3.1 and Lemma 3.2. [3

Now we are ready to prove the main result of this section.
THEOREM 3.1. If X is A-optimal in (N, n), then it also minimizes (I)f(XtX)

i=lf(Ixi) over (N, n) for all f satisfying (3.1) and (3.2), where Ixl, Ix2,’’’, Ixn are
the eigenvalues of X’X.

Proof For any X 9(N, n), let $ tr (X’X)-, A tr (X’X)’, also denote tr (XX3)-l

by S*. Then by assumption, S-> S*. So by Lemmas 3.2 and 3.3, we have

f(Ix,)>-_(n-1)f(h(n-1;A,S))+f(Ix(n-1;A,S))
i=1

->_ (n- 1)f(A (n 1; A, S*))+f(Ix(n- 1; A, S*))

-> (n 1)f(A (n 1; nN, S*))+f(Ix(n 1; nN, S*))

f(Ix*),
i=1

where Ix,*,Ix*,... ,Ix,* are the eigenvalues of XX3. The last equality holds since
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tr XX nN, tr (XX3)-1 S*, and XX has two distinct eigenvalues with the smaller
one being a simple root. This completes the proof.

Combining Theorems 2.1 and 3.1, we have:
COROLLARY 3.1. For each n, there exists a positive integer No(n) such that for all

N >- No(n), X minimizes , i= f(txi) over (N, n) for all f satisfying the conditions in

(3.1) and (3.2).
We shall conclude this section by deriving a simple sufficient condition for (3.1)

and (3.2).
LEMMA 3.4. Iff: [0, nN]--> R is such that (i), (ii), (iii) in (3.1) hold, and x3f"(X)

is an increasing function on (0, nN), then all the conditions in (3.1) and (3.2) hold.
Proof. We need to verify (3.2) and condition (iv) in (3.1). Now the latter is

equivalent to {af’(a)+ bf’(b)}(b- a)- {f(b)-f(a)}(a + b) > 0. For fixed a, let h(b)
{af’(a)+bf’(b)}(b-a)-{f(b)-f(a)}(a+b). Then since h(a)-0, to show h(b)>0
for all b>a, it suffices to prove h’(b)>0 for all b>a. Now h’(b)=
f’(b)(b-a)+a{f’(a)-f’(b)}/bf"(b)(b-a)-f(b)+f(a). So it is enough to prove
h"(b)>0 for all b> a. We have h"(b)=3f"(b)(b-a)+bf’"(b)(b-a). Since xaf"(x)
is an increasing function, d{xaf"(x)}/dx > 0, i.e.,

(3.4) xf’"(x) + 3f"(x) > 0 for all x e (0, nN).

Therefore h"(b)= {bf’"(b)+3f"(b)}(b-a)>O for all b > a. This proves condition (iv)
in (3.1).

Now we prove (3.2). Suppose x and y are two distinct solutions of the equation
xEf’(x) + aX2-/3 0. Then x2f’(x) + ax2 fl yEf,(y) + cey2 [3 and hence

(3.5)
{x2f,(x) y2f,(y)}

x2 y2
Let g(x)= xf’(x/). We shall show that g is a strictly convex function; then for each
fixed x, there is at most one y satisfying (3.5) and therefore (3.2) is proved. Now

2g"(x)=4x- {f (x/)x/+3f (x/)} which, by (3.4), is positive. This completes the
proof.

It is easy to see that if0<p < 1, then the functionf(x) x-p satisfies the conditions
in Lemma 3.4. Therefore Theorem 3.1 and Corollary 3.1 hold for all the p-criteria
with 0 < p <= 1. By passing to the limit or takingf(x) -log x, D-optimality also follows.
We state this in the following

COROLLARY 3.2. For each n, there exists a positive integer No(n) such that for all
N _-> No(n), X3 is p-optimal over (N, n) for all 0 <= p <- in particular, it is D-optimal.

As shown in Theorem 2.1, one can take No(n) max ((n 2)(n2 n + 16)/8, n2 2}.
This is by no means the smallest bound, But since our result is much stronger than
D-optimality, the smallest No(n) must be larger than 2n 5, the bound found by Galil
and Kiefer (1980) for the D-criterion.

Remark. Using a similar method, one can generalize Corollary 3.2 to show that
for any n and p > 0, there exists a positive integer N(n, p) such that for all N >- N(n, p),
X3 is q-optimal over (N, n) for all O<=q<=p. However, since X3 is not E-optimal
(even when N gets large), one has limp_ N(n, p) c. Such a result is not very useful
.practically. Furthermore, for p # 1, there is no simple way to calculate a bound for
N(n, p) as we did in 2 for p 1.

4. O,-optimality of X2, 0 <-_ p<= 1. In this section, we shall prove a result similar to
Corollary 3.2 for X2. We now assume N 2 (mod 4).

THEOREM 4.1. For any n, there exists No(n) such that if N>-No(n), then X2 is

p-optimal over 9(N, n) for all 0 <-_ p <-_ 1.
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Proof Jacroux, Masaro and Wong (1983) proved that X2 is optimal over @’(N, n)
with respect to all the type criteria of Cheng (1980); in particular it is p-optimal
for all p_->0. So it suffices to consider matrices C in fig(N, n)\fig’(N, n). We have to
show that there exists an integer No such that if N >-No, then for any C
fig(N, n)\qg’(N, n), (I)p(C) > (I)p(XX2) for all 0_-<p -< 1.

Now if Cfig(N,n)\fig’(N,n), then trC=<Nn-1. Since tr{n-l(Nn-1)I,}
Nn- l, we have

(4.1) Pp(C)>-p(n-l(Nn-1)l,,) for all p => 0.

By a direct comparison of tr {n-(Nn 1)l,}-I n2/(Nn 1) with

tr (X_X=)-’

n-2 2+ if n is even,
N-2 N+n-2
n-2

+ + if n is odd,
N-2 N+n-1 N+n-3

one can easily show that there exists an integer No such that

(4.2) S>= No(n-(Sn 1)I,) > I(XX2).

Now let /x*, /x*,...,/z* be the eigenvalues of X_X2. Then @p(XX2)
{/1-1Ei=I (]"t )--P} lip is an increasing function of p>0. Since all the eigenvalues of
n-(Nn 1)I, are equal, we have p{n-(Nn 1)I,} =/1/(Nn- 1) for all p>0. By
(4.2), if N => No and 0 < p =< 1, then

p(X.X2)<-,(X’2X2)<,{n-’(Nn 1)I,,}=p{n-’(Nn-1)I,}.

Combining this with (4.1), we conclude that if N_-> No, then X2 is p-optimal over
(N,/1) for all 0<p_-< 1. The D-optimality (p-0) is obtained by passing to limit.

We remark that there is nothing like Theorem 3.1 for X2; the A-optimality of X2
does not guarantee its p-optimality for 0 _-< p _-< 1. Thus if No(/1) is the smallest integer
such that N _>- No(n) ==>X2 is A-optimal over (N, n) and No*(n) is the smallest integer
such that N >- No*(n)=:>X2 is p-optimal over 9(N, n) for all 0 =< p <- 1, then it is not
clear whether No( is equal to N*o(n). For X3, we know that the two numbers are
equal. The proof of Theorem 4.1 indicates that an upper bound for No(n) can be
obtained by comparing tr (XX2)- with tr {n(Nn-1)-I,}. This usually produces a
value that is too large. A much better bound can be obtained by the following method.
For any X (N, n), suppose there are k columns which contain zero entries. Without
loss of generality, we may assume that X (Y2), where 1 is N x k and consists of
all the columns which contain zero entries. By a result of Fan (1954), the eigenvalues
of X’X majorize those of

Since all the diagonal elements of YY are =<N-1, we have

tr (X’X)- > tr
0

,0 =>tr
(N--1)Ik ,0

YzY2 0 Y2Y2

Now all the entries of Y2 are + 1, i.e., YY2 fig’(N, n k). By an argument similar to
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that employed in Jacroux, Masaro and Wong (1983), we conclude that

tr (X’X)- _-> tr 0 (N 2)II + 2Jl 0

0 0 (N- 2)In_k_! + 2Jn-k-I

where l=[(n-k)/2]. Thus an upper bound of No(n) is the smallest N such that

tr ((N-2)It +2Jr 0
0 (N- 2)l._t + 2J._

((N- 1)Ik 0 O )-1_-<tr 0 N- 2)ll + 2J! 0

0 0 (N 2)In-k-! d- 2Jn-k-I
for all k such that l<-k<-_n, where t=[n/2] and l=[(n-k)/2]. Table shows some
upper bounds of No(n) obtained by the above method.

TABLE

an upper bound of No(n)

4 5 6 7 8 9 10 11 12

10 14 14 18 18 22 22 30 30

These bounds certainly are not sharp. In fact, it has been shown by Wong and
Masaro (1982) that X2 is A-optimal over (N, n) for all n<_-6 and all N>-n. Thus
No(4) No(5)- No(6)-6. Although the example in 2 shows that X3 is not always
A-optimal, we have not been able to find an X, which is not A-optimal in (N, n)!
The above table is useful for eliminating a lot of cases that have to be considered in
proving the A-optimality of X2.
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ON THE CUTWIDTH AND THE TOPOLOGICAL BANDWIDTH OF A TREE*

FAN R. K. CHUNG"

Abstract. We investigate the relations between the topological bandwidth b*(G) and the cutwidth

f(G) for a graph G. We show that for any tree T we have b* < f(T) < b*(T)+log2b*(T)+2. These
bounds are "almost" best possible, since we will prove that for each n, there exists a tree T such that
b*(Tn) n and f (Tn) >/ n+log2n-1, and the star S2n with 2n edges satisfies b*(S2n) f ($2) n.

1. Introduction. Suppose G is a graph with vertex set V(G) and edge set
E (G). A numbering r of G is a one-to-one mapping from V(G) to the set of positive
integers. Such a numbering can be viewed as describing a placement of the vertices
of G on a line, so it is not surprising that graph numbering problems are frequently
relevant to circuit layout and design. The following objective functions will be of
interest in this paper.

(i) The bandwidth b,(G) of a numbering r is defined to be

b,(G) ---max{lr(u)-r(v)l" {u,v} E(G)}

and the bandwidth b(G) of G is the minimum of b,(G) over all
numberings r of G.

(ii) The topological bandwidth b* (G) of a graph G is defined to be

b* (G) min{b (G’)" G’ is a refinement of G}

(A graph G’ is said to be a refinement of G if G’ is obtained from G by a
finite number of edge subdivisions.)

(iii) Define

f,(G) max[{{u,v} E E(G)" r(u) < <

Then the cutwidth [12] f (G) of a graph G is defined to be

f (G) min f,(G).

We will show that for any tree T the following holds:

b* (T) < f (T) < b* (T)+log2b* (T)+2.

These bounds are "almost" best possible, since we will prove that for each n, there
exists a tree Tn such that b*(Tn) --n and f(Tn) >/ n+log2n-1, and the star S2n
with 2n edges satisfies b* (S.n) ---f (S2n) n.

We remark that the upper bound does not hold for general graphs since for the
complete graph Kn on n vertices we have b*(Kn)---n-1 and f(Kn)--" [(n2-1)/4],
though it can be shown that b* (G) < f (G) for general graphs G.

(A numbering of a graph is also called a linear arrangement of a graph [6]. The
cutwidth of a graph is sometimes called the folding number of a graph [2].)

As to the algorithmic aspects, the bandwidth problem for graphs is known to be

*Received by the editors April 12,1983, and in revised form February 15, 1984. This paper was

typeset at AT&T Bell Laboratories, Murray Hill, New Jersey, using the troll" program running under
the UnixTM operating system. Final copy was produced on July 27, 1984.
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NP-complete [6], [9] as is the bandwidth problem for trees [5]. The cutwidth
problem for graphs is also NP-complete [4], while the cutwidth problem for trees can
be solved in O(n log n) time [13] (also see [3] for degree restricted cases). The
topological bandwidth problem for graphs is recently proved to be NP-complete [8].

We remark that the minimum sum problem of finding
min{u,,}e(c,)[r(u)-r(v)[ is NP-complete for graphs [81 while there are
polynomial time algorithms for the minimum sum problem for trees [7].

2. Preliminaries. In this section we
numberings [2] that will be useful later.

Let r denote a numbering of a tree
n V(T) [. We say 7r satisfies

(i)
(ii)

will discuss several properties of

T mapping V(T) to {1,...,n} where

The leaf property, if the vertices numbered by and n are leaves.
The monotone property, if the following is true: Let P denote the path,
called the basic path of -, in T connecting the two vertices numbered by
and n. Suppose P has vertices Vo,V vt with vi adjacent to Vi+l. Then r
is monotone if the numberings of the vertices of P are monotone, i.e.,

7V(Vi) " 71"(Vi+ 1) for v 0,1 t-1
r(vi) > r(vi+) for v 0,1 t-1

or

(iii) The block property, if the following is true: Let F denote the forest formed
by removing the edges of P from T (but let the vertices stay). Then any
maximal tree in F is numbered by a set of consecutive i._ntegers.

(iv) The weak block property,if the following is true: Let T denote a maximal
subtree in F. Suppose x min{r(u)" u E T} and y max{r(u)- u E T}.
Then any vertex v with x < r(v) < y is either in T or on P.

(v) The hereditary property, if the induced numbering for each subtree T of F
is an optimal numbering with respect to the objective function of interest.
(The induced numbering r’ of r on T’ is the one-to-one mapping from
V(T’) to the set {1,2 [V(T’)[} such that for any {u,v} in E(T’),
r’(u) < r’(v) if r(u) < r(v). r’ is denoted by r/T’.)

It is easy to check that for a given tree T there exists a bandwidth numbering r
with b,(T) b(T) satisfying the leaf property. Also there exists a numbering for
a refinement T of T with b(T) b* (T) satisfying the leaf property, the monotone
property, and the weak block property. There always exists a cutwidth numbering X
with fx(T)--f(T) satisfying the leaf property, the monotone property, the block
property and the hereditary property.

Let r denote a numbering for a tree T. Then for any subtree T’ in T, the basic
path PGr,T’) of T’ is the path joining the two vertices with the largest and smallest
numbers in T’. Let F Gr, T,1) denote the forest obtained by removing the edges (not
the vertices) of PGr,T) from T. Let FGr,T,i) denote the forest obtained by removing
the edges of the basic paths of all maximal subtrees in FGr, T,i-1). Then we have
the following:

LEMMA 1. Suppose is a cutwidth numbering for T. Then
f (T) + maxT, f (T’) for T’ ranging over all maximal subtrees of F(,T,1).

Proof. This follows immediately from the monotone property, the block property
and the hereditary property of ,.

LEMMA 2. Suppose is a cutwidth numbering for T. Then
f (T) + maxT., f (T’) for T’ ranging over all maximal subtrees ofF (X,T,i).
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LEMMA 3. If T’ is a refinement of T, then we have

f (T) f (T’)

Proof. This follows from the fact that any numbering rr of T can be extended to
be a numbering r of T’ with f,(T) f,,(T). On the other hand, for any numbering

of T’ the induced numbering r/T of - on T satisfies f;/r (T) < f;(T’).
LEMMA 4. f (T) < V(T)I/2.
Proof This follows from the leaf property that any maximal subtree in F(,,F,1)

has at most V(T)I-2 vertices. Thus by Lemma and by induction on n V(T)I
we have

f(T) +max/(T’) < + IV(T)I-2 IV(T)I
T’ 2 2

LEMMA 5. Suppose T’ is a refinement of T. Then b*(T’) can be different
from b* (T). (See Fig. 1.)

bW (T) 2

bW(T ’) =,

Fig.

Let us now define two functions, called the shifting function and the skipping
function, from the set of integers Z to itself. The shifting function is sa(n) --a+n
and the skipping function ka is the order preserving function from Z to
Z {ia:

LEMMA 6. Suppose T is a tree which is the edge-disjoint union of a path P
and a collection S of trees, say the th vertex in P is in the th tree in S. Then we
have

b* (T) < + maxb* (T’)
TES

Proof. Let T Tt denote the trees in S. Let Ti be a refinement of Ti with a

labeling rri" V(Ti) {1 [V(Ti)[} and b,,(Ti) b*(Ti). We will combine the ri
to form a numbering r’ for a refinement T’ of T with
b ,(T’) +maxi b*(Ti) l+x. Roughly speaking, the vertices of Ti in T’ are

numbered in the same fashion as ri except that the ,assigned values skip one out of
every x+l values. The numbering r’ restricted to Ti can be described as sa,kx+rri
where
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ai [(alV(Ti)[)(1 + 1)] + ilv(t)l.
j<i X

Now we refine the basic path so that its vertices are numbered by a chain of
numbers at most x+l apart. Therefore we have

b* (T) < b,(T’) l+x.

This completes the proof of Lemma 6.
LEMMA 7. Suppose r is a numbering for a tree T and r satisfies the leaf

property. Then we have

b*(T) < + max b*(T’)
T’

for T’ ranging over all maximal subtrees in F (Tr, T,1).
Proof. It follows from Lemma 6.
Let F* Gr, T,1) denote the forest obtained by removing all vertices and edges in

PGr, T). Then we have the following.
LEMMA 8. Suppose r is a bandwidth numbering of T. Then

b(T) > +maxb(T’).
T’aF* (r,T,1)

Proof. Suppose b (T) x. For any vertex v in T with r(v)+x < IV(T)[ there
is a vertex u in PGr,T) such that r(v) < r(u) < r(v)+x. Thus for any T’ in
F* Gr, T,1) the induced numbering of r on T’ has bandwidth at most x-1.

3. The topological bandwidth is no larger than the cutwidth. It is easy to show
that the topological bandwidth is no larger than the cutwidth numbering for a tree.

THEOREM 1. f (T) > b* (T) for any tree T.
Proof. We will prove this by induction on IV(T)1. Let X denote the cutwidth

numbering. Let T’ denote a maximal subtree in F(h,T,1). We have

f(T) >/ +maxf(T’) (byLemma 1)
T’

>/ +maxb*(T’) (by induction and V(T’)I < IV(T) I),
T’

>/ b* (T) (by Lemma 7)

In fact, the topological bandwidth for a graph is no larger than its cutwidth. This has
been observed by I. H. Sudborough and F. Makedon [11] among others. We will give
the proof here.

THEOREM 2. f (G) > b* (G) for any graph G.
Proof. Let h denote a cutwidth numbering of G. We will modify h to obtain a

numbering h’ of a refinement G’ of G such that b,(G’) < f(G) ---f(G) x. First
we choose a subgraph G1 of G as follows

Step 1: Set C 4.

Step 2: Choose an edge {u,v} such that r(u) < r(v) and u is the smallest vertex
with 7r(u) > r(w) for any w in a edge in C. Put {u,v} into C and repeat
Step 2. If no such edge exists, stop the process.

Clearly, the graph G formed by edges in C has fr(Gl) 1. Also the graph G-G1
obtained by removing edges in G1 from G satisfies f(G-Gl) x-1. (Otherwise, let
be the least number with I{{u,v} E E(G-G1): r(u) < < r(v)}l--x. Then all



272 FAN R. K. CHUNG

edges {u,v} in G with r(u) < < ,r(v) are not in Gl. From Step 2 we know that
there is no edge {u,v} in G with r(u) <r(v). Thus there are x edges {u,v} with
r(u) < < r(v). This implies [{{u,v} E r(G-GI): 7r(u) < i-1 < r(v)}l x, con-
tradicting the minimality of i.)

We can then repeat the process and partition G into G,G2 Gx, such that
f(Gi) for < < x. Now we consider a refinement G’ of G as follows. For
any edge {u,v} in Gi with r(u)< 7r(v), we subdivide {u,v} into a path of
a’(v) 7r(u) + vertices, u Uo,U ,ut v where r(v)-r(u). We define
7r’(uj) to be x(Tr(u)+j) + i-1.

Clearly w’ is a one-to-one function from V(G’) to Z. It is easily checked that
b(G’) x. Thus we have f(G) x b,(G’) > b*(G).

4. The topological bandwidth for a tree is not equal to its cutwidth in general.
For each integer n, we will construct a tree Tn satisfying b*(Tn)--n and
f(Tn) >/ n+log2n-1. We will recursively build a rooted tree T (i.e., a tree with one
special vertex) as follows: (i) T is a path with three vertices. The middle vertex is
the root. (ii) For n > 1, T consists of a path Pn of 15 vertices and 15 copies of
T-l. Each vertex in P, is adjacent to the root of a copy of T-l. The root of T is
the root of the T_ which is connected to the 8th vertex of Pn.

Let T, denote the unrooted version of T.
CLAIM 1. b* (Tn) n.

Proof We will prove this by induction on n. It is easily seen that b* (Tl) 1.
Suppose a refinement Ti of Ti has bandwidth < i. We want to show that
b* (Ti/l) +1. Let r denote the numbering with (the refined) Pi+ as the basic
path. Let T’ denote a maximal subtree in F* Gr, T,1). Then T’ C_ Ti.

b* (Ti+l) < + max b* (T’)
T’

< l+b*(Ti) < l+i

(by Lemma 7)

On the other hand, for any topological-bandwidth numbering r of Ti+I, F* (Tr, Ti+l,1)
must contain Ti. Thus we have

b* (Ti+I) >/ + max b* (T’) (by Lemma 8)
T’.F* (a’,T,l)

> +b* (T)

> 1+i.

Thus we have b* (Ti+ 1) 1+i.
CLAIM 2. f (Tn) >/ n+log2n-1.
Proof This will be proved by induction on n. It is easy to see that f(Tl)

and f(T2) 3. Suppose f(TT) > j+(1 + 1/j)log2j-I for 2 < j < i. We want to

prove f(Ti*) >/ i+(1 + 1/i)log2i-1. Let ri denote a cutwidth numbering of Ti. We
say 7ri is good if PGri,Ti) contains at least 9 vertices of Pn. If ri is good, then

FGri,Ti,1) contains the tree which is the union of T:_ and an edge_ incident to the
root, denoted by ]?i-l. Consider the restricted mapping ri-i of ri to Ti-l. For each j
if 7ri_j is good (i.e., P(Tri_j,’’i_j) contains 9 vertices of Pn-j), we consider 7i_j_l
(which is the union of Ti-j-l and j+l additional edges incident to the root of Ti-j-I)
and the restricted mapping ri-j-l of ri-j to Ti*--j-l until ri_j, is not good. There are

two possibilities.
CASE 1. jo < i/2+log2i and Jo < i. Since r;_A is not good, F(,ri_A,’i-A,l)
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contains a tree consisting of a path of length 3 joining to three copies of Ti*--jo-. Thus
FGri_A,i_A,2) still contains a copy of Ti*-A-1. We then have

and, by induction,

f.,_jo(i-j) > 2+f (Ti*_A_I)

f (TT) f,,(Ti*) >/jo+f,,_jo(i-j)
>/jo+2+f (Ti*_-j_

jo+2+i-jo-l+(1 + 2 )log2(i-jo-1)-I
i-jo-1

2> 1+i+(1 +
i/2--10g2 i-1 log2(-- log i-1)-1

i+(1 + 2@)log2 i-1.

CASE 2. Jo > i/2 + log2 or jo-- i. Then f(Ti*) >/jo+f,,_o(f’i-j,).
that Ti-jo contains a star Si+l of i+1 edges. Thus

Note

f (TT) jo + f (Si+)

>/ jo + [i+1
i+1i/2 + log + [--]

>/ +log2i +--.
2

Therefore we have proved the following.
THEOREM 3. For every positive integer n there exists a tree T satisfying

b* (T) n and
f (T) >/ b* (T)+log2b* (T)-I

5. The difference between the topological bandwidth and the cutwidth for a tree is
small. In this section, we will prove that the topological bandwidth for a tree can be
bounded above by the sum of its cutwidth and a lower order term. The proof is
somewhat complicated. We will give a sequence of observations from which the proof
will follow. Suppose r is a bandwidth numbering. Let T’ denote a maximal tree in
FGr, T,1). The numbering induced by r on T’ has many special properties. Before
we consider these helpful properties we will make some definitions.

Let r denote a numbering of T. We say r is an (x ,y -numbering of T if there
is a multi-set J (T) of y vertices (not necessarily distinct) of V(T) such that for any
edge {u,v} E E (T) with r(u) < r(v), we have

.< x+l{weJ: < < .(v)}l.

Furthermore, we say r is derived from a._ (x +y ,0) -numbering of T if r is the
induced numbering of on T for some T containing T. A tree having a (x,y)-
numbering is a (x,y)-tree.

OBSERVATION 1. If the bandwidth of a tree T is x, then T is a (x,0)-tree.
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OBSERVATION 2. Suppose r is a (x,0)-numbering of T and r satisfies the
leaf property. Let T’ denote a maximal tree in F Gr, T,I). Then T’ is a (x--1,1)-tree
while J(T’) is V(T’) Cl P(r,T).

Proof. For any value a with < a < a+x < IV(T) the set
{u E V(T): a < r(u) < a+x} contains at least one vertex in P(r,T), as does the set
{uE V(T): a < 7r(u) < a+x}. Thus the induced numbering 7r’ of r on T’ satisfies
the property that for {u,v} E (T’) with r(u) < r(v) we have

x-l+l{u" -(u) < -(u’) < -(v’)} Uol
where Uo V(T’) Cl PGr, T), since I{u,v} ,q P(r,T)I < 1.

OBSERV_ATION 3. Suppose T has a (x,0)-numbering. Then there is a
refinement T of T having a (x,0)-numbering 7 such that for each and each
maximal subtree T’ in F(,T,i) the induced numbering r’ on T’ satisfies the leaf
property, the monotone property, and the weak block property.

Proof This follows from the fact that we can untangle the maximal trees.
From now on we will only consider (x,0)-numberings satisfying the properties in

Observation 3.
OBSER._VATION 4. Suppose T has a (x,0)-numbering. Then there is a

refinement T of T having a (x,0)-numbering such that for each all the trees T’ in
F (, T,i are (x -i ,i -trees.

Proof. For any value a with minvv(r,r(v) < a < a+x < maxuer,(rr(u),
the set {u V(T)’a < r(u) < a+x} contains at least one vertex in each basic path
P(r, Tj), p < j < i, Tj F(r,T,j). Thus the induced numbering r’ of r of T’
satisfies the property that for {u,v} E (T’) with r(u) < r(v), we have

x-i+l{u" -(u) < -(u’) < r(v)} J(T’)I

where J(T’) is the multi-set Oj (V(T’) Cl P(.,Tj) ({a} {a} is defined to be
{a,a}).

From now on we will only be interested in the (x,y)-numberings satisfying the
leaf property, the monotone property and the weak block property.

OBSERVATION 5. Suppose T is a (x,y)-tree with a (x ,y -numbering r. Let
TI,T2,...,T denote the maximal subtrees in F(r,T,1). Then the Ti are (x-l,yi+l)-
trees where

J(Ti) (J(T)f’IV(Ti)) 0 (g(Ti) f"lP(r, T)), IJ(T;)I--yi+l

and i-lYi Y.
We define f (x,y) max{f (T): T has an (x ,y -numbering}
It is easy to see that f(x,y) is increasing in x and in y. We also write

f (x) f (x,0).
OBSERVATION 6. f (x,y) < +f (x-- 1,y + 1).
Proof This follows from Observation 5.
OBSERVATION 7. f (x) >/ +f (x- 1).
Proofl Let T be a tree with a (x- 1,0)-numbering 7r and f (T) f (x- 1,0).

Consider a tree T’ which is the union of 3 copies of T and a path P with three
vertices adjacent to vertices of T. Obviously f(T’) >/ l+f(T). T’ is a (x,0)-tree
since we can form a (x,0)-numbering r’ on (a refinement of) T’ so that for any vertex
v in the ith copy of T we have r’(v) -sa,kaTr(v) ai i’lV(T)l[a/(a-1)] and the
vertices in P are numbered by a chain of numbers at most x apart. We then have
f(x) >/f(T’) >/ l+f(x-1).
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OBSERVATION 8. f(x,1) < l+f(x).
Proof. Suppose r is a (x,1)-numbering for a tree T and Uo--J(T). Let S

consist of all edges {u,v} of T such that r(u) < r(uo) < r(v). If S , then T is
a (x,0)-tree and f(T) < f(x). Suppose S # . We now choose Ul,Vl,U2,’2 (not
necessarily distinct) satisfying:

7r(u) max[r(u)" [u,vi E(T), r(u) < 7r(Uo) < 7r(v)i
r(Vl) min{r(v)" {u,v} E E(T), r(uo) < 7r(v)/,
a’(v) min{w(v)" {u,vl E(T), w(u) < r(uo) < r(v)}
r(u2) maxlr(u)" [U,VE} E(T)" r(u) < r(uo)}

Let P denote a path contai_ning Ul,U2,v and v2. Any tree T’ in the forest F’ formed
by removing the edges of P is a (x,0)-tree since for any edge {u,v} in S O E (T’) the
set [u" r(u) < r(u’) < r(v)] must contain at least one vertex in
{u,u,v,v}-V(T’). Thus by choosing a numbering with P (or its refinement) as the
basic path we have

f(T) < l+maxf(T’) < l-If(x).
T’F--

OBSERVATION 9. f (0,y) < y/2.
Proof Suppose a tree T has a (0,y)-numbering r. If v is a vertex in

V(T)-J(T) and {u,v} fi E(T), then < I{wJ" r(u) <
(w) < 1, which is impossible. Thus we can have at most
y nontrivial vertices (vertices with degree >/ 1). By Lemma 4 we have
f (O,y) < y/2.

OBSERVATION 10. Suppose r is a (x,0)-numbering for T. Suppose T’ in
F (w,T,i) is a (x-i ,j )-tree, j < i. Then the induced numbering w’ of r on T’ can be
derived from a (x-i+j,O)-numbering.

Proof. For < k < i, let Tk be the maximal tree in F (r,T,k) containing T’.
From the proof of Observation 4 we know that (P (r, Tk) t V(T’)) j’ < j.
Let T denote a forest which is the union of j paths and T’ such that a vertex in the
kth path coincides with the vertex in P(r, Tk) V(T’) if P(r,rk) V(T’) # .
We can extend r/V(T’) to T and obviously T has a (x-i+j,O)-numbering.

OBSERVATION 1. Suppose T has a (x ,y -numbering r, and r is derived from
a (x +y,0)-numbering. Suppose f (T) > f (x)+ 1. Then y >/ x+ 1.

Proof. Clearly it holds for x--1. Suppose it is true for x’< x. Suppose
f (T) > f (x) + and y < x. Since by Observations 6 and 7
f(T) <f(x-l,y+l)4-1, and f(x-1)+l <f(x), we then have y > x-1. This
implies y x-l, or x. From Observation 4 a subtree in F(Tr, T,1) is a (x-l,y/l)-
tree. Let To denote the maximal subtree in F(r,T,1) with the maximum cutwidth.

If To is a (x-l,y-1)-tree, by Lemma 5 and Observation 7 we have
l+f(To) > f(T) > l+f(x) > 2+f(x-1). This implies y >/ x+l which is
impossible. Thus one of the subtrees is a (x-l,x+l)-tree or a (x-l,x)-tree,
(denoted by To) and the rest are (x-l,1)-trees (with one exception of a (x-l,2)-tree
by Observation 5). Clearly the vertex u of To on the basic path PGr, T) is in J(To).
Let P denote the path containing the largest number of different vertices in J(To).
We consider the following three possibilities.

CASE 1. J (To) has three or more distinct vertices. Choose a numbering r of a
refinement of To so that P is the basic path. Suppose IV(P)f’lJ(To)] > 3. Since all
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trees in F Gro, To,1) are (x-l,x-1)-trees, we have
f(T) < l-if(To) <_2/f(x-l,x-1) < 2/f(x-1) < l/f(x), which is impossible.
We may assume V(P)NJ(To) {Vl,V21. Again each subtree in Fo can have at most
x-1 vertices in J since the subtree contains vi, or 2, and does not contain any
vertex in J. Thus we have

f (T) < 2+f (x-l,x-1) < 2+f (x-l) < f (x)+l

This is a contradiction. Therefore Case cannot happen.
CASE 2. J (To) has exactly one vertex i.e., J (To) is a multi-set containing u,

repeated y times. Let S denote the set of all ordered pairs (u’,v’) such that {u’,v’} is
an edge and -(u’) < r(u) < r(v’). If S --O, then To is a (x-l,0)-tree and we
have f (To) < f (x- 1). Thus f (T) < /f (x- 1) < /f (x), which is impossible.
We may assume S ; o. Let (u’,v’) E S. Since r is derived from a (x/y,0)-
numbering r’, we know that the set {v: r’(u) < r’(v) < r’(u)+x+y} contains at
least y+l vertices not in To (one vertex on each basic path). Thus
r(v’)-r(u) < x-1. Similarly we can prove ’(u)-r(u’) < x-1. Therefore
r(v’)-r(u’) < 2(x-l). Thus To is a (x-l,x-1)-tree and we have

f(T) < 2+f(x-1) < l+f(x)

Again this is a contradiction.
CASE 3. J(To) has exactly two vertices, i.e. J(T0) consists of u, repeated

times and v, repeated y-i times. If both and y-i are greater than one, the proof is
similar to Case 1. If either or y-i is one, then the proof is similar to Case 2 and
will be omitted.

Now we are ready to prove the main theorem.
THEOREM 4. Suppose a tree T has topological bandwidth b* (T) --n. Then

f(T) < n+log2n+2.
Proof. We will prove by induction on n that f(T) < n+log2(n-3)+2 for a tree

T with b*(T)--n. It is true for n < 4 since f(T)< n+f(O,n)< 3n/2 by
Observation 9. Let w denote the (n,0)-numbering of T. Then maximal subtrees in
FGr, T,i) are (n-i ,i )-trees. Let Ti denote the maximal subtree in FGr, T,i) with the
largest cutwidth. Let z denote the largest integer satisfying

f (T) < f (n-z)+l

From Observation 8 we have > 1. By definition we have f(T/l) > l+f(n-z-1).
Using Observation 11 we have z/l > n--I which implies z )n/2- 1. From
Observation 5, we have

f (T) < z+f (Tz)
< z+ +f (n-z) (by definition)

< z+l+(n-z)+log2(n-z)+2 (by induction)

n n n n< +n-+l+log(n-+l-3)+2 (becausez > -1)
n< n+log(-- 2)+3

< n +log2(n --4) +2

< n/log2(n--3)+2.
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Thus we have shown that, if b* (T) n, then

f(T) < n+log2(n-3)+2.

This completes the proof of Theorem 4.
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OPTIMUM OVERRELAXATION PARAMETER FOR THE SOR METHOD
FOR SOLVING THE EIGENVALUE PROBLEM*

HIDEO SAWAMI" AND HIROSHI NIKIt

Abstract. We study the eigenvalue problem Ax Ax, where A is a consistently ordered positive definite
matrix. The first eigenvalue of A is obtained with the eigenvector by the SOR method. We first introduce
the Jacobi and SOR iteration matrices for the eigenvalue problem, and clarify that the spectral radii, that
is the maximum eigenvalues, of both the matrices are unity, but the convergence rate, that is the ratio of
the first two eigenvalues in radius, is smaller than unity.

Next, we consider the optimum overrelaxation parameter of the SOR method. The optimum accelerating
parameter minimizing the convergence rate is obtained from the first two eigenvalues (in radius) of the
Jacobi iteration matrix. Since the eigenvalues are not known a priori, we propose a practical SOR method:
in this method, the estimated overrelaxation parameters are used instead of the optimum value.

Finally these results are confirmed by some numerical examples.

1. Introduction. Using the SOR method, we solve the eigenvalue problem

(1.1) Ax

where A is an n n consistently ordered positive definite matrix [1], A is the first
eigenvalue and x is the eigenvector corresponding to A.

For simplicity, we assume that A is rewritten as

(1.2) A=I-L-U,

where /, L, U are respectively the identity and strictly lower and upper triangular
matrices. Our chief interest is in iterative methods for solving the eigenvalue problem;
thus we first introduce the Jacobi iteration matrix for the eigenvalue problem B(A)
satisfying

(1.3) (I-B(A))x=O

as follows:

1
(1.4) B(A)=

1-A
(L+ U).

A is a positive definite matrix and we assume that Ai is the ith eigenvalue of A; that
is, Axi Aixi where x is the eigenvector corresponding to Ai satisfying

(1.5)

We are thus able to obtain the ith eigenvalue/x of B(A) as

1-Ai(1.6) /x= 1-A’

where B(A)x =/zix, and 1 =/xl >/z, 2, 3,. , n.
From these results we have the following lemma.

* Received by the editors July 6, 1983. This work was presented at the SIAM Second Conference on
the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

f Department of Applied Mathematics, Okayama University of Science, Ridai-cho 1-1, Okayama-shi,
700 Japan.
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LEMMA 1. The Jacobi iteration for the eigenvalue problem converges if and only if
AI_-< 2- A,,.

Proof. The Jacobi iteration for the eigenvalue problem is defined as

(1.7) x(k+l)=B(A)x(k),

where x(k) is the estimated eigenvector at the kth iteration and we assume that the
initial estimate x(0)= Y",=1 cix,, Cl O. For the case A < 2-A,, we have

(1.8) 1 --/Zl > I,1, i= 2, 3,..., n.

Accordingly x(k) converges to the first eigenvector clxl corresponding to the first
eigenvalue A 1.

For the case A 2-A,, we have

(1.9) 1 /Zl --/zn > I/z/I, 2, 3," ", n 1.

In this case, x(k) converges to ClXl+(--1)kCnX,. Therefore the first eigenvector is
obtained from x(k + 1) and x(k) by addition, and the Jacobi iteration converges in
this sense.

Since the Jacobi method for the eigenvalue problem is used, in practice, to obtain
both the eigenvector and the eigenvalue, we study the estimation scheme for the
eigenvalue. In our Jacobi method for the eigenvalue problem, we use the Rayleigh
quotient to estimate the eigenvalue as

(1.10) A (k) (Ax(k), x(k))/(x(k), x(k)),

where h (k) is the kth estimate of h and (.,.) denotes the inner product. From (1.7)
and (1.10) we define a practical Jacobi method for the eigenvalue problem. We outline
this Jacobi method for the eigenvalue problem in the next section.

2. Jacobi method for the eigenvalue problem. This method is written as follows.
(i) Choose an initial estimate x(0) which contains the eigenvector Xl.
(ii) Compute the Rayleigh quotient h(k) and obtain a new estimate for the

eigenvector x(k + 1) as

(2.1) x(k + 1)= B(A(k))x(k).

(iii) Repeat (ii) for k =0, 1, 2,... until convergence.
From this outline we have the following theorem.
THEOREM 1. The Jacobi method for the eigenvalue problem converges if and only

/fAl--<2-hn
Proof. Since h is the minimum eigenvalue of A, we have h <--h (k), and thus

(2.2) /zl(k) > I/z,(k)l, i= 2, 3,..., n,

for the case h < 2--/n, where /z,(k) (1 ,)/(1 (k)) is the ith eigenvalue of
B(h(k)). Now assume that h(k)<l, and we also have/zl(k)-> 1. Accordingly x(k)

k-1converges to the first eigenvector cl 1-[,=0/zl(rn)xl. For the case ,1 2-, we have

(2.3) /zl(k)=-/z,,(k)>l/z,(k)l, i=2,3,... ,n-1.

In this case, x(k) converges to
k-1 k-1

Cl I-[ /zl(m)Xlq"Cn I-I /zn(m)Xn
=O ---O

and /zl(k) and /z(k) converge to /zl and /z, respectively. The first eigenvector is
obtained from x(k + 1) and x(k) by addition.
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3. SOR method for the eigenvalue problem. We define the SOR method for the
eigenvalue problem as follows.

(i) Choose an initial estimate x(0) which contains the eigenvector x and the
overrelaxation parameter co.

(ii) Compute the Rayleigh quotient X(k) and obtain a new estimate of the
eigenvector x(k + 1) as

(3.1) x(k + 1)= H(co, ,(k))x(k),

where H(co, ,) is the SOR iteration matrix defined as

co
L (1-co)l+ U(3.2) H(co, h)= I-l-h 1-A

(iii) Repeat (ii) for k =0, 1, 2,... until convergence.
From this outline, we have the following lemma.
LEMMA 2. The SOR iteration for the eigenvalue problem converges if and only if

the Jacobi iteration for the eigenvalue problem converges.
Proof The SOR iteration uses h instead of , (k); thus we have

(3.3) (.7i + co-- 1)2= .7i (COjL/,i) 2,
where .7i is the ith eigenvalue of H(co, h). From (1.9), we find that .71= 1 and
*7n =(1-co)2 for the case/Xl=-/zn. Since ]/z[< 1, i=2,3,... ,n-1 and 1.71<1 for
the case co (0, 2), the SOR iteration converges for the case co (0, 2). And if/Xl > I/z[,

2, 3,. , n, we find that 1 .71 > [.7[ for the case co (0, 2). Thus the SOR iteration
converges if the Jacobi iteration converges. From the above lemma, we have the
following theorem.

THEOREM 2. The optimum overrelaxation parameter coopt of the SOR iteration for
the eigenvalue problem is given by

(3.4) coopt-"
1 +/i-/x2

for the case/xl -/z, 1 > [/zi[, 2, 3,. , n 1, or

(3.5) coopt
1 +x/1--,u, 2

]:or the case/,1 1 > I/zl 2, 3,. , n, where/./,2 maxi Ix2
Proof. This theorem is easily obtained. Thus we only remark that the above results

are obtained from the assumption ci # 0, 1, 2,. , n, and that the optimum overre-
laxation parameter becomes smaller than the value of (3.4) or (3.5) if some c vanish.

After some tedious computation, we also have the following theorem.
THEOREM 3. The SOR method for the eigenvalue problem converges if and only

if co e (0, 2).
Proof. It is easily found that the first eigenvalue *7(k)>l*7(k)[ for all i=

2, 3,. , n since/x(k) > 1, and that the convergence of the x(k) to the first eigenvector
requires the overrelaxation parameter co e (0, 2). Indeed, for arbitrary co (0, 2), the
convergence of x(k) to the first eigenvector becomes slower if the estimate ,(k)
becomes closer to ,.

We remark that the first eigenvalue ,71 of H(co, ) is unity, the eigenvalue *7(k)
of H(co,,(k)) is greater than or equal to unity and the optimum overrelaxation
parameter coopt minimizes the second eigenvalue *72 or H(co, ). We also remark that
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the convergence rate IT]2/ 1[- caopt-- 1 for the case t --]J’n- Thus the Jacobi method
is improved by the factor 1ogl0(caopt-- 1)/logm(tz2) for the iteration number; this means
that the SOR method is 2///7-times faster than the Jacobi method for small values
of e > 0, where/z2- 1- e, and ,,//4c-times faster than the Gauss-Seidel method.

4. Numerical examples. We define the optimum SOR method for the eigenvalue
problem as follows.

(i) Choose an initial estimate x(0) which contains the first eigenvector.
(ii) Compute the Rayleigh quotient h(k) (k=0, 1,2,... and obtain a new

estimate x(k + 1) using H(caopt, A(k)).
(iii) Repeat (ii) until convergence.
For practical use, we propose a technique [2] for solving the eigenvalue problem

as follows.
(i) Choose an initial estimate x(0, ca0) which contains the first eigenvector, and

set the initial overrelaxation parameter ca0 to unity.
(ii) Compute the ratio h(d,w,,)=llx(d, wm)-x(d-l, cam)[I/[lx(d-l, ca,,)-

x(d-2, ca,)[[ at the dth step using the ruth overrelaxation parameter ca,,
where the SOR iteration is carried out until the following conditions are
satisfied:

(4.1) ,(j, cam) < 1

and

(4.2) O < [, d l oo , d, o) / [, d 2 oo,, , d l oo < l

for j d 2, d 1, d and d =< 4. We denote by x(d, Cam) the estimated eigenvec-
tot at the dth iteration using the rnth overrelaxation parameter Win.

(iii) The new overrelaxation parameter cam+l is determined as follows"

(4.3)

(4.4)

otherwise

cam+a a( d, cam)+ l if cam- l >- A( d, cam),

carn+l [cam q- 2/(1 +/1 -/,1)]/2,
where

(4.5) [cam + ’ (d, ca,,,)- 112/[a (d, ca,,,) ca2].
(iv) Repeat from (ii) to (iii) until convergence.
The Gauss-Seidel method for the eigenvalue problem is defined like the optimum

SOR method, using unity instead of the optimum overrelaxation parameter caopt.
Using the above three methods, we have solved the following eigenvalue problem

as an example:

(4.6) --A6 h6 in 12 (0, 1) x (0, 1),

with the boundary condition b 0 on 0f, where z is the two-dimensional Laplacian
operator. The unit square domain fl is divided into a square mesh with mesh size h,
and (4.6) is approximated by finite differencing with a five-point stencil. The results
are tabulated in Table 1 for h- =4, 8, 16,32, 64, 128. The initial estimates x(0) or
x(0, ca0) are taken to be 1 on the rectangular domain, the upper half of 12; the rest
are taken to be zero, and contain the first and the second eigenvectors. By doing so
we have cl 0 and c2 0, and the improvement on the convergence are correctly
demonstrated. Pagewise ordering is used for all of the methods. We remark that some
of the iteration matrices have nonlinear elementary divisors, but since nonlinear
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ITERRTION

FIG. I. The relative error, logo(X k)/X 1) and the acceleraingparameterorth Gauss-Seidel, optimum
SOR and our methods drawn versus the ieration number. The mesh size is h .

TABLE
Iteration numbers required to satisfy the convergence test ]’or the Gauss-Seidel, optimum SOR and our

methods with the values of h-1, /g’2 and tOop

h-1 4 8 16 32 64 128

/A 0.5 0.88268 0.97099 0.99276 0.99819 0.99955
tOop 1.072 1.361 1.614 1.786 1.887 1.942

Gauss-Seidel 11 48 200 808 3,238 12,961
Optimum SOR 10 20 41 81 163 328
Our method 11 24 46 86 183 385

elementary divisors are not our purpose in this paper, we reduce their influence by
the following convergence test:

(4.7) IA(k)-AI/A 10-As seen in Table 1, we found that the SOR method using the optimum accelerating
parameter is by far the best; the improvement is drastic for small h. We found that
our method using estimated overrelaxation parameters is very useful since the optimum
accelerating parameter is in general unknown for the eigenvalue problem.

5. Conclusion. We have introduced the Jacobi, the SOR and our methods for
the eigenvalue problem and show using the improvement factor and numerical examples
that the convergence of the optimum SOR method is very best. Since the optimum
overrelaxation parameter is obtained from the two of the eigenvalues and these values
are not known a priori, we conclude that our estimation method for this parameter is
useful in practice for solving the eigenvalue problem.
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MONOTONICITY AND OTHER PARADOXES IN SOME PROPORTIONAL
REPRESENTATION SCHEMES*

EDWARD M. BOLGER"

Abstract. Single Transferable Voting, which does provide proportional representation, has recently
been shown to exhibit certain paradoxes [2], [3], [5], [6], [7]. In this paper we examine some alternate
methods designed to provide proportional representation while at the same time reducing the number of
"wasted votes". Several versions of cumulative voting with transfer of surplus exhibit some forms of the
monotonicity, No-Show, and New Voter paradoxes. If, in addition, low-ranking candidates are eliminated
to further reduce wasted votes, then even the simplest forms of the monotonicity principle are violated.

Key words, proportional representation, voting paradoxes, transfer of surplus, elimination

AMS(MOS) subject classifications. 92, 90A

1. Introduction. A widely used scheme to provide proportional representation is
the Hare Voting System, also known as Single Transferable Voting (STV).. STV has
recently come under attack because it exhibits certain paradoxes. Doron and Kronick
[5] have given an example to show that STV exhibits the monotonicity (a winning
candidate "moves up" in some of the rankings and becomes a losing candidate) paradox.
Doron [6] has given an example in which the results change when a losing candidate
is removed. Brams and Fishburn [2] demonstrate that STV also violates the "No-Show"
or "New Voters" principle (i.e. if new voters enter the election and place x last in
their rankings, the election process should not replace any winning candidate with x).
For more results on paradoxes of preferential voting schemes, see Doron [7], Brams
and Fishburn [2], Brams [3], Fishburn [8], and Smith [10].

One reason for the popularity of STV as a proportional representation scheme is
that it usually results in few wasted votes. Cumulative voting, another popular propor-
tional representation scheme, does not share this property. Votes may be "wasted"
either on a candidate who receives far more votes than needed or on a candidate who
has no chance of being elected.

It is tempting to modify cumulative voting by eliminating low-ranking candidates
and by transferring "surplus" votes from candidates who have more votes than needed.
We shall first consider a restricted form of cumulative voting in which voters distribute
their votes equally among their candidates and we shall allow "transfer of surplus" in
this voting system.

2. Multiple Voting with Transfer of Surplus (MVTS). MVTS is a proportional
representation scheme described as follows.

There are n voters and rn candidates. The number to be elected is e. Let
(ne + 1)/(e + 1). is called the quota. Each voter selects a subset consisting of e

or fewer candidates (thus choosing those the voter wishes to support). If the voter
selects c candidates (c <-e), then on the first round each of these candidates receives
e/c votes from this voter. The election procedure consists of the following four steps"

Step 1. Each candidate receiving a total of at least O votes is declared elected.
If there are e such candidates, the process terminates. If no candidate has more than

* Received by the editors July 6, 1983. This work was presented at the SIAM Second Conference on
the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

" Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056.
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O votes, go to Step 4. Let vi(A) be the number of votes currently assigned to candidate
A by voter i. Let v(A) be the total number of votes currently assigned to A. If
v(A) > O, then v(A)-0 is called the surplus for candidate A. In this case, [v(A)-
O]vi(A)/v(A) is called voter i’s share of this surplus.

Step 2. If v(A) > O, distribute voter i’s share of A’s surplus equally among those
of voter i’s candidates who have not been declared elected. Thus, if B is one of i’s
candidates and if v(B)< O, then after the transfer of A’s surplus votes, voter will
assign to B

vi(B)+l__ vi(A)
c, v(A) Iv(A)- O]

votes, where ci is the number of nonelected candidates supported by voter i. After
distributing all such surpluses, set v(A)= O for each elected candidate A.

Step 3. For each nonelected candidate B, compute the new vote total, v(B), and
go back to step 1.

Step 4. If after all surpluses have been distributed, the number, say x, of elected
candidates is less than e, then declare elected the remaining e-x candidates with the
highest vote totals. In case of a tie, include none of the "tied" candidates among the
winners (in which case fewer than e candidates will be elected).

For example, suppose there are 25 voters to elect two of four candidates. Suppose
the first 16 voters vote for A and B; the next 4 voters vote for A and C; the remaining
voters vote for C and D. On the first count, A is declared elected and has 3 surplus
votes. Each of the first 16 voters transfers 0 votes to candidate B who will then have
enough votes to make quota.

For the proof that MVTS does indeed guarantee proportional representation, see
Bolger [1].

In order to conduct an election using MVTS, one needs a list which contains the
name of each voter and the candidates this voter chooses to support. Such a list will
be called a voter profile. If r is a voter profile, then /4(7r) denotes the set of winning
candidates under 7r and v’(A) is the (final) number of votes assigned to A under
If is a subset of the set of candidates, then r() will denote the number of voters
who support those and only those candidates in

3. Paradoxes of MrTS. We consider first the "New Voter" paradox.
DF.FNTION. Suppose the voter profile 7r

/ is obtained from the profile 7r when
one new voter is added and votes only for candidates who won under or. MVTS will
be said to violate the New Voter principle if one of this new voter’s candidates loses
under 7r+.

Let O/ be the quota under 7r+. Then
eO+=O+

e+l

Thus, it is clear that if candidate A made quota on the first count under 7r and if the
new voter supports A, then A makes quota under r

/ (since A receives e/c votes
from the new voter and c <-e).

LEMMA. Suppose the new voter votes for X and k other candictates C1, C2, "",

Ck where X, C1, C2, Ck all won under r. Then X can lose under 7r
/ only if

k2-k(e-1)+l<O.

Proof. Each of X, C1,’", Ck receives on the first count el(k+ 1) additional
votes. Since the quota increases by e/(e+ 1) votes, the potential surplus to each of
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C1, , Ck increases by e/(k + 1) e/(e + 1). If X does not make quota under r/,
the maximum number of additional votes some candidate other than X, C1, ..., Ck
could receive is less than

(e e)k
k+l e+l

votes. On the other hand, X might lose some votes which had been transferred to X
under r from some other winning candidates. Thus, the net gain to X is at least

votes. Thus, if X loses,

e e
-[e-(k+1)]
k+l e+l

e e ) e
>-[e-(k+ 1)]---ek

k+l e+l k+l e+l"

The result follows immediately.
Using the lemma, it is clear that if the new voter votes only for X, then X will

still win. Moreover, by checking directly the relevant values of k and e, one can
immediately prove:

THEOREM. MVTS does not violate the New Voter principle if e <-3.
Unfortunately, MVTS does violate this principle for e 4.
Example. Let e 4 and n 130. Let r(C1, Ca, Y) 72, 7r(C1, Ca, C3) 6,

7r(C3, X) 49, zr(C1, Ca, X) 2, zr(C1, C2, C3, Y) 1. The final vote totals are:
v(C1) v(C2)= v(C3)= 104.2, v(X)= 103.40, v(Y) 103.27. Suppose a new voter
enters and votes for C1, Ca, X. Now, Y beats X by a vote of 104.138 to 104.125.

We shall next consider situations in which either a voter or a candidate is removed
from the voter profile.

DEFINITION. Suppose the voter profile zr- is obtained from the voter profile r
when one voter who voted only for losing candidates decides not to vote. MVTS will
be said to violate the "No-Show" principle if W(zr)# /K(r-).

Let O- be the quota under w-. Then

e+l"

Here, too, it is clear that a candidate who made quota under r will still make
quota under zr-. However, MVTS violates the No-Show principle even for e 2.

Example. 7r(C1) 2, r(Ca) 10, r(Cs) 1, r(C1, C3) 20, r(C2, C4) 1. With
e 2 and n 34, we have Q 23. The final vote counts give v(C1)= 23, v(C2)= 21,
v(C3) 20+-, /3(C4) 1, v(Cs) 2. Thus, C, C2 W(r). If the voter who supported
candidate C5 drops out, then the new final vote counts are 22 + 1/2, 21, 21 +8, 1 so that
the new winners are C1 and C3.

Note that the vote totals for C2 and C3 were very close. The next theorem indicates
that if MVTS violates the No-Show principle for e 2, then C2 and C3 differ by less
than votes.

THEOREM. If, for e 2, the voter profile zr provides an example of the "No-Show"
paradox with C1, C2 o( q.g) and C, C3 W( Tr-), then

(i) C1 makes quota under r-
and

(ii) v=(C2)< v’(C3)+-.
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Proof. The only way for C3 to get more votes under r- is to have more votes
transferred from C1 to C3. The maximum number ot such additional surplus votes

COROLLARY. Under the conditions of the above theorem, C1 must have made quota
under r.

Proof. If C1 did not make quota under r, then no votes were transferred. As a
result, v (C2) ->- 1 + v (C3).

Another type of reduction paradox can occur when a losing candidate is removed.
With ranked voting lists, it is usually assumed that the candidates ranked below the
removed candidate all move up one place in the rankings. With MVTS and cumulative
voting, there are several ways to proceed. For instance, one may assume that votes
assigned to a removed candidate are also removed, and that the quota is lowered. Or,
one may assume that each voter would have transferred his or her votes to the other
candidates supported by this voter. In the following example, a losing candidate is
removed and all the voters who voted for the removed candidate shift all of their votes
to their other candidates, each of whom won under .

Example. Suppose e 2 and n 89. Let r(C) 15, r(C2) 25, r(Ca, Ca) 1,
7r(C3) 17, r(C1, C3)= 16, r(C1, C4)= 15. The final vote totals are v(C1)= 59.67,
v(Ca) 51, v(C3) 50.35, v(Ca) 16.33. If C4 is removed and if r-(C1) 30,
7r-(C2) 26, 7r-(C3)= 17 and 7t-(C1, C3)= 16, then the final vote totals are 59.67,
52 and 53.44 so that C and C3 now wi/a.

We turn now to discussions of monotonicity.
DEFINIn:ION. Let X o//(r). Suppose r’ is obtained from r when one voter who

voted under r now changes his or her mind and votes only for X. The election
procedure is said to violate monotonicity if X 7//’(7r’).

THEOREM. MVTS does not violate monotonicity.
Proof Let X /4(r). If voter had voted for X and r other candidates

C1, C2," , Cr and if voter now votes only for X, then, on the first count, X will
receive an additional re/(r+ 1) votes. If voter had not originally voted for X, then
X will receive e more votes. However, X may lose some of the surpluses (if any) that
the other voters had transferred from C1, C2, "", Cr to X. These combined losses
cannot exceed the total number of votes taken from C, C2, "", C.

DEFINI3:ION. Let X /(r). Suppose r’ is obtained from r when one voter
changes his or her mind and votes for X and k other candidates, each of whom belongs
to (r). If this voter had either not voted for X or had voted for X as well as at
least k + 1 other candidates, then the election procedure is said to violate k-monotonicity
if X o/.(7r,).

Since 0-monotonicity is the same as monotonicity, we need only consider values
of k for which 1 <= k <= e- 1.

THEOREM. MVTS is 1-monotonic for e 2.

Proof. Suppose voter had not voted for X and now votes for X and C, each
of whom belonged to o/(Tr). X gains 1 vote on the first count. X may lose almost 1
vote if voter had previously voted only for C1 (since C1 loses one vote on the first
count and has one less vote to transfer to other candidates). In this case, no other
candidate can get more votes unless X makes quota under 7r’. On the other hand, if
voter had not previously voted for C1, then there may be one additional surplus
vote, almost all of which could be transferred to some other candidate. But in this
case X gains more than one vote since X gets (from voter i) some of this extra surplus
vote.

Unfortunately, MVTS is neither 1-monotonic nor 2-monotonic when e 3.
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Example..a-( Cl, Y) 60 "rr(C2, X), "rr(C2) 9, "n’(Ca, C2, Y) 9, r( C1, C2) 4,
7r(C1) 3. The final vote totals are: v(C1) 109= v(C2), v(X) 105.68, v(Y)=
104.91. Suppose one voter switches from C2 to C1 and X. Y now beats X by a vote
of 105.97 to 105.54.

Example. r(C1, C3, X) 1, r(Ca, C2, Y) 72, 7r(X) 24 7r( C1, C2) 7/’(Ca)
22, 7r(C1, C., X) 1 7r(C1, C, Ca). The final vote totals are v(C1) v(C) 109,
v(Ca) 2.04, v(C4) 66, v(X) 74.04, v(Y) 73.95. Suppose one voter switches
from C4 to Ca, C_, X. Now Y beats X by a vote of 75.22 to 75.10.

4. Elimination of low-ranking candidates. Even with transfer of surplus, many
votes may still be wasted on losing candidates. Indeed, in the famous "Sharpsville
Railroad" example (see Brams [4] and Glasser [9]), the majority wastes many of its
votes by spreading them among too many candidates.

We shall modify MVTS as follows. If after all transfers of surplus votes, fewer
than e candidates have made quota, then the candidate with the lowest vote total shall
be eliminated. (In case of a tie, the candidate to be eliminated shall be chosen at
random.) The votes currently assigned by voter to the eliminated candidate shall be
distributed equally among voter i’s remaining candidates (those either not elected or
not eliminated). The process continues (including transfer of surplus created by elimina-
tion of candidates) until either e candidates have made quota or until k candidates
have made quota and only e-k candidates remain. This election procedure will be
called Multiple Voting with Transfer of surplus and Elimination of low-ranking candi-
da es (MVTE).

In view of Fishburn’s [8] results on the nonmonotonicity of elimination schemes
for ranked .lists, one would expect MVTE to violate monotonicity even in the simplest
case where e 2 and some voters change their minds and vote only for candidate X
who was a winner under

Example. Let e 2 and n 448 so that Q 299. Let 7r(C1) 148, 7r(X, Y) 90,
7r(C2, Y) 88, r(X) 55, r(C2) 56, 7r(Y) 10, 7r(Ca, Y) 1. The first count yields

C1 C2 X Y

297 200 200 199

so that Y is eliminated. The second count yields

C C X

298 288 290

so that C and X win. Suppose now that one voter who voted only for C2 now votes
only for X. The new results are:

C C2 X Y

297 198 202 199
297 202 287

Now, C1 and Y win.
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Recall that if MVTS violated the No-Show principle for e 2, then the affected
candidates differed by less than votes. This is not true for MVTE. In the following
example, X wins by more than 7 votes under r but loses by more than 6 votes under

Example. 77’(C1, X) 1, 7r(C1) 30, 7r(X, Y)= 15, r(C, Y)=9, 77’(C1, Y) =40,
7r(X) 25, r(C2)= 28. The election proceeds as follows:

C C2 X Y

101 65 66 64
99 65 66.02 64.79
99 74 81.02
99 81.02

Suppose now that one voter who voted for C2 and Y drops out. Then we get

C1 C2 X Y

101 64 66 63
98.33 64 66.03 64.05
98.33 66.03 72.05
98.33 87.05

The first violation of the New Voter principle occurred for e 4 under MVTS.
With MVTE the first such violation occurs with e 2.

Example. 7r(C1, X) 2, 7r(C1) 30, 7r(X, Y) 15, or(Ca, Y) 9, 7r(C1, Y) 40,
7r(X) 25, r(C2) 28. C1 and X //’(Tr). If a new voter enters and votes for C1 and
X, then C1 and Y now win.

5. Cumulative Voting with Transfer of Surplus. An alternate scheme to reduce
the number of wasted votes without using an elimination procedure is Cumulative
Voting with Transfer of Surplus (CVTS). (See Bolger [1].) This scheme is similar to
MVTS except that each voter may distribute e votes among e or fewer candidates in
any way the voter chooses. For example, if e 7, a voter may assign 4 votes to one
candidate and 1.5 votes to each of two other candidates. Moreover, if v(A)> Q,
distribute voter i’s share of A’s surplus "proportionately" among those of voter i’s
candidates who have not been declared elected. That is, if v is the number of votes
cast by voter for his or her nonelected candidates, then transfer to candidate B

vi(B) vi(A)
..[v(A)-Q]v v(A)

votes.
Example. Let e 6 and n 99 so that Q 85. A group of 49 voters could assign

85 votes to each of three candidates and 39 votes to a fourth candidate, thus guarantee-
ing the election of three candidates while having a chance of electing a fourth candidate
who might be assigned some votes by the other voters or who might pick up some
surplus votes if some of the other voters vote for one or more of the group’s candidates
who made quota. With MVTS, a group of 49 voters could only support 3 candidates
if it wished to guarantee the election of 3 candidates. In this case, some votes would
definitely be wasted.
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Unfortunately, CVTS may violate the New Voter principle for e => 2 and k-
monotonicity for e -> 2.

Example. Let e 2 and n 92 so Q 61.67.

Number of voters Number of votes assigned

60 60 votes to each of C1, Y
30 60 votes to X

2 votes to C
0.5 votes to X, 1.5 votes to Ca

Results:

C1 Ca X Y

62 1.5 60.5 60
61.67 1.5 60.5 60.32

Winners: Cl, X.
Suppose one new voter enters and casts 1.9 votes for C and 0.1 votes for X.

Results:

C1 Ca X Y

63.9 1.5 60.6 60
62.33 1.5 60.6 61.5

Winners: C1, Y.
Example. Let 7r be the original profile in the above example. Suppose that the

last voter (who had voted for C. and X) changes and casts 1 vote for each of C1 and
X.

Results:

C X Y

63 61 60
61.67 61.02 61.27

Winners: C1, Y.
If the avoidance of paradoxes is more important than wasted votes, then MVTS

is preferable to CVTS whereas if reducing the number of wasted votes is more
important; then CVTS may be preferable.

6. Unlimited Voting with Transfer of Surplus. It is natural to ask the question:
"Why restrict the number of candidates each voter may support?" If each voter is
given e votes to distribute, why not allow this voter to vote for more than e candidates?

UVTS is similar to MVTS except that a voter may support as many candidates
as desired. If a voter supports c candidates, then each of these candidates receives e/c
votes. Since we may have c greater than e, the ratio e/c may be less than 1.

For example, if e 1 and if there are 30 voters who cannot decide between two
candidates of whom they each approve, then with UVTS these 30 voters may assign
15 votes to each candidate.
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Unlike MVTS, UVTS violates 1-monotonicity for e 2.
Example. Let e 2 and n 92.

Number of voters Number of votes assigned

60 60 votes to each of C1 and Y
30 60 votes to X

2 votes to C1
1 0.5 votes to each of Ca, C3, Ca, X

Results:

C C2 Ca C4 X Y

62 0.5 0.5 0.5 60.5 60
61.67 0.5 0.5 0.5 60.5 60.32

Winners" C1, X.
Suppose now the last voter changes to C and X. Then the results are"

C1 X Y

63 61 60
61.67 61.02 61.27

Winners: C1, Yo
THEOREM. UVTS does not violate the New Voter principle for e <-3.
Proof. Same proof as for MVTS.
If we add the elimination of low-ranking candidates of UVTS, then the resulting

scheme shall be called Unlimited Voting with Transfer of surplus and Elimination of
low-ranking candidates (UVTE). As with MVTE, UVTE violates the New Voter
principle if e _-> 2. However, UVTE violates the monotonicity and No-Show principles
even for e 1.

Example.

Number of votes to
Number of voters Candidates each candidate

91 X, Y 45.5
88 Y, Z 44
55 X 55
56 Z 56
10 Y 10

Results:

X Y Z

100.5 99.5 100
145.5 144

Winner: X.
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Suppose now that one "Z only" voter switches to X. Now the results are:

X Y Z

101.5 99.5 99
101.5 143.5

Winner: Y.
Example:. Let 7r be the original voter profile in the above example and suppose

one "Z only" voter drops out. Then Z will be eliminated and Y will win.

7. Summary. Table 1 summarizes the results on paradoxes of the voting systems
considered.

Note. CVTE is CVTS with elimination of low-ranking candidates and "propor-
tional" distribution of the eliminated candidate’s votes. As far as the paradoxes are
concerned, CVTE is similar to MVTE.

TABLE
Values of e for which the paradoxes occur.

Paradoxes
New Voter Monotonicity k-Monotonicity No-Show

MVTS
MVTE
CVTS
CVTE
UVTS
UVTE

e>=4 e>=3 e>-2
e=>2 e=>2 e->2 e_>2

e=>2 e=>2 e->2
e_>2 e>__2 e_>2 e_>2

e>=4 e=>2 e>=2
e=>2 e=>l e->l e_>l
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Abstract. Let f(X) and g(X) be polynomials with coefficients in an arbitrary field K. Assume that
f(X) is irreducible and let be a root of f(X). We describe a new algorithm for computing the minimal

polynomial of g(r) over K. The novelty of our algorithm is that it begins by computing the polynomial
p(X, Y) of smallest degree such that p( f, g)= O.

Key words, minimal polynomial, irreducible polynomial, finite field
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1. Introduction. Let f(X) and g(X) be polynomials with coefficients in the field
K. Assume that f(X) is irreducible and let r be a root of f(X). Thus f(X) is the
minimal polynomial of r over K. We are interested in computing the minimal polynomial
of g(r). A survey of methods to perform this computation can be found in [5, pp.
112-117]. Minimal polynomial computations are also described in [4, pp. 142-143],
[7] and [9]. Marsh [12] has used minimal polynomial computations to generate tables
of irreducible polynomials over GF(2). Tables of this type are important for generating
cyclic codes; see [5, pp. 150-153] and [14, pp. 206-211]. They are also important for
generating linear switching circuits; see [8] and [14, Chap. 7].

The purpose of this paper is to describe a new method to compute the minimal
polynomial of g(r). This method grew out of work by the first author while investigating
certain group actions on power series. The novelty of our method is that it begins by
computing the polynomial p(X, Y) of minimal degree such that p(f(X), g(X))-0.

Our algorithm is easiest to explain when the degrees of f(X) and g(X) are
relatively prime. In 2 we describe the algorithm in that case, and in 3 we prove
that it works. In 4 we describe the algorithm in general. We also describe how to
determine, given three polynomials h, f, g in K[X], whether h lies in K[f, g]. In 5
we estimate the speed of the algorithm when the degrees are relatively prime. We
compare our algorithm with a minimal polynomial algorithm which is commonly
implemented and provide evidence that our algorithm is faster when deg g is small
compared to deg f.

2. The algorithm when the degrees are relatively prime. Let f and g be monic
polynomials such that the degree of f is relatively prime to the degree of g. Compute
a sequence of polynomials R1, R2," as follows.

Step 1.
Set R1---gdegy_fdegg. Proceed to step 2.
Step + 1.
If Ri 0, stop. Otherwise, as will be shown in the next section, we may choose a

scalar ci and nonnegative integers Pi, qi so that

(1) degree (R- cPigqi) <z degree Ri.
Set Ri+l "-R-c.P’gq’ and proceed to the next step.

* Received by the editors July 11, 1983. This work was presented at the SIAM Second Conference on
the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

Department of Mathematics, Mount Holyoke College, South Hadley, Massachusetts 01075.
Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina

29208.
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At the end of this process we get, for some m, the equation em O, i.e.

(2) gdegf--fdegg--ClfPlgql c,,fP"gq=o.

Let r be a root of f(X); setting X r in the above equation gives

(3) g(r) degf- Y cig(r)qi=o.
i=1

Pi =0

Observe that, for each i, O<-qi<-degR/degg and that degRi<-degRl<
(deg f)(deg g). Therefore

0 <- qi < deg f for each i.

Consequently, there is a polynomial P(X) of degree degf corresponding to (3) for
which P(g(r)) 0. It will be shown in the next section that when f is irreducible, P(X)
is necessarily a power of the minimal polynomial of g(r). The following example shows
that P(X) is not always equal to the minimal polynomial of g(r). When the derivative
P’(X) of P(X) is not the zero polynomial, the minimal polynomial of g(r) is given
by P(X)/gcd(P(X), P’(X)).

Example. Let f(X) X4-10X2+ 1, g(X) X3- llX, and assume that the scalar
field is the field of rational numbers. The algorithm produces the polynomials
R 1, RE, as follows.

R g4_f3 14X1+ 423X8 4264X6 + 14338X4 + 30X- 1,

Ra R+ 14gaf =-25X8+ 524X6- 2910X4+ 1724X- 1,

R3 R. + 25f 24X6- 360X4 + 1224Xa + 24,

R4 R3- 24ga 168X4-1680X+ 24,

Rs=R4-168f =-144,

R6=Rs+144=0.
Observe that

R6 144-168f- 24g + 25f + 14gf-f3 + g4 O.

If r is a root of f, then evaluating the above expression at r gives

144- 24g(r) + g(r)4 0.

Thus g(r) is a root of the polynomial X4-24Xa+144=(Xa-12)2. The minimal
polynomial of g(r) is Xa- 12.

3. ]ustifieation of the algorithm when the degrees are relatively prime. Most of
the propositions in this section are familiar results in commutative algebra. We include
them here for the sake of completeness.

PROPOSITION 1. Letfand g be nonconstant elements ofK[X] and letN [K f, g):
K(g)]; then K[f, g]=K(g)+K[g]f/. .+K[g]fN-1.

Proof. The monic minimal polynomial of f over K(g) has coefficients in K[g]
because K[X] is an integral extension of K[g] and because K[g] is integrally closed;
for the definition and properties of integral extensions, see [11, pp. 9-11 and pp. 32-33].

Since furthermore the degree of the minimal polynomial of f over K(g) is N, fN
lies in K[g]+...+K[g]f-1. By induction any power of f lies in K[g]+..-+
K[g]f-1. The proposition is an immediate consequence of this.
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PROPOSITION 2. Let f and g be elements of K[X] whose degrees are relatively
prime. For any nonzero h in K[_f, g], there exist nonnegative integers p, q such that
deg h =deg fPgq. Furthermore [K(f, g): K(g)] deg g.

Proof. Let D deg g. Observe that

[K(f, g): K(g)]<=[K(X): K(g)]-< D

(in fact [K(X); K(g)]=D, but we do not need this). By Proposition 1, there exist
elements ho(X),’", hD_(X) in K[X] such that

h= ho(g) + "+ ho-l(g)f -’.

Since gcd (deg f, D)-1, the nonzero terms in the sequence ho(g),’", ho-l(g)f-1

have distinct degrees. Hence, for some p, deg h-deg hp(g)f p. If q-deg hp(X), then
deg h deg f Pgq.

The fact that the degrees of 1, f, , f o-1 are pairwise incongruent mod D implies
that the sequence l, f,... ,fo- is linearly independent over K(g). Therefore
[K(g, f): K(g)]_-> D; hence equality holds. This completes the proof.

Proposition 2 implies that, in the algorithm presented in the previous section, it
is possible to find elements ci, Pi, qi satisfying relation (1) whenever Ri O.

PROPOSITION 3. Let N [K(f, g): K(g)].
(i) Let q(X, Y) be an element ofK[X, Y] of the form q(X, Y) Xr + an element

of lower X degree. Assume that q([, g)= 0; then q(X, Y) is irreducible in K[X, Y].
(ii) Ifp(X, Y) andS(X, Y) are irreducible elements ofK[X, Y] such thatp(f, g)

if(f, g) O, then (X, Y) is a scalar multiple of p(X, Y).
Proof. (i) Observe that q(T, g) is the minimal polynomial of f over K(g). There-

fore it is irreducible in K(g)[T], so q(X, Y) is irreducible in K( Y)[X]. Hence the X
degree of any factor of q is either 0 or N. On the other hand, because of the form of
q, any factor of X degree 0 must be a scalar. Therefore q is irreducible in K[X, Y].

(ii) By Gauss’ lemma [10, p. 125, Lemma 3.27], p and/ are both irreducible in
K( Y)[X]. Therefore both p(T, g) and/(T, g) must be equal, modulo factors in K(g),
to the minimal polynomial of f over K(g). Hence if(X, Y)/p(X, Y) lies in K(Y).
Similarly, by comparing/ and p to the minimal polynomial of g over K (f), it follows
that p/p lies in K(X). Hence p/p is a scalar.

Note that if p(X, Y) is irreducible and if p(f, g)-0, then it is the polynomial of
minimal total degree relating [ and g.

PROPOSITION 4. Assume that f is irreducible. Let p(X, Y) K[X, Y] be the poly-
nomial of minimal total degree such that p(f, g)=0. Let r be a root of f(X); then
p(O, Y) is a power of the minimal polynomial of g(r) over K.

Proof. Let re(X) denote the minimal polynomial of g(r) over K. By the natural
isomorphism between K[X]/f and K[r], re(g) must lie in fK[X]. Define w by the
equation re(g)=fw. Since K[X] is integral over K[g], there exists an integer n > 0
and elements Cl,’’’, cn in K[g] such that

W C1 W
n-1 .I1_... + C

Multiplying this equation by fn shows that re(g) is in fK[f, g]. Therefore there exists
an element H(X, Y) in K[X, Y] such that

m(g)-fH(f,g)=O.

Therefore p(X, Y) divides m(Y)"-XH(X, Y), so p(0, Y) divides re(Y) n. Since
m(Y) is irreducible, p(0, Y) must be a power of m(Y). This finishes the proof.
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Propositions 2 and 3 imply that (2) is the polynomial of minimal total degree
relating f and g. Therefore the polynomial produced by the algorithm of 2 coincides
with the polynomial p(0, Y) mentioned in Proposition 4. Therefore it is a power of
the minimal polynomial of g(r) over K.

4. The general algorithm. Let f and g be nonconstant polynomials with
coefficients in the field K. The goal of this sectionis to describe an algorithm to compute
the polynomial p(X, Y) of minimal total degree such that p( f, g)= 0. This algorithm
works whether or not f is irreducible; when f is irreducible and when r is a root of f,
the minimal polynomial of g(r) over K can be obtained from p(X, Y) by Proposition 4.

The outline of the general algorithm is as follows. For n 1, 2,... it determines
if f" lies in K[g]+...+K[g]f"-, stopping at the first n for which it does. By
Proposition 1 the number n at which the algorithm stops is precisely the degree N of
the field extension [K(f, g)" K(g)]. The algorithm also expresses fv as an element of
K[g]+... + K[g]fv-. By Proposition 3 this expression is equivalent to the minimal
polynomial p(X, Y).

To carry out the steps outlined above it is convenient to have a "nice" K basis
for K[g]+. + K[g]fn-, for each n satisfying 0 <= n < N. The next proposition defines
the type of basis that the algorithm will use.

PROPOSITION 5. Let 0<= n < N (where N [K(f, g)" K(g)]). Let Wo,"’, w,, be
nonzero elements of K[g]+...+ K[g]f which satisfy the following conditions.

(1) The degrees of the wi are pairwise incongruent mod deg g.
(2) For any nonzero element y in K[g]+... + K[g]f, there is a subscript i= i(y)

such that deg wi deg y mod deg g and such that deg w =< deg y.
Define S={wgJ:O<=i<=m,.i>=O}, then S is a K basis ]’or K[g]+...+K[g]f.

Furthermore n m.

Proof. By condition (1), the elements of S have distinct degrees, so the elements
of S are linearly independent. Let y be a nonzero element of K[g]+...+ K[g]f"; we
will show by induction on deg y that y lies in span S. By condition (2) there exists an
element s in S such that deg s deg y. Therefore, for some scalar c, deg(y- cs) < deg y.
By the induction hypothesis y-cs is in span S; hence y is in span S. This proves that
S is a basis.

The fact that S is a K basis for K[g]+... + K[g]f implies that w0," , w, is a
K(g) basis for K(g)+. .+K(g)f. Since n < N, the elements 1, f,..., fn are linearly
independent over K(g). Thus w0,’", w,, and 1,f,...,fn are bases for the same
space, so m n.

Remarks. 1. Let B be a K basis for K[g]+...+K[g]f such that the elements
of B have distinct degrees. Define

B b B" there is some b B such that deg b deg/7 mod deg g
and such that deg b < deg b}.

Observe that the elements of B-B satisfy the conditions of Proposition 5.
2. When deg f and deg g are relatively prime, the proof of Proposition 2 implies

that the elements 1, f,..., f" satisfy the conditions of Proposition 5.
Let S be a subset of K[X]-{0} whose elements have distinct degrees. For any y

in K[X], define R (y, S) as follows. If deg y is different from the degree of any element
of S, set R (y, S)= y. In general define

R (y, S) y cs c,s,,

where Sl,’",s, are elements of S and c,...,c, are scalars such that degy>



296 BARBARA R. PESKIN AND DAVID R. RICHMAN

deg (y- ClS1) )" ) deg (y- 1S1 CtSt) and such that deg (y- ClSl cts,) is
different from the degree of any element of S.

Observe that R (y, S)= 0 if and only if y lies in span S.
In the special case that S is of the form S ={wig j" O<=i <- n, 0=<}, where the

degrees of the wi are pairwise incongruent mod deg g, one can compute R(y, S) as
follows. Let be the index such that deg wi deg y mod deg g; then choose and c
so that deg (y cwg) < deg y. Repeating this process produces R (y, S).

The goal of the following algorithm is to construct, for each integer n satisfying
0 -< n < N, elements w0,n, , wn, in K[g]+. + K[g]f which satisfy the conditions
of Proposition 5. The algorithm also produces the minimal polynomial p(X, Y).

THE ALGORITHM. For n 0, 1,. we recursively construct a polynomialM and
a sequence of polynomials W,- (Wo,,,. , w,) as follows.

n=0
Set Mo Wo,o 1. Proceed to the stage n 1.
n>0
Define S S,-I { w,,-lg" 0 <- <= n 1, j >-_ 0}. Define Mn R (Mn-lf, S). If Mn

0, stop. Otherwise define a sequence of polynomials Vo Vo,,, vl vl,,, as follows:
i)0 Mn
Vl R (gvo, S t.J { Vo}),

V+l R (gv, S { Vo, v}).

As will be shown below, there is a subscript j for which vj is nonzero and for
which deg vi is not congruent mod deg g to the degree of any element of W-I. Let J
be the smallest such subscript and set

T= { w0,-l, Wn-l,n-1, VO,’’’, /’)J-l}"
For 0-< i-< n-1 define w,n to be the element of T of smallest degree such that
deg deg W,n-1 mod deg g. Define wn,, vj. Proceed to stage n + 1.

To justify the algorithm we need some propositions.
PROPOSITION 6. Fix n > O. Assume that the set S-1, defined in the algorithm above,

is a K basis for K[g]+... + K[g]f"-1. Either M 0 or every term in the sequence
Vo Vo,, v Vl,, is nonzero. Furthermore, ifM O, there is a subscript Jror which
vj is not congruent mod deg g to the degree of any element of Wn_.

Proof. An easy induction argument shows, for every j, that S is contained in
K[g]+. + K[g]f and that
(4) M f + K[g]f-1 +... + K[g].
Assume that Mn 0; then fMn-1 is not in span S,-1. Therefore, by (4) and by the
hypothesis on Sn-1, f" is not in K[g]+. + K[g]f-1. Hence, by Proposition !, n < N.

Since n < N, the elements 1, f,. , f" are linearly independent over K (g). There-
fore the set S-1U { v0, v,. .} is linearly independent over K. In particular each v is
nonzero.

By the definition of the R function, deg v can never be both greater than, and
congruent moddegg to, some element of W-I. Furthermore the numbers of
deg v0, deg Vl," are distinct. For each i= 0,-.., n-1 there are only finitely many
positive integers congruent mod deg g to, but strictly less than, deg wi,-l. Therefore
there is a subscript J for which deg vj is not congruent mod deg g to the degree of
any element of Wn_l.
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PROPOSITION 7. Assume that 0<-n<N; then Sn is a K basis for K[g]+-..+
K[g]f".

Proof. Proceed by induction on n. Obviously So is a basis for K[g]. Suppose now
that n > 0. Since n < N, fM,-i is not in span S-1, soM 0. Observe that the elements
Vo Vo,n," vj vj,, have the form

v0 =f+ element of span S, (where S S,_1),

Vl= gf"+an element of span (SU {f"}),

vj gJr" + an element of span (S U {f",..., gJ-lfn}).

Let y eK[g]+...+K[g]f. There is a polynomial q(X) such that

y-q(g)vj K[g]+... + K[g]f"- + Kf" +... +KgJ-f".

If J > 1 there is a scalar c such that

y- q(g)v: c vj-1 K[g]+... + K[g]f’-1 + Kf +... + KgJ-2fn.
Continuing in this way we can find scalars c2," , c such that

y-q(g)v cl v-i CVo K[g]/... / K[g]fn-.
By the induction hypothesis, this element lies in span S. Hence, setting

B {gmWi,n_l, /)0," )J-1, gmI). 0 <- <= n 1, m >-- 0},

the set B spans K[g]+... +K[g]f". By the definition of J, deg v is not congruent
mod deg g to the degree of any element of W,_I; therefore the elements of B have
distinct degrees. Thus B is a basis for K[g]+... +K[g]f with distinct degrees. By
the first remark following Proposition 5, the elements of W, satisfy the conditions of
Proposition 5. Therefore S, is a basis for K[g]+... + K[g]f.

Propositions 1 and 7 imply that the algorithm stops when n N. The equation
MN R(Mv-lf, S)=0 is equivalent to an expression for fu as an element of K[g]+

+ K[g]fN-1. By Proposition 3, this is the same as the minimal polynomial p(X, Y).
Several observations concerning the general algorithm may be helpful.
If deg f and deg g are relatively prime, then M, f" and W, (1, f,. , f")

whenever 0 <-n < N. The computation of R(MN-lf, S) which occurs in the last stage
of the general algorithm coincides in this case with the algorithm of 2.

Results of Abhyankar [1, pp. 366-374], [15] imply that when the characteristic
of K does not divide gcd(deg f, deg g) and when 0 < n < N, W, (Mo,. , Mn). Thus
the algorithm simplifies considerably, for there is no need to compute more than the
first term of the vi sequence. In general this simplification need not hold; for example
if f X6+ X, g X4 and K GF(2), then W2 (1, X2, X) and (Mo, M, M2)
(1, X6 / X, X2).

The efficiency of the algorithm can be improved in a number of ways. For example,
at the nth stage, rather than setting M, R(M,_xf, S), we can search all the previous
Mi, find the index for which deg MM,_ is minimal, and set M, R(MM,,_i, S).
Since deg MM,,_i may be smaller than deg M,_f, it probably takes fewer arithmetic
operations to compute R(MM,_, S) from MiM,_ than it does to compute R (M,-lf, S)
from Mn-1. Another improvement can be made by changing the definition of the sets
S.. The definition given above involves computing Vo," , v and then throwing away
some subset of W,-I t_J { v0," , v}. It is wasteful to throw away any elements as they
might help in the computation of Mi’s and vi’s at later stages. Instead, one can define
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S, recursively by

Sn--Sn-l[.J{1)o, ,/)J-l, l)Jgj: j_->O};

there is no need to bother with the W, sequences. Of course, by the preceding remark,
this definition of S differs from the original one only when the characteristic of K is
nonzero.

Finally, we consider the following question: given a polynomial h, does h lie in
K[f, g]? To answer this question, compute R (h, SN-1); h lies in K[f, g] precisely when
R(h, SN-1)= 0. This question, especially in the case h X, is of interest in algebraic
geometry; see [1], [2].

5. Some remarks on the speed of the algorithm. We estimate the number of
multiplications performed by the algorithm when deg f n, deg g m, m < n, and
gcd(m, n) 1. This estimate will reflect the amount of time needed to run the algorithm.

In general the algorithm computes the polynomials fg for all i, j such that in
+jm <= nm. The number of scalar multiplications needed to do this is of the same order
of magnitude as the number of multiplications needed to compute fig for all i, j such
that O<=i<-m and O<=j<=n.

We assume that polynomials are multiplied in the naive manner, so to multiply
polynomials of degree p and q, (p+l)(q+l) scalar multiplications are required.
Assume that i_>- 1 and that ff has been computed for j-<_ i. There are several pairs of
positive integers A, B such that f+ (f)(f); the number of scalar multiplications
is minimized when A and B 1, and in this case (n + 1)(in + 1) scalar multiplications
are required. Therefore to compute the sequence f2, f2,. , f", the number of scalar

m_.--1 ._multphcatons needed is Yi- (n 1)(in+l)=0(n2m)
Now assume that and j are not both zero. There are several ways to express

fg+ as the product fig+=(fg)(fCgO) so that O<A+B,C+D<i+j+I.
Assuming that fgn and f ego are already known, the number of scalar multiplications
in the product (fgn)(fCgO) is minimized when A i, B j, C 0 and D 1, since
m < n. In this case (in +jm + 1)(m + 1) scalar multiplications are required. Therefore
to compute fg for 0 _<- _<- m, 1 _<- j_<- n, the number of scalar multiplications needed is

rl--1

E _, (in+]m+l)(m+l)=O(m3nZ)
i=0 i=o
(i,]) (0,0)

Thus to compute the polynomials figj, O(m3n2) scalar multiplications are
required.

Assume that fPgq has been computed for each pair p, q satisfying np+ mq <= nm.
If c is a scalar, at most nm + 1 scalar multiplications are needed to compute cfPgq.
Therefore, for each i, at most nm + 1 scalar multiplications are needed to compute the
polynomials Ri that is defined in the beginning of 2. Since the degree of R is less
than nm and since the sequence deg R1, deg R2," is strictly decreasing, there are at
most nm subscripts for which Ri 0. Hence the number of scalar multiplications
needed to compute the sequence R1, R2,’" is O(n2m2). Since it took O(m3n2)
multiplications to compute the polynomials f Pgq, the algorithm uses altogether
O(m3

t2) scalar multiplications.
The greatest common divisor of a polynomial and its derivative can be computed

quickly: (O(n logz n) arithmetic operations for a polynomial of degree n, using the
finite Fourier transform, and O(n2 log n) operations using naive polynomial multiplica-
tion; see [3, 308]). Therefore, when K is a field of characteristic 0 or a finite field
whose size is prime, the problem of extracting the actual minimal polynomial from a



METHOD TO COMPUTE MINIMAL POLYNOMIALS 299

power of the minimal polynomial does not significantly affect the estimate O(m3n2).
This problem may become significant when K is an extension of GF(p) of large degree.

Let gj denote the polynomial of degree less than n which is congruent to gJ mod f.
One approach to finding the minimal polynomial of g(r), where r is a root o f, is to
compute a linear dependence among the elements 1, gl,"’, gn; this approach is
described in [5, p. 112]. Using Gaussian elimination, the linear dependence can be
computed using O(n3) multiplications. Using accelerated methods of matrix multiplica-
tion [3, pp. 240-242] and [6], the number of multiplications can be improved to
O(n2"49""); there are however problems with these accelerated methods [3, p. 226].
Recall that the algorithm of 2 uses O(m3n2) multiplications. This suggests that when
m is sufficiently small compared to n and when gcd(n, m)= 1, the algorithm of this
paper is faster than the "linear dependence" algorithm.

We conjecture that there is a minimal polynomial algorithm, for arbitrary f and
g, such that the number of multiplications used is bounded by a function of the form
c(m)n2.

When K is the set of rational numbers, the numerators and denominators occurring
in the coefficients of the f ig’s are usually much larger than those of the minimal
polynomial of g(r). To avoid overflow errors and to increase efficiency, we recommend
first computing the coefficients modulo some large prime power; this approach is
described in [12].

Acknowledgment. We would like to thank Professor R. J. McEliece for helping
us with the last section of this paper.
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DISJOINT PATHS--A SURVEY*

NEIL ROBERTSON" AND P. D. SEYMOUR%

Abstract. We describe without proof polynomially bounded algorithms for the following problems:
(i) (k is afixed integer, and S is afixed surface). With input a graph G which may be drawn in S and

k pairs ofvertices of G, decide if there are k vertex-disjoint paths of G, eachjoining one ofthe pairs ofvertices;
(ii) (H is afixed planar graph). With input a graph G, decide if G can be reduced to a graph isomorphic

to H by deletion and contraction of edges.

1. Introduction. Over the past two years we have been working on a conjecture
of Wagner, that given any infinite set of graphs, one of its members is isomorphic to
a "minor" of another. (H is a minor of G if H can be obtained from a subgraph of
G by contraction.) The pursuit of this conjecture has led to two theorems which provide
polynomially bounded algorithms for certain graph-theoretic problems, and we sketch
these algorithms here. Full details will appear in [5], [8], [9].

We begin with the following problem.
DISJOINT CONNECTING PATHS.
Instance. A graph G, and pairs (Sl, tl)," ", (Sk, tk) of vertices of G.
Question. Do there exist paths P1," ", Pk of G, pairwise vertex-disjoint, such that

Pi has ends si and ti (1_<-i=< k)?
Karp [3] showed that this problem is NPocomplete, and Lynch [4] proved the

same even if G is restricted to be planar. But both these results require that k be part
of the input; if k is fixed, the existence of a polynomial algorithm for the problem
appears much more likely.

If we consider the same problem except that we input a directed graph, and ask
that PI," ", Pk be directed paths, the problem is known to be NPocomplete for fixed
k, and even for k- 2, as was shown by Fortune, Hopcroft and Wyllie [2]. One should
not be discouraged by this, for the undirected case with which we are concerned
appears to be significantly easier than the directed case. In the undirected case, for
example, there is a polynomial algorithm when k 2, as Seymour [9] and Shiloach
[10] independently discovered. (For fixed k->_ 3, the problem is still open.) The first of
our two results is that if k is fixed and G is restricted to be planar (or more generally,
to lie on any fixed surface) then there is a polynomially bounded algorithm for
DISJOINT CONNECTING PATHS.

We should mention, however, that this result is of little practical significance. The
degree of the polynomial is of the form

k

kkkk

This is a constant, since k is fixed, but it is too large to be useful. It is mainly from
the viewpoint of the theory of NP-completeness that the result is interesting.

* Received by the editors July 25, 1983, and in final revised form April 2, 1984. A version of this work
was presented at the SIAM Second Conference on the Applications of Discrete Mathematics held at
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f Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
$ Current address, Bell Communications Research, Murray Hill, New Jersey 07974. The research of

this author was partially supported by the National Science Foundation under grant MCS 8103440.

300



DISJOINT PATHS 301

Our second algorithm concerns the following problem.
GRAPH MINOR.
Instance. Graphs G and H.
Question. Does G have a minor isomorphic to H?
This is easily seen to be NP-complete if H is part of the input; for example, if H

is chosen to be a circuit graph with V(G)I vertices, the question becomes "does G
have a Hamiltonian circuit?", which is NP-complete. However, for any small fixed
graph H (with up to, say, l0 edges) GRAPH MINOR is polynomially solvable. For
example, if H consists of a single loop, we must test "is G a forest?". If H is the
complete graph with four vertices, we must test "is G a series-parallel graph?" (Dirac
[1]). We conjecture that for all fixed H GRAPH MINOR is polynomially solvable;
and our second main result is that this is so if H is planar. Unfortunately, the degree
of the polynomial is an iterated exponential in lV(H)l, and so once again the algorithm
is not a practical one.

Both algorithms use the same idea; that if G is sufficiently "uniform" the answer
to the question is "yes", and if it is not we can reduce the problem to a few significantly
simpler ones by "splitting" a small number of vertices of G.

Section 2 is devoted to splitting vertices, and the two algorithms are described in
3 and 4. Section 5 contains some concluding remarks.

2. Splitting vertices. Suppose that we are given a graph G and pairs of vertices
(Sl, tl) ", (Sk, tk) and we wish to solve DISJOINT CONNECTING PATHS. Let us
say that the list of pairs (sl, tl)," ", (Sk, tk) is feasible if the paths exist. We may assume
that G is simple, since loops and parallel edges have no effect on our problem. Let v
be a vertex of G, with neighbors al, am, bl,’" ", bn. Let G’ be the graph obtained
from G by deleting v and adding two new vertices a, b where a is adjacent to
and b to bl," ", b,. This construction of G’ from G is called splitting v. Now G’ has
more vertices than G, but we shall use the construction in situations where DISJOINT
CONNECTING PATHS is easier to solve in G’ than in G. Thus it is useful that the
problem for G can be transformed into problems for G’.

We assume that v s Sl t,..., Sk, k. (If not, the transformation is even easier.)
Let Go be the graph obtained from G’ by deleting b, and define Gb similarly.

THEOREM 2.1. The list (s, tl),""", (Sk, tk) is feasible in G if and only if either
(i) (sl, tl),"" ", (Sk, tk) is feasible in Go or Gb;
(ii) for some <= <-- k

(Sl, tl),""", (si_,, ti_,), (si, a), (b, ti), (si+l, ti+l),""", (Sk, tk)

is feasible in G’; or
(iii) for some <= <= k

(Sl, t,),..., (si-l, ti-l), (s,, b), (a, ti), (si+,, ti+l),’’’, (Sk, tk)

is feasible in G’.
The proof is easynwe simply check through the ways in which v could be used

in a set of disjoint paths of Gnand is left to the reader.
We observe that this reduces our original question about G to a set of 2k/2

questions about Ga, Gb and G’. That this reduction can be useful will be shown in
the next two sections.

3. Disjoint paths in planar graphs. For simplicity, we first discuss the algorithm
for DISJOINT CONNECTING PATHS for graphs restricted to be planar; the case
of a general fixed surface is similar but more complicated.
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Let S(h) be the surface formed by removing h open discs with disjoint closures
from the 2-sphere. Then S(h) has a boundary composed of h disjoint 1-spheres--we
call these 1-spheres the cuffs of S(h). If s, t,,. , Sk, tk are vertices of a planar graph
G, there is an integer h such that G can be drawn in S(h) with s, t,. ., Sk, tk in the
boundary of S(h) and with the drawing using no other points of the boundary of S(h).
We call this a proper drawing. We shall show by induction on h that there is a polynomial
algorithm to test if (sl, tl),..., (Sk, tk) is feasible in G.

There are two necessary conditions for feasibility which we now discuss.
Connectivity condition. For any subset X

_
V(G), there are at most IX] values of

(1 _<-i-<_ k) such that every path in G from si to ti meets X.
Planarity condition. There are pairwise disjoint arcs (continuous images of [0, 1])

in S(h), QI,’", Qk say, such that Qi joins si and t (l_-< i<_-k).
For example, if k-2 and h l, and s, s2, t, 2 occur on the cuff in that order,

the planarity condition fails. A second example is when k 3, h 2 and s, s2, s3 occur
on the first cuff, and t, t2, on the second cuff, both in the same clockwise order.

It is easy to see that the above two conditions are necessary for feasibility. They
are not in general sufficient, however. For example, with G as in Fig. l, both conditions
are satisfied, but the pairing is not feasible.

$1

$2 $3

FIG. 1.

The following theorem appears, rather surprisingly, to be new. Its proof is not
hard (see [8]).

THEOREM 3.1. If h- and the connectivity and planarity conditions are satisfied
then the pairing is feasible.

In a proper drawing of G on S(h), the points of S(h) not used by the drawing
are partitioned into connected pieces called regions. (Recall that S(h) is a sphere with
discs removed so that portions of cuffs can be part of the boundary of a region.) A
sequence Ro, R, RE," ", Rn Ro of regions is a ring if R,. ., R, are all distinct,
and for i= 1,. ., n R_ and R are incident with a common vertex v, and v,. ., v,
are all distinct. Given any ring we may "cut" along it in the obvious way, separating
the surface into two parts which we call hemispheres. There is a corresponding splitting
of some of the vertices of G, as in Fig. 2.

A ring is central if both hemispheres contain at least two of the original cuiis, or
equivalently if they both have fewer cuffs than the original surface (counting the new
one). A ring is r-peripheral if one of the hemispheres contains exactly one ofthe original
cuffs, and that cuff contains exactly r vertices of the graph. A handcuff is composed
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FIG. 2.

of two disjoint peripheral rings, surrounding different cuffs, and a chain of regions
between them. The theorem on which our algorithm is based is the following.

THEOREM 3.2. If h >-4, there is a number f(h, k) such that if
(i) the connectivity and planarity conditions are satisfied,
(ii) every central ring and every handcuff has at least f(h, k) regions, and
(iii) for r >-_ 0, every r-peripheral ring has at least r regions, then the pairing isfeasible.
The proof of this is quite complicated--see [9]. Using it in an algorithm however

is easy.

ALGORITHM
Step 1. Check the connectivity and planarity conditions. If these are not both

satisfied, the pairing is not feasible. If they are both satisfied, perform
Step 2. Test if there is a central ring or a handcuff with fewer than f(h, k) regions,

or for some r > 0 an r-peripheral ring with fewer than r regions. If not and h >- 4 then
the pairing is feasible. If not and h < 4 we use special methods not described here. If
we find a ring or handcuff which is shorter than it should be, we perform

Step 3. Cut along the ring, (or, similarly, along the handcuff) splitting its vertices,
using Theorem 2.1. We reduce the solution of the original problem to the solution of
several (a great many, but bounded by a function of k and h) problems on graphs
with proper drawings either in S(h-1), or in S(h) but with fewer than k pairs of
vertices to be joined, or in S(2). By induction on h, and for fixed h on k, there are
polynomial time algorithms for these problems, and hence for the original problem.

For the case when h 3, we use the same method except that we must augment
Theorem 3.2(ii) with a 0-shaped configuration. If h or 2 we can solve the problem
directly [8].

For the more general problem where G may be drawn in a fixed surface S but is
not necessarily planar, we need an extension of (3.2). In this case we redefine a central
ring to be a ring which either separates at least two cuffs from at least two other cuffs,
or which is not "null-homotopic" in the surface obtained from S by "capping" the
cuffs with discs. With this definition (3.2) remains true, except that the number f(h, k)
becomes f(h, k, S): and we proceed by induction of the genus of S, and for fixed genus
on h, and for fixed genus and h on k.

We have seen then that for planar graphs there is a polynomial algorithm for our
problem if k is fixed, but not if k is variable (assuming P NP). It is not known
whether it is enough to fix h instead of k. This is true if h or 2.
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4. Planar minors. A subdivision of a graph H is a graph obtained from H by
repeatedly replacing edges by pairs of edges in series. We say that G topologically
contains H if G has a subgraph which is isomorphic to a subdivision of H. If G
topologically contains H then H is isomorphic to a minor of G, but the converse does
not hold, as is easily seen.

On the other hand, we have the following.
THEOREM 4.1. Let H be a graph. There is a finite list of graphs HI,... H, such

that for any graph G, the following are equivalent:
(i) G has a minor isomorphic to H.
(ii) G topologically contains one of H,. ., H,.
This is a standard result, and is easily proved. H,..-, H, may be taken to be

those graphs H’ (up to isomorphism) such that
(a) starting from H’ and contracting edges which are not loops we may obtain a

graph isomorphic to H;
(b) H’ is not a subdivision of any other graph with property (a).
It follows from Theorem 4.1 that if there is in general for all fixed H a polynomial

algorithm to test "does G topologically contain H?" then for fixed H there is a
polynomial algorithm for GRAPH MINOR. Furthermore, there is a polynomial
algorithm for the first problem if for fixed k there is a polynomial algorithm for
DISJOINT CONNECTING PATHS, as is easily seen. (We try all ways of choosing
vertices of G to represent vertices of H.) However DISJOINT CONNECTING PATHS
is not yet polynomially solved. What we have instead is (for a fixed planar graph H
and integer k) a polynomial algorithm which, with input a graph G and k pairs of
vertices of G, either tests if the pairing is feasible, or discovers that G has a minor
isomorphic to H. Evidently such an algorithm can be used to polynomially solve
GRAPH MINOR when H is fixed and planar. Our algorithm is based on the following
theorem.

THEOREM 4.2. For any planar graph H there is a number N with the following
property. For every graph G with no minor isomorphic to H, and every subset X

_
V( G),

there is a separation V, V2) of G such that

I( v, v=) xl, I( v,) xl _-<

and IV, v2l <= N.
(A separation (V1, V2) of G is a pair of subsets of V(G) such that V1LI V2 V(G)

and such that no edge of G joins a vertex of V- V2 with a vertex of V2- V.)
We remark that if H is nonplanar, there is no such number N; for example, if

G is a large square "grid" of side >>N (for any given N), then it has no separation
as in Theorem 4.2 and yet has no minor isomorphic to H, since H is nonplanar.

Theorem 4.2 with X V(G) suggests a "divide and conquer" method for GRAPH
MINOR, and that is our method. Thus, let H be a fixed planar graph. Choose N as
in Theorem 4.2; and let k be a fixed integer. We may assume that k >> N.

ALGORITHM. We have as input then a graph G, and k pairs (s, t),..., (Sk, tk)
of vertices of G.

Step 1. We test if there is a separation (V, V2) of G with Vlf’l V21_<-N
and V-V2[, V2-Vll<-_lV(G)l. If not then G has a minor isomorphic to H
by (4.2). If we find such a separation we perform

Step 2. Split the vertices of V f’)V2 using Theorem 2.1 in the obvious way.
The solution to our original problem is thus reduced to solving several problems about
graphs each with at most

l V(G) + N
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vertices. However, the number "k" is increased in these smaller problems. To bring it
back under control, we perform

Step 3. In each of these smaller problems G’, (s, t),..., (s,, t,) say, test if
there is a separation (V, V) of G’ with IV VI_-< N and

where X {s, t,..., s,,, t,,}. If not then G’ and hence G has a minor isomorphic
to H. If there is such a separation, we split again, reducing to problems on graphs
with at most [ V(G)[ + N vertices and with at most k pairs of vertices to be joined by
disjoint paths. Then we return to step 1.

It is easy to check that this algorithm is indeed polynomially bounded.

5. Some remarks. Let H, H’ be two fixed graphs, where H is planar. The argument
of the previous section yields a polynomial algorithm, which given any graph G,
outputs either

(i) G has a minor isomorphic to H’,
(ii) G has no minor isomorphic to H’, or
(iii) G has a minor isomorphic to H.
We deduce if Hi,’’ ", H is any finite sequence of graphs, and one of them is

planar, then there is a polynomially bounded algorithm to test "does G have a minor
isomorphic to one of H1,’’’, H ?"

It follows that
THEOREM 5.1. Let g: be a set ofgraphs, closed under isomorphism and under taking

minors, and suppose some planar graph is not in g:. Then there is a polynomial algorithm
to test membership of g:.

For it is proved in [7] that the set of minor-minimal graphs not in : is finite, up
to isomorphism. Let this set be {H, ., H} say. One of these is planar, since some
planar graph is not in :. But a graph is in : if and only if it has no minor isomorphic
to one of H,..., H,, and this can be tested in polynomial time, as we have seen.

In Theorem 5.1 it is not at all obvious that there should be any algorithm at all
to test membership of :; for there are only countably many algorithms, and one might
expect there to be uncountably many choices for :. It is entertaining that not only is
there an algorithm but there is a polynomially bounded one.

Finally, it is natural to ask whether the hypothesis that some planar graph not be
in : is necessary. We think not, that Theorem 5.1 holds with this hypothesis omitted.
This conjecture turns out to be equivalent to the conjunction of the conjecture of
Wagner and our conjecture on GRAPH MINOR previously mentioned.
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AMORTIZED COMPUTATIONAL COMPLEXITY*
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Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain "self-adjusting" data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.
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1. Introduction. Webster’s [34] defines "amortize" as "to put money aside at
intervals, as in a sinking fund, for gradual payment of (a debt, etc.)." We shall adapt
this term to computational complexity, meaning by it "to average over time" or, more
precisely, "to average the running times of operations in a sequence over the sequence."
The following observation motivates our study of amortization: In many uses of data
structures, a sequence of operations, rather than just a single operation, is performed,
and we are interested in the total time of the sequence, rather than in the times of
the individual operations. A worst-case analysis, in which we sum the worst-case times
of the individual operations, may be unduly pessimistic, because it ignores correlated
effects of the operations on the data structure. On the other hand, an average-case
analysis may be inaccurate, since the probabilistic assumptions needed to carry out
the analysis may be false. In such a situation, an amortized analysis, in which we
average the running time per operation over a (worst-case) sequence of operations,
can yield an answer that is both realistic and robust.

To make the idea of amortization and the motivation behind it more concrete,
let us consider a very simple example. Consider the manipulation of a stack by a
sequence of operations composed of two kinds of unit-time primitives: push, which
adds a new item to the top of the stack, and pop, which removes and returns the top
item on the stack. We wish to analyze the running time of a sequence of operations,
each composed of zero or more pops followed by a push. Assume we start with an
empty stack and carry out m such operations. A single operation in the sequence can
take up to m time units, as happens if each of the first m- 1 operations performs no
pops and the last operation performs m 1 pops. However, altogether the m operations
can perform at most 2m pushes and pops, since there are only m pushes altogether
and each pop must correspond to an earlier push.

This example may seem too simple to be useful, but such stack manipulation
indeed occurs in applications as diverse as planarity-testing [14] and related problems
[24] and linear-time string matching [18]. In this paper we shall survey a number of
settings in which amortization is useful. Not only does amortized running time provide
a more exact way to measure the running time of known algorithms, but it suggests
that there may be new algorithms efficient in an amortized rather than a worst-case
sense. As we shall see, such algorithms do exist, and they are simpler, more efficient,
and more flexible than their worst-case cousins.

* Received by the editors December 29, 1983. This work was presented at the SIAM Second Conference
on the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

t Bell Laboratories, Murray Hill, New Jersey 07974.
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The paper contains five sections. In 2 we develop a theoretical framework for
analyzing the amortized running time of operations on a data structure. In 3 we
study three uses of, amortization in the analysis of known algorithms. In 4 we discuss
two ntew data structures specifically designed to have good amortized efficiency. Section
5 contains conclusions.

2. Two views of amortization. In order to analyze the amortized running time
of operations on a data structure, we need a technique for averaging over time. In
general, on data structures of low amortized complexity, the running times of successive
operations can fluctuate considerably, but only in such a way that the average running
time of an operation in a sequence is small. To analyze such a situation, we must be
able to bound the fluctuations. We shall consider two ways of doing this.

The first is the banker’s view of amortization. We assume that our computer is
coin-operated; inserting a single coin, which we call a credit, causes the machine to
run for a fixed constant amount of time. To each operation we allocate a certain
number of credits, defined to be the amortized time of the operation. Our goal is to
show that all the operations can be performed with the allocated credits, assuming
that we begin with no credits and that unused credits can be carried over to later
operations. If desired we can also allow borrowing of credits, as long as any debt
incurred is eventually paid off out of credits allocated to operations.

Saving credits amounts to averaging forward over time, borrowing to averaging
backward. If we can prove that we never need to borrow credits to complete the
operations, then the actual time of any initial part of a sequence of operations is
bounded by the sum of the corresponding amortized times. If we need to borrow but
such borrowing can be paid off by the end of the sequence, then the total time of the
operations is bounded by the sum of all the amortized times, although in the middle
of the sequence we may be running behind. That is, the current elapsed time may
exceed the sum of the amortized times by the current amount of net borrowing.

In order to keep track of saved or borrowed credits, it is generally convenient to
store them in the data structure. Regions of the structure containing credits are
unusually hard to access or update (the credits saved are there to pay for extra work);
regions containing "debits" are unusually easy to access or update. It is important to
realize that this is only an accounting device; the programs that actually manipulate
the data structure contain no mention of credits or debits.

The banker’s view of amortization was used implicitly by Brown and Tarjan [8]
in analyzing the amortized complexity of 2, 3 trees and was developed more fully by
Huddleston and Mehlhorn [15], [16] in their analysis of generalized B-trees. We can
cast our analysis of a stack in the banker’s framework by allocating two credits per
operation. The stack manipulation maintains the invariant that the number of saved
credits equals the number of stacked items. During an operation, each pop is paid for
by a saved credit, the push is paid for by one of the allocated credits, and the other
allocated credit is saved, corresponding to the item stacked by the push.

Our second view of amortization is that of the physicist. We define a potential
function d that maps any configuration D of the data structure into a real number
(D) called the potential of D. We define the amortized time of an operation to be
+(D’)-(D), where is the actual time of the operation and D and D’ are the

configurations of the data structure before and after the operation, respectively. With
this definition we have the following equality for any sequence of m operations:

Y. ti (ai-i+i_)=o-,,+ a,
i=1 i=1 i=1
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where ti and ai are the actual and amortized times of the ith operation, respectively,
is the potential after the ith operation, and o is the potential before the first

operation. That is, the total time of the operations equals the sum of their amortized
times plus the net decrease in potential from the initial to the final configuration.

We are free to choose the potential function in any way we wish; the more astute
the choice, the more informative the amortized times will be. In most cases of interest,
the initial potential is zero and the potential is always nonnegative. In such a situation
the total amortized time is an upper bound on the total time. (This corresponds to
the banker’s view of amortization with no borrowing.)

The physicist’s view of amortization was proposed by D. Sleator (private communi-
cation). To fit the stack manipulation example into the physicist’s framework, we define
the potential of a stack to be the number of items it contains. Then a stack operation
consisting of k pops and one push on a stack initially containing items has an amortized
time of (k + 1) / (i k / 1) 2. The initial potential is zero and the potential is
always nonnegative, so rn operations take at most 2m pushes and pops.

The banker’s and physicist’s views of amortization are entirely equivalent; we can
choose whichever view gives us more intuition about the problem at hand. It is perhaps
more natural to deal with fractional amounts of time using the physicist’s view, whereas
the banker’s view is more concrete, but both will yield the same bounds.

3. Amortized analysis of known algorithms. Amortization has been used in the
analysis of several algorithms more complicated than the stack manipulation example.
In this section we shall examine three such applications. We study the examples in the
order of their conceptual complexity, which coincidentally happens to be reverse
chronological order.

Our first example is the "move-to-front" list updating heuristic. Consider an
abstract data structure consisting of a table of n items, under the operation of accessing
a specified item. We assume that the table is represented by a linear list of the
items in arbitrary order, and that the time to access the ith item in the list is i. In
addition, we allow the possibility of rearranging the list at any time (except in the
middle of an access), by swapping any pair of contiguous items. Such a swap takes one
unit of time.

We are interested in whether swapping can reduce the time for a sequence of
accesses, and whether there is a simple heuristic for swapping that achieves whatever
improvement is possible. These questions are only interesting if the access sequence
is nonuniform, e.g. some items are accessed more frequently than others, or there is
some correlation between successive accesses. Among the swapping heuristics that
have been proposed are the following:

Move-to-front. After an access, move the accessed item to the front of the list,
without changing the relative order of the other items.

Transpose. After an access of any item other than the first on the list, move the
accessed item one position forward in the list by swapping it with its predecessor.

Frequency count. Swap after each access as necessary to maintain the items in
non-decreasing order by cumulative access frequency.

The frequency count heuristic requires keeping track of access frequencies, whereas
the other two rules depend only on the current access. There has been much research
on these and similar update rules, the overwhelming majority of it average-case analysis
[6], [7], [17], [23], [26]. All of the average-case studies known to the author are based
on the assumption that the accesses are independent identically distributed random
variables, i.e. for each successive access, each item has a fixed probability p of being
accessed. The usual measure of interest is the asymptotic average access time as a
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function of p, P2,""", Pn, i.e. the average access time as m, the number of accesses,
goes to infinity. (Letting m go to infinity eliminates the effect of the initial ordering.)

Under these assumptions, the optimum strategy is to begin with the items in
nondecreasing order by probability and leave them that way. The law of large numbers
implies that the asymptotic average access time of the frequency count heuristic is
minimum, and it has long been known that move-to-front is within a factor of two of
minimum [17]. Rivest [23] showed that asymptotically transpose is never worse than
move-to-front, although Bitner [7] showed that it converges much more slowly to its
asymptotic behavior.

Bentley and McGeogh [6] performed several experiments on real data. Their tests
indicate that in practice the transpose heuristic is inferior to frequency count but
move-to-front is competitive with frequency count and sometimes better. This suggests
that real access sequences have a locality of reference that is not captured by the
standard probabilistic model, but that significantly affects the efficiency of the various
heuristics. In an attempt to derive more meaningful theoretical results, Bentley and
McGeogh did an amortized analysis. Consider any sequence of accesses. Among static
access strategies (those that never reorder the list), the strategy that minimizes the
total access time is that of beginning with the items in decreasing order by total access
frequency. Bentley and McGeogh showed that the total access time of move-to-front
is within a factor of two of that of the optimum static strategy, if move-to-front’s initial
list contains the items in order of first access. Furthermore frequency count but not
transpose shares this property.

(Note that the move-to-front heuristic spends only about half its time doing
accesses; the remainder is time spent on the swaps that move accessed items to the
front of the list. Including swaps, the total time of move-to-front is at most four times
the total time of the optimum static algorithm.)

Sleator and Tarjan [26], using the approach presented in 2, extended Bentley
and McGeogh’s results to allow comparison between arbitrary dynamic strategies. In
particular, they showed that for any initial list and any access sequence, the total time
of move-to-front is within a constant factor (four) of minimum over all algorithms,
including those with arbitrary swapping. Thus move-to-front is optimum in a very
strong, uniform sense (to within a constant factor on any access sequence). Neither
transpose nor frequency count shares this property.

To obtain the Sleator-Tarjan result we use the physicist’s view of amortization.
Consider running an arbitrary algorithm A and the move-to-front heuristic MTF in
parallel on an arbitrary access sequence, starting with the same initial list for both
methods. Define the potential of MTF’s list to be the number of inversions in MTF’s
list with respect to A’s list, where an inversion is a pair of items whose order is different
in the two lists. The potential is initially zero and always nonnegative. It is straightfor-
ward to show that, with this definition of potential, the amortized time spent by MTF
on any access is at most four times the actual time spent by A on the access.

The factor of four bound can be refined and extended to allow A and MTF to
have different initial lists and to allow the access cost to be a nonlinear function of list
position. The problem of minimizing page faults, which is essentially a version of list
updating with a nonlinear access cost, can also be analyzed using amortization. Sleator
and Tarjan’s paper [26] contains the details.
Another use of amortization is in the analysis of insertion and deletion in balanced

search trees. A balanced search tree is another way of representing a table, more
complicated than a linear list but with faster access time. Extensive discussions of
search trees can be found in many computer science texts (e.g. [2], [17], [32]), and
we shall assume some familiarity with their properties. Generally speaking, a table
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can be stored as a search tree if the items can be totally ordered, e.g. the items are
real numbers, which are orderable numerically, or strings, which are orderable
lexicographically. We store the items in the nodes of a tree in symmetric order.
Depending upon the exact scheme used, the items may be stored in either the internal
or the external nodes, with one or several items per node. We access an item by
following the path from the tree root to the node containing the item. Thus the time
to access an item is proportional to the depth in the tree of the node containing it.

Balanced search trees are constrained by some sort of local balance condition so
that the depth of an n-node tree, and thus the worst-case access time, is O(log n).
Typical kinds of balanced trees include AVL or height-balanced trees [1], trees of
bounded balance or weight-balanced trees [21 ], and various kinds of a, b trees including
2, 3 trees [2] and B-trees [5]]. (In an a, b tree for integers a and b such that 2 =< a =< b/2 ],
all external nodes have the same depth, and every internal node has at least a and at
most b children, except the root, which if internal has at least two and at most b
children.) Indeed, the varieties of balanced trees are almost endless.

Maintaining a dynamic table (i.e. a table subject to insertions and deletions) as a
balanced search tree requires storing local "balance information" at each tree node
and, based on the balance information, rebalancing the tree using local transformations
after each insertion or deletion. For standard kinds of balanced trees, the update
transformations all take place along a single path in the tree, and the worst-case time
for an insertion or deletion is O(log n). For some kinds of balanced search trees,
however, the amortized update time is O(1). Brown and Tarjan [8] showed that m
consecutive insertions or m consecutive deletions in an n-node 2, 3 tree take O(n + m)
total rebalancing time, giving an O(1) amortized time per update if m =f(n). This
bound does not hold for intermixed insertions and deletions unless the insertions and
deletions are far enough apart that they do not interact substantially. Maier and Salveter
[20] and independently Huddleston and Mehlhorn [15, 16] showed that m arbitrarily
intermixed insertions and deletions in an n-node 2, 4 tree, or indeed in an a, b tree
with a-< [b/2], take O(n+ m) total rebalancing time.

To give the flavor of these results, we shall sketch an amortized analysis of insertions
in balanced binary trees [31], [32], also known as "symmetric binary B-trees" .[4],
"red-black trees" [13], or "half-balanced trees" [22]. (See Fig. 1.) A balanced binary
tree is a binary tree (each internal node has exactly two children: a left child and a
right child) in which each internal node is colored either red or black, such that

(i) all paths from the root to an external node contain the same number of black
nodes, and

(ii) any red node has a black parent. (In particular, the root, if internal, is black.)
Balanced binary trees are equivalent to 2, 4 trees: we obtain the 2, 4 tree

corresponding to a balanced binary tree by contracting every red node into its parent.

FIG. 1. A balanced binary tree. Circles are internal nodes; squares are external, lnternal nodes are solid

if black, hollow if red.
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FIG. 2. Correspondence between nodes of a 2, 4 tree and nodes of a balanced binary tree.
(a) 2-node.
(b) 3-node.
(c) 4-node.

(See Fig. 2.) This correspondence is not one-to-one: a 2, 4 tree can correspond to
several different balanced binary trees, because there are two different configurations
corresponding to a 3-node (a node with three children).

We shall not go into the details of how a table can be represented by a balanced
binary tree and why the depth of an n-node balanced binary tree is O(log n). (See
[4], [13], [22], [31], [32].) For our purposes it suffices to know that the effect of an
insertion is to convert some external node into a red internal node with two external
children. This may produce a violation of property (ii). To restore (ii), we walk up
the path from the violation, repeatedly applying the appropriate case from among the
five cases illustrated in Figs. 3 and 4. Cases 2a, b, c are terminating: applying either
of them restores (ii). Cases la, b are (possibly) nonterminating: after applying either
of them we must look for a new violation.

Ca)

A B A B

(b) --Y

B C B C

FIG. 3. Nonterminating cases of a balanced binary tree insertion. Triangles denote subtrees whose root is
either black or external Node z may or may not be the root. Each case has a symmetric variant, not shown.
After applying either case, we must check whether the parent of z is red.

(a) Case la: color flip.
(b) Case lb: color flip.

The net effect of rebalancing is to change the color of one or more nodes and
possibly to change the structure of the tree by a "single rotation" (Case 2b) or a
"double rotation" (Case 2c). We can prove that the total time for m consecutive
insertions in a tree of n-nodes is O(n + m) by using the banker’s view of amortization.
We maintain the invariant that every black node contains either 0, 1, or 2 credits,
depending on whether it has one red child, no red children, or two red children,
respectively. To satisfy the invariant initially we must add O(n) credits to the tree.
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A B A B

(C)y
A B C D

B C

FIG. 4. Terminating cases of a balanced binary tree insertion. Each case has a symmetric variant, not
shown.

(a) Case 2a: color change at the root.
(b) Case 2b: single rotation.
(c) Case 2c: double rotation.

(This accounts for the O(n) term in the bound.) Each of Cases 2a, b, c requires the
addition of O(1) credits to the tree, but such a case terminates an insertion. Each of
Cases l a, b, if nonterminating, releases a credit from the tree to pay for the transfor-
mation.

This argument is an adaption of those in [15], [16], [20]. It is not hard to extend
the argument to prove an O(n + rn) time bound for arbitrarily intermixed insertions
and deletions if the deletion algorithm is suitable. (See [31], [32] for a suitable deletion
algorithm.)

The O(n + m) bound on update time does not take into account the time necessary
to search for the positions at which the insertions and deletions are to take place. The
practical importance of this bound is in situations where the search time is significantly
faster than O(log n), as can occur if the search tree is augmented to allow searching
from "fingers" [8], [12], [16], [19]. Search trees with fingers provide one way to take
advantage of locality of reference in an access sequence, and a generalization of the
argument we have sketched shows that in appropriate kinds of balanced trees with
fingers, the total rebalancing time is bounded by a constant factor times the total search
time, if we perform an arbitrary sequence of intermixed accesses, insertions, and
deletions [16]. Brown and Tarjan [8] list several applications of such trees. The
amortized approach to fingers [8], [16] is significantly simpler than the worst-case
approach [12], [19].

Our third and most complicated example of amortization is in the analysis of path
compression heuristics for the disjoint set union problem, sometimes called the "union-
find problem" or the "equivalence problem." We shall formulate this problem as
follows. We wish to represent a collection of disjoint sets, each with a distinguishing
name, under two kinds of operations"

find (x): Return the name of the set containing element x.
unite (A, B): Form the union of the two sets named A and B, naming the

new set A. This operation destroys the old sets named A and B.

We shall assume that the initial sets are all singletons. To solve this problem, we
represent each set by a tree whose nodes are the elements in the set. Each node points
to its parent; the root contains the set name. To carry out find (x), we follow the path
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of parent pointers from x to the root of the tree containing it, and return the name
stored there. To carry out unite (A, B), we locate the nodes containing the names A
and B and make one the parent of the other, moving the name A to the new root if
necessary.

This basic method is not very efficient; a sequence of m operations beginning with
n singleton sets can take O(nm) time, for an amortized bound of O(n) per operation.
We can improve the method considerably by adding heuristics to the find and unite
algorithms to reduce the tree depths. When performing unite, we use union by size,
making the root of the smaller tree point to the root of the larger. After performing
find (x), we use path compression, changing the parent of x and all its ancestors except
the tree root to be the root. (See Fig. 5.)

IAI<IBI

OR

IAI>IBI

(b) A,/

FIG. 5. Implementation of set operations. Triangles denote subtrees.
a unite A, B

Union by size was proposed by Galler and Fischer [11]; Mcllroy and Morris
devised path compression [2]. The set union algorithm with both heuristics is extremely
hard to analyze. Tarjan [29] derived an O(ma(m, n)) bound for m operations starting
with n singletons, assuming m =12(n). Here a is a functional inverse of Ackermann’s
function. Tarjan’s proof is a complicated amortized analysis that uses debits as well
as credits. For a version of the proof in the banker’s framework see [32]. The bound-
is tight to within a constant factor in the worst case for a large class of pointer
multiplication algorithms [30]. Tarjan and van Leeuwen [33] extended the bound to
allow values of m much smaller than n (the generalized bound is O(n + ma(n + m, n)))
and to cover a variant of union by size and several variants of path compression.
Recently Gabow and Tarjan [10] found a linear-time algorithm for a special case of
disjoint set union in which there is appropriate advance knowledge about the unions.
Their algorithm combines path compression with table look-up on small sets and
requires the power of a random access machine. The method apparently does not
extend to the general problem.

4. New "sell-adjusting" data structures. Data structures efficient in the worst
case, such as the various kinds of balanced trees, have several disadvantages. The
maintenance of a structural constraint, such as a balance condition, consumes both
storage space (though possibly only one bit per node) and running time. Restructuring
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after an update tends to be complicated, involving a number of cases. Perhaps more
significantly, such data structures are inflexible in that they cannot take advantage of
whatever nonuniformity there may be in the usage pattern.

The idea of amortization suggests another way to design data structures. Each
time we access the structure, we modify it in a simple, uniform way, with the intent
of decreasing the time required for future operations. This approach can produce a
data structure with very simple access and update procedures that needs no extra
storage for structural information and adapts to fit the usage pattern. An example of
such a data structure is a linear list with the move-to-front rule, studied in 3. Previous
authors have used the term "self-organizing" for such data structures. We shall call
them self-adjusting. In this section we describe two self-adjusting data structures
recently invented by Sleator and Tarjan [25], [27], [28].

The first structure, the skew heap, is for the representation of meldable heaps,
also called "priority queues" [17] and "mergable heaps" [2]. Suppose we wish to
maintain a collection of disjoint sets called heaps, each initially containing a single
element selected from a totally ordered universe, under two operations:

delete min h
meld (hi, he):

Delete and return the minimum element in heap h.
Add all elements in heap h2 to hi, destroying h2.

To represent a heap, we use a binary tree, each internal node of which is a heap
element. We arrange the elements in heap order: the parent of any node is smaller
than the node itself. Thus the root of the tree is the smallest element. Melding is the
fundamental operation. We carry out delete rain (h) by deleting the root of h, replacing
h by the meld of its left and right subtrees, and returning the deleted node. We carry
out meld (hi, h2) by walking down the right paths from the roots of h and h2, merging
them. The left subtrees of nodes along these paths are unaffected by the merge. The
merge creates a potentially long right path in the new tree. As a heuristic to keep
right paths short, we conclude the meld by swapping left and right children of all nodes
except the deepest along the merge path. (See Fig. 6.) We call the resulting data
structure a skew heap.

Skew heaps are a self-adjusting version of the leftist queues of Crane [9] and
Knuth [17]; leftist queues are heap-ordered binary trees maintained so that the right
path down from any node is a shortest path to an external node. In skew heaps, the
amortized times of delete rain and meld are O(log n), where n is the total number of
elements in the heap or heaps involved. To prove this, we define the weight of an
internal node x to be the total number of its internal node descendants, including x
itself. We define a node x to be heavy if it is not a root and its weight is more than
half the weight of its parent. We maintain the invariant that every heavy right child
has a credit. An analysis of the effect of delete min and meld gives the O(log n) bound
[25], [27].

Skew heaps require only a single top-down pass for melding, in contrast to leftist
heaps, which need a top-down pass followed by a bottom-up pass. If we modify skew
heaps so that melding is bottom-up, we can reduce the amortized time for meld to
O(1) while retaining the O(log n) bound for delete rain. In an amortized sense, to
within a constant factor, bottom-up skew heaps are optimum among all comparison-
based methods for representing heaps. Preliminary experiments indicate that they are
efficient in practice as well as in theory. For details of these results, see [27].

Our second structure, the splay tree, is a self-adjusting form of binary search tree.
Consider the table look-up problem that we solved in 2 using a self-adjusting list.
As discussed in 3, if the items are totally orderable, we can also represent such a
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FIG. 6. A meld of two skew heaps. External nodes are not shown.
(a) Merge of the right paths.
(b) Swapping of children along the path formed by the merge.

table by a binary tree: Each item is an internal node of the tree, with items arranged
in symmetric order" for any item x, all items in its left subtree are less than x and all
items in its right subtree are greater than x. To access an item x, we compare x to the
tree root, stop if the root is x, and otherwise proceed recursively in the left subtree if
x is less than the root, in the right subtree if x is greater than the root. The time to
access x is proportional to its depth in the tree.

As a heuristic to keep the tree depth small, each time we access a node x we splay
it. To splay x, we repeatedly apply the appropriate one of the cases among those in
Fig. 7, continuing until x is the root of the tree. In effect, we walk up the path from
x two nodes at a time, performing rotations as we go up that move x to the root and
move the rest of the nodes on the access path about halfway or more toward the root.
(See Fig. 8.) We call the resulting data structure a splay tree.

The amortized time of an access in an n-node splay tree is O(log n). To prove
this, we define the potential of a splay tree to be the sum over all internal nodes x of
log w(x), where w(x) is the weight of x, defined to be the number of (internal node)
descendants of x, including x itself. The algorithm and the analysis extend to handle
insertion, deletion, and more drastic update operations. Several variants of the splay
heuristic have the same efficiency (to within a constant factor) [25], [27]. Several
heuristics for search trees proposed earlier [3], [7] are not as efficient in an amortized
sense.

Splay trees are not only as efficient in an amortized sense as balanced trees, but
also as efficient as static optimum search trees, as an extension of the analysis shows.
In this they are like lists with move-to-front updating; they automatically adapt to fit
the access frequencies. The result showing that splay trees are as efficient as optimum
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(a)

A B B C

(b)

A B C D

(c)

A B C D

B C

FIG 7. Case of splay step at node x. Each case has a symmetric variant (not shown). In cases (b) and
(c), if node z is not the root, the splay continues after the step.

(a) Terminating single rotation. Node y is the root.
(b) Two single rotations.
(c) Double rotation.

c D
E F

FIG. 8. Splay at node a.

trees is analogous to Bentley and McGeough’s result comparing move-to-front with
an optimum static ordering. We conjecture that a stronger result analogous to Sleator
and Tarjan’s result for move-to-front holds; namely splay trees minimize the amortized
access time to within a constant factor among all search-tree-based algorithms. We
are currently attempting to prove an appropriate formalization of this conjecture. As
a special case, the truth of the conjecture would imply that splay trees are as efficient
as the finger search trees mentioned in 3, and thus that one can obtain the advantages
of fingers using an ordinary search tree, without extra pointers. Details of the properties
of splay trees and several applications to more elaborate self-adjusting data structures
appear in [27].
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5. Conclusions. We have seen that amortization is a powerful tool in the algorith-
mic analysis of data structures. Not only does it allow us to derive tighter bounds for
known algorithms, but it suggests a methodology for algorithm development that leads
to new simple, efficient, and flexible "self-adjusting" data structures. Amortization
also provides a robust way to study the possible optimality of various data structures.
It seems likely that amortization will find many more uses in the future.

REFERENCES

[1] G. M. ADELSON-VELSKII AqD E. M. LANDIS, An algorithm for the organization of information,
Soviet Math. Dokl., 3 (1962), pp. 1259-1262.

[2] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] B. ALLEN AND I. MUqRO, Self-organizing search trees, J. ACM, 25 (1978), pp. 526-535.
[4] R. BAYER, Symmetric binary B-trees: data structure and maintenance algorithms, Acta. Inform.,

(1972), pp. 290-306.
[5] R. BAYER AND E. MCCREIGHT, Organization of large ordered indexes, Acta Inform., (1972), pp.

173-189.
[6] J. L. BENTLEY AND C. MCGEOGH, Worst-case analysis of self-organizing sequential search heuristics,

Proc. 20th Allerton Conference on Communication, Control, and Computing, to appear.
[7] J. R. BITNER, Heuristics that dynamically organize data structures, SIAM J. Comput., 8 (1979), pp.

82-110.
[8] M. R. BROWN AND R. E. TARJAN, Design and analysis of a data structure ]’or representing sorted

lists, SIAM J. Comput., 9 (1980), pp. 594-614.
[9] C. A. CRANE, Linear lists and priority queues as balanced binary trees, Technical Report STAN-CS-72-

259, Computer Science Dept., Stanford University, Stanford, CA, 1972.
[10] H. N. GABOW AND R. E. TARJAN, A linear-time algorithm for a special case of disjoint set union, J.

Comput. Sys. Sci., submitted.
[11] B. A. GALLER AqD M. J. FISCHER, An improved equivalence algorithm, Comm. ACM, 7 (1964),

pp. 301-303.
[12] L. J. GUmAS, E. M. MCCREIGHT, M. F. PLASS AND J. R. ROBERTS, A new representation for linear

lists, Proc. Ninth Annual ACM Symposium on Theory of Computing, 1977, pp. 49-60.
[13] L. J. GUIBAS AND R. SEDGEWICK, A dichromatic framework for balanced trees, Proc. Nineteenth

Annual IEEE Symposium on Foundations of Computer Science, 1978, pp. 8-21.
[14] J. HOPCROFT AND R. TARJAN, Efficient planarity testing, J. ACM, 21 (1974), pp. 549-568.
[15] S. HUDDLESTON AND K. MEHLHORN, Robust balancing in B-trees, Proc. 5th GI-Conference on

Theoretical Computer Science, Lecture Notes in Computer Science 104, Springer-Verlag, New
York, 1981, pp. 234-244.

[16] S. HUDDLESTON AND K. MEHLHORN, A new data structure for representing sorted lists, Acta Inform.,
17 (1982), pp. 157-184.

[17] D. E. KNUTH, The Art of Computer Programing, Vol. 3: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[18] D. E. KNUTH, J. H. MORRIS JR. AND V. R. PRATT, Fast pattern matching in strings, SIAM J. Comput.,
6 (1977), pp. 323-350.

[19] S. R. KOSARAJU, Localized search in sorted lists, Proc. Thirteenth Annual ACM Symposium on Theory
of Computing, 1978, pp. 62-69.

[20] O. MAIER AND S. C. SALVETER, Hysterical B-trees, Inform. Proc. Letters, 12 (1981), pp. 199-202.
[21] J. NIEVERGELT AND E. M. REINGOLD, Binary search trees of bounded balance, SIAM J. Comput.,

2 (1973), pp. 33-43.
[22] H. OLIVIE, A new class of balanced search trees: half-balanced binary search trees, RAIRO Inform.

th6orique/Theoretical Informatics, 6 (1982), pp. 51-71.
[23] R. RIVEST, On self-organizing sequential search heuristics, Comm. ACM, 19 (1976), pp. 63-67.
[24] P. ROSENSTIEHL AND R. E. TARJAN, Gauss codes, planar Hamiltonian graphs, and stack-sortable

permutations, J. Algorithms, to appear.
[25] O. D. SLEATOR AND R. E. TARJAN, Self-adjusting binary trees, Proc. Fifteenth Annual ACM

Symposium on Theory of Computing, 1983, pp. 235-245.
[26] ., Amortized efficiency of list update and paging rules, Comm. ACM, to appear.



318 ROBERT ENDRE TARJAN

[27] D. D. SLEATOR AND R. E. TARJAN, Self-adjusting heaps, SIAM J. Comput., 15 (1986), to appear.
[28], Self-adjusting binary search trees, to appear.
[29] R. E. TARJAN, Efficiency ofa good but not linear set union algorithm, J. ACM, 22 (1975), pp. 215-225.
[30], A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comput. Sys.

Sci., 18 (1979), pp. 110-227.
31] ., Updating a balanced search tree in O(1) rotations, Inform. Proc. Letters, 16 (1983), pp. 253-257.
[32], Data Structures and Network Algorithms, CBMS Regional Conference Series in Applied

Mathematics 44, Society for Industrial and Applied Mathematics, Philadelphia, 1983.
[33] R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set union algorithms, J. ACM, to appear.
[34] Webster’s New World Dictionary of the American Language, College Edition, World, Cleveland, Ohio,

1964.



SIAM J. ALG. DISC. METH.
Vol. 6, No. 2, April 1985

(C) 1985 Society for Industrial and Applied Mathematics

017

A COMPREHENSIVE MODEL OF DYNAMIC PROGRAMMING*

PAUL HELMAN" AND ARNON ROSENTHAL$

Abstract. We present a new model of problems solvable by discrete dynamicprogramming. The formalism
of the model is based on "nonassociative regular expressions" and a generalized notion ofcomparability. We
formally define dynamic programming in this setting, and study its efficiency. We obtain theorems showing
dynamic programming to be optimally efficient for a general class of problems. Our model generalizes
previous work in that it naturally includes problems of a nonassociative and nonsequential nature (e.g.,
"parenthesization problems" and nonserial dynamic programming). A key aspect of the model is that it
separates a problem’s structure from the required computation. This serves to make similarities between
problems more apparent.

AMS(MOS) subject classifications. 90C39, 49C20, 68C05, 68C25, 68D05

1. Introduction. Since its development by Karp and Held [9], the discrete decision
process (DDP) has been the standard formalism for decomposable combinatorial
optimization problems. The DDP is a triple (E, L, f), where

E is a finite alphabet of "primitive decisions",
L is a regular language of "feasible policies" over E,
f is the objective function f: L-> {Reals}.

The problem is to find a feasible policy which minimizes f.
Before a DDP can be solved by dynamic programming, it must be represented as

a sequential decision process (SDP). An SDP is a finite automaton whose transition
function is augmented by a cost function which agrees with the objective f on feasible
policies, i.e., members of the automaton’s language L. The functional equations associ-
ated with dynamic programming are derived from the SDP.

Our model extends and modifies the DDP/SDP in several fundamental ways"
(i) The DDP/SDP is inherently associative, since it is based on a formalism

equivalent to regular expressions. We develop a nonassociative formalism to exploit
the observation that dynamic programming does not need the associativity of string
concatenation. Our model can view "parenthesization problems" (e.g., matrix multipli-
cation, optimal binary tree problems [7]) as consisting of parenthesization subtrees,
which can be "grafted" nonassociatively. The principle of optimality [1] is abstracted
to allow this type of combination.

(ii) Unlike [2], [3], [5], [8], [9], [10], we divorce structure from computation. This
enables us to separate the enumeration of the policies (i.e., generating and combining
them), from the computation performed on the policies (e.g., cost evaluation and
selection of the optimal). To this end, problems and enumerations are stated in a
problem structure, independent of the actual computation. This allows for the unification
of algorithms which perform different computations on the same problem structure,
using the same enumeration scheme.

Our approach makes it apparent that a handful of distinct problem structures and
enumerations underlie the vast majority of dynamic programming applications. These
problem structures are clearly identified when a problem is formalized in our model.
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(iii) Our model provides a very convenient setting for classifying enumeration
schemes and analyzing their complexity. Our relevant results include aformal definition
ofdynamic programming and theorems showing dynamic programming to be optimally
efficient for a large class of problems.

Since the model is based on a formalism that is accessible to most algorithm
designers, it should be useful as an algorithm design tool as well as being theoretically
interesting.

2. The model. In this section the model is formally presented. First a problem
structure is defined, and then the connection is made between problem structures and
optimization problems. We also view three well-known problems--the traveling salesper-
son problem, the matrix product chain problem, and the optimal alphabetic encoding
problem--in the model’s setting. The latter two are "parenthesization problems" that
can naturally be solved using ordered binary trees. Dynamic programming solutions
to both these problems have long been known [4], [7], but neither fits the DDP/SDP
model.

The partition of a problem into two components (problem structure and optimi-
zation problem) formalizes the intuitive fact that two problems may have identical
structure, though the computations required might be quite different. In our model,
problems which require different computations may have identical problem structures
and use identical enumerations in their solutions (e.g., the matrix product chain problem
and the optimal alphabetic encoding problem). The difference in computation is
captured in the statement of the optimization problem. In software terms, we can use
the same main program and simply redefine a single function. We feel this unification
to be a key contribution of the model.

2.1. The problem structure. Strings and regular expressions can be used to model
enumerations of objects which are associative in nature. For example, consider paths
through a graph with vertex set V. A single vertex v is a path, as is any string (i.e.,
element of V*) of vertices Vl’V2 Vk. If p and s are paths, then so is (p. s).
Further, if p, s, and are paths, then ((p. s). t) is the same path as (p. (s. t)). In
this sense, paths are associative in nature.

Suppose S and T are sets of paths. The product of the sets is defined to be

STA((s. t)[sS, t T}.

Each of the sets S and T may correspond to a problem, e.g., find the shortest path in
the set. Under certain conditions, it may be true that the solution to the product of
the sets S and T is equal to the product of their solutions, i.e., it may be true that
Solution(ST) is Solution(S). Solution(T). The multiplication of sets S and T is a
scheme for implicitly enumerating the paths in ST. Since IST may be as large as IS TI,
this is a valuable solution strategy.

While many problems are associative in nature, many are not. Trees, for instance,
are not. See Fig. 1.

A nonassociative analogue of strings is used to broaden the scope of our model.
A conjunct is a finite length expression over a set A of"atoms" and , a nonassociative
analogue of the concatenation operator of strings. The conjuncts correspond to the
objects enumerated for a given problem (e.g., paths through a graph, binary trees).
The difference between conjuncts and strings is that the string concatenation operator
must associate. As a result, conjuncts often allow for a far more natural problem
statement than do strings. (A table at the end summarizes the notation introduced in
this paper.)
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Treel Tree2 Tree3

((Treei.Tree2).Tree3) # (Tree].(Tree2.Tree3))

FIG. 1.

Formally, a problem structure is

P =(A,
where

A" is a finite set of atoms.
Every atom is a conjunct, and if X and Y are conjuncts so too is (X ( Y).
The set of all conjuncts is denoted CONJ.
Notice that a conjunct is, technically, always fully parenthesized. We shall,
however, write a conjunct as (al (3 a2 ak) when we do not wish to
refer to a specific parenthesization.

is an equivalence relation on CONJ, called the equality relation. captures
that distinct conjuncts may represent the same application object, e.g., if
conjuncts represent paths, then for all conjuncts X, Y, Z

(X q) (Y Z))-((X q) Y) Z).

denotes the m-equivalence class containing X, i.e., { YIX- Y}.

AXIOM PS 1. is preserved by . That is, for all conjuncts W, X, Y, Z

(W X, Y- Z):=>(W q) YX Z).

We define a star free nonassociative regular expression (NRE) to represent a set of
conjuncts as follows:

For x A, define an NRE (also denoted x) to represent the set Ix]___. x is called
an atomic expression.
If and Y are NREs representing the sets S and T, then (+Y) is an NRE
representing S U T.
If and Y are NREs representing the sets S and T, then ( Y) is an NRE

representing the product of the sets S and T. The product of two sets of conjuncts is
defined analogously to the product of two sets of strings. If X is a conjunct in S and
Y is a conjunct in T, then the conjunct (X Y) is in the product. In addition, the
product includes all conjuncts which are m-equivalent to such conjuncts (X Y).
Formally, the product of the sets of conjuncts S and T, denotes $(R) T, is defined as

S(R)T U [(X(3 Y)]=.
XeS
YeT



322 PAUL HELMAN AND ARNON ROSENTHAL

We will on occasion use Rep () to denote the set represented by , and speak of
as enumerating the conjuncts in this set. If Rep ()- Rep (Y) we say the two NREs
are congruent and write --Y.

Every NRE is a subexpression of itself. In addition,

subexp (+Y) ({( + Y)} [.J subexp () LI subexp (Y)) and

subexp (W Y) ({(W (3 Y)} LI subexp (W) LJ subexp (Y)).

Notice that all conjuncts are NREs, i.e., (a (3 a_ (3 ak) is both a conjunct and
an NRE. The following lemma establishes that, under the above definition, a conjunct
represents its class.

LEMMA 1. IfX is a conjunct, then Rep (X) =IX]___.
The proof appears in the appendix.

Q: is a distinguished NRE, representing the set of conjuncts which must be
enumerated. Q is in "disjunctive normal form" i.e.,
Q=WI+" "+WN, where each Wi is a conjunct (i.e., contains only
operators) and

(ti k(i k.
Q thus explicitly enumerates the conjuncts in Rep (Q).

is an equivalence relation on CONJ, called the comparability relation.
refines

Axiom PS2. is preserved by . That is, for all conjuncts W, X, Y, Z

(W X, Y Z)(W O Y X O Z).

Distinguished NRE Q is assumed to represent an entire -class.
[X] denotes the "-equivalence class containing X, i.e., { Y[ X ~Y}.
If an NRE represents a set of -equivalent conjuncts, we say it is a -NRE.

2.2. Optimization problems. The comparability relation generalizes Bellman’s
sense of comparability [1]. In this section we formalize how comparability can be
exploited to solve discrete optimization problems.

Let P (A, m, Q, be a problem structure. A (discrete) optimization problem (with
structure P) is

0 (P, choice
where choice is a function which maps a set of -comparable conjuncts into a conjunct
of that set. The choice function is to be interpreted as choosing an optimal (e.g., one
which minimizes an objective function) conjunct from the set. We extend choice to
-NRE by choice ()=choice (Rep ()). Notice it follows from Lemma that if
X and Y are m-equivalent conjuncts, then choice (X)=choice (Y), and is a member
of their class.

The optimization task for 0 is to compute choice (Q).

The optimization task is interpreted as the selection of the optimal conjunct from
those in the set represented by Q.

Let Achoice denote the operation of choosing between two -comparable conjuncts,
i.e.,

X A Y= choice ((X / Y)) forX Y.
choice
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The interpretation that the choice function selects the optimal conjunct from a set of
-comparable conjuncts requires that Achoice totally orders any such set. Axiom C1
imposes the necessary structure on choice (see Lemma 2 in the.appendix).

AXIOM C1. If (+Y) is a -NRE then choice ((+Y)) choice () Achoice
choice (Y). See Fig. 2.

(, Y) +

choice

A
choice

+Y)

choice

FIG. 2. Commutativity diagram for Axiom C1.

One solution to the optimization task is obtained by replacing in Q each occurrence
of + by Achoice. The resulting expression is a computation Comp (Q) (computation is
formally defined below), and Axiom C1 implies that Comp (Q) produces choice (Q).
This computation is the brute force enumeration of all the conjuncts in Q and, in
general, is infeasible. The ability to compute choice (Q) by implicit enumeration of
the conjuncts is derived from the notion of comparability, as captured in the second
axiom governing choice. This axiom is our abstraction of Bellman’s principle of
optimality.

AXIOM C2. If qt and Y are each -NREs then choice (( (D Y))choice () (D
choice (Y). See Fig. 3.

OI,, Y) (R) (,I, (R) Y)

choice choice

FIG. 3. Commutativity diagram for Axiom C2.

This axiom is the basis of implicit enumeration schemes. It states a sufficient
condition for insuring that the optimal conjunct in the product of the sets (represented
by) and Y be the product of the optimal conjuncts in and Y. We are thus provided
with a means, which does not require the explicit enumeration of every conjunct in a
set, of determining the optimal conjunct in that set.

We now formalize the notion of a computation.
If every subexpression of is a -NRE, we say that is interpretable. The

replacement in of each occurrence of / by Achoice yields a computation over (CONJ,
(), Achoice). Denote this computation by Comp (). The operators of Comp () are
O and Achoice and the operands and results are conjuncts. Notice that needs to be
interpretable to guarantee that Achoice is defined for each pair of its operands.

The two choice axioms insure that, for interpretable NRE V, Comp () produces
the conjunct (down to ----equality) which choice selects from among the conjuncts in
Rep ().
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LEMMA 3. If is an interpretable NRE, then Comp () produces a conjunctfrom
the same --class as choice ().

Proof. The proof is a straightforward induction on the number of operations (@
and Achoice) in Comp ().

Since conjuncts from the same --class represent the same application object, we
shall say simply that Comp () produces choice () (if Comp () produces conjunct
X, then choice (X) is in fact choice ()).

Thus every interpretable NRE corresponds to a computation, Comp (), which
begins with atoms from A and computes choice (). Since distinguished NRE Q is
interpretable, Comp (Q) always produces a solution to the optimization task, but
typically requires too many Achoice and @ operations. The algorithm designer must
find an interpretable Q’-= Q such that Comp (Q’) is efficient. This problem is addressed
in 3.

Before presenting our examples, we point out that problems whose required
computation is not an optimization can be handled by a generalized version of this
model. In a forthcoming paper, we show that nonoptimization problems (e.g., context
free language recognition) can be included in the theory by mapping enumerations
into a generalized "computation domain". Analogues of Axioms C1 and C2 (Bellman’s
principle) allow the same enumerations which solve optimization problems to also
solve nonoptimization problems. Thus, for example, the dynamic programming
enumeration for the parenthesization problems presented in 3 can be used to solve
the context-free language recognition problem. In addition, the generalized model can
be used for optimization problems, allowing a cost component to be included in the
computation (i.e., choice also gives the cost of the optimal conjunct).

2.3. Examples of problem structures and optimization problems. We shall consider
two problem structures: the first can be used for the traveling salesperson problem
and its variants (and with minor modification for shortest path problems), the second
for parenthesization problems. By use of appropriate choice functions we derive the
traveling salesperson problem from the first problem structure, and the matrix product
chain and optimal alphabetic encoding problems from the second. In 3 dynamic
programming solutions to these problems are presented.

Traveling salesperson (TS) problem. A problem structure which can be used for
the TS problem (and its variants) over a directed graph G (V, E) with positive edge
costs COST ((v, w)) is:

P=(A,-,Q, ),

where

A is the set of vertices V {Vo, Vl, VN}.

conjuncts which differ only by parenthesization represent the
same application object, i.e.,

For every X, Y, Z CONJ, (X @ (Y @ Z)) ((X ( Y) @ Z).

We may therefore omit parentheses in conjuncts and view conjunct V Q Q

Vk as the path v,. Vk.
Q Q=l+2+’" "+N, where the i are the tours through V which begin

and terminate at Vo (any other vertex in V would also suffice). For example,= Vo @ v, (3 @ v Vo.
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tWO paths are comparable if they pass through the same set of vertices and
their terminal points correspond. Formally, if X Xl (3... (3 xj and Y y

() Yk"
then X Y if[ (x y and xj

^ (x2," , X_l and Y2, Yk-I differ from each other
by only a permutation (and thus j- k)).

The (standard) TS problem is obtained by defining choice () to return a minimum
cost path from those in Rep (xIt), where cost is the sum of the edge costs on the path

k-1

cost (w () () Wk)"-" E COST ((wi, Wi+l)).
i=1

Thus choice (Q) is a minimum cost tour through G.
In case of tie, a lexicographical ordering is used. Technically, choice must return

a member of the m-class of the least cost path, i.e., some parenthesization of it. We
arbitrarily define it to return the left to right parenthesization, (((a O b) q) c) q) d).

Parenthesization problems. Many problems can be viewed as requiring the selection
of a parenthesization tree for a string z z2 z. The following problem structure can
be used for problems of this nature:

P=(A,-,Q, ),

where

A is the alphabet (z, z2,’’’, z).
is the identity, i.e., distinct conjuncts are never equivalent. We may thus view
conjuncts as labeled binary trees: Atom z is the tree with a single node labeled
z. Conjunct (X (Z) Y) is the labeled binary tree in which X is the left subtree
and Y is the right subtree.

Q Q=(Zl... Zs)l+...+(Zl...zs)i+...+(Zl...(S)z)/(,
where the (z zs) are all the possible parenthesizations of z
z. Q represents the set of all ordered binary trees over A (such that each
internal node has two children).
conjuncts which are different parenthesizations of the same string are compar-
able, i.e., ifX (x Q Q Xn) and Y (y q) (S) y,,)_ then X Y if[ n m
and xi yi, _-< _-< n.

Two problems which use this problem structure are the matrix product chain
problem and the optimal alphabetic encoding problem.

Matrix product chain problem. Let zXzEX. XzN be a chain of matrix products.
The problem is to associate the matrices so as to minimize the number of multiplications
required to compute the product. For 0 <_- _-< N, DIM (i) represents the dimensions of
the matrices, i.e., z has DIM (i- l) rows and DIM (i) columns. For simplicity, assume
the cost of multiplying an N M matrix with an M P matrix is NMP multiplications;
no conceptual change is required if a technique such as Strassen multiplication is used.
The problem is to construct a "multiplication tree," an ordered binary tree over
z,..., zrv, which corresponds to an optimal association for the matrix chain.

For example, if N=4 and DIM (0)=2, DIM (1) =3, DIM (2)=4, DIM (3)=2,
DIM (4) 5, then a possible multiplication tree is shown in Fig. 4. Each internal node
is labeled with the dimensions of the matrix it represents, along with the cost of
obtaining that matrix under the association scheme. The cost of the tree is the cost of
the root. To model this problem, choice bases its selection on the cost function described
above, i.e., cost ((w 63 63 Wk)) is the number ofmultiplications required to compute
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the chain wIXW2X" Xwk under the association scheme given by the tree (w
Wk). Thus choice (Q) is an ordered tree over {Zl, z2,’", zN} corresponding to an
optimal association for the chain ZlXZ2X" XzN.

FIG. 4. Matrix multiplication tree.

Optimal alphabetic encoding. Given an alphabet {z, Z2,""" ZN} (with Zl < z2<
< zt), let Pi denote the probability that character will be chosen. The problem

is to construct an order binary tree over {zl, z2," ", z} with minimum expected path
length. An ordered binary tree corresponds to an encoding in the obvious way. The
encoding has the required properties that no code is a prefix of another, and
code (zi) <lex code (zj) if <j. For example, let the alphabet be {A, B, C, D}. Then the
encoding (A 0, B 10, C 110, D 111) is represented as in Fig. 5. To model this
problem, choice bases its selection on the expected path length, i.e.,

k

cost ((Wl ’’" Wk)) Pr{w}* (depth of w in the tree ((w ... Wk))).
i=l

Thus choice (Q) is an ordered tree over {z, Z2," , ZN with minimum expected path
length.

C D

FIG. 5. Encoding tree.

3. Dynamic programming enumerations. In this section we formally define the
class of dynamic programming enumerations, prove theorems demonstrating its opti-
mality, and present dynamic programs for the two problem structures from 2.3.

Any enumeration which is stated in the framework of the model is oblivious to
problem specific data in the sense that the enumeration can be modeled as a circuit.
This restriction immediately eliminates some powerful heuristics, e.g., branch and
bound techniques. The complexity results which we obtain are relative to the class of
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oblivious enumerations. In this sense the model captures the limits of oblivious
computations; there are some well-known nonoblivious techniques [7] which can speed
up the solutions, but which are beyond the power of computations which exploit only
the axioms of our model.

3.1. The class of dynamic programming enumerations. The formalism of the model
can capture many enumeration strategies. The definition of the class of dynamic
programming enumerations is based on the notion that once a dynamic program starts
work on a comparable set of conjuncts, it will continue on this comparability class
until all conjuncts from the class have been enumerated [6], [ll]. That is, it will
(3-multiply only NREs which have enumerated entire comparability classes. This
definition is broad enough to include most of what the literature classifies as dynamic
programming.

DEFINITION. An NRE of the form ( Y) is called a product. A subexpression
of an NRE which is a product is called a subproduct.

MAJOR DEFINITION. An interpretable NRE (or its corresponding computation
Comp ()) is a dynami.c program if for all subproducts (1 2) of , and 2
both represent entire -comparability classes. (To exclude redundant computations
from our definition of dynamic programming, we add the additional constraint that a
dynamic program not contain any subexpressions (+2) where Rep(l) and
Rep (2) are nested.)

Our definition of dynamic programming requires that if the "solution" to is
to be combined with the operation, it must represent an entire -class. Since all
subexpressions must be -NREs, this permits the O combination of solutions to only
maximal meaningful subproblems. This requirement corresponds to the notion of
dynamic programming in the literature, and also makes good computational sense.

As a simple illustration of an enumeration excluded by our definition of dynamic
programming, consider the problem structure of the traveling salesperson problem and
the enumeration Q itself. Q explicitly enumerates all the tours. It is not a dynamic
program (when IV[ > 4) since it contains subexpressions of the form

(Vo (R) v (R) v2 @ v3) (R) v,

and (Vo @ v v2 v3) represents a proper subset of the -class {(Vo v, v E)
v3), (Vo (R) v (R) v, (R) v)}.

On the other hand, the expression

(()0 @ )1 () )2 () )3)--()0 @ /)2 () )1 () D3)) () )4

would not violate the condition.
We construct as follows a dynamic programming enumeration which solves the

traveling salesperson problem.
Let S {w, w, w2," Win} be any subset of V-{vo}, and let Sw denote S-{w}.

The -NRE s, will represent the set of all paths which begin at Vo, visit each vertex

w in S exactly once, and terminate at w. s, is defined by

(Vo@ w) ifS={w},
(I)s,

sW.w, w) +. + sw,w w if cardinality of S is greater than 1.

Let V’ denote V-{Vo}. Then v,.o represents the set of all paths starting at Vo, passing
through all the vertices, and terminating at v. Since each tour must terminate at Vo,
the final step is to define by

((’,,,,,v, (R) Vo)+. .+(,, (R) Vo)).
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The actual dynamic programming computation, Comp (do), is obtained by
replacing in do each occurrence of + by the selection operator Achoice.

The identical dynamic programming enumeration solves both the matrix product
chain and optimal alphabetic encoding probl.ems.

A is the alphabet {Zl, z2,’’ ", zN}. The -NRE doi.k will represent the set of all
ordered binary trees over {z,, zi+,... Zk}. ()i,k is defined as follows.

For <=i<=k<- N,
lffp Z

(I) k lff) @ f) + k "- ) + () (I) i+2,k)"-"" "- k-1 ( () k,k

The NRE do.N is a dynamic programming enumeration.
The actual dynamic programming computations, Comp (do), are obtained by

replacing in do each occurrence of + by the selection operator Achoie. The differences
in the computations for the two problems are captured by choice’s selection criteria.

3.2. The uniqueness and optimality of dynamic programming. Our model allows us
to state and prove the following theorem, which implies the uniqueness of the dynamic
program for parenthesization problems.

THEOREM 1. For each problem structure in which is the identity (i.e., distinct
conjuncts are never equivalent), there exists a unique (down to the commutation and
association of + operations) dynamic program.

The proof appears in the appendix.
The straight-line complexity of any NRE [computation] is measured by the number

of and +[Achoi] operations, with common subexpressions counted only once.
A strong optimality result has been obtained, applicable to any problem structure

in which is the identity.
THEOREM 2. If is the identity (i.e., distinct conjuncts are never equivalent),

is an interpretable NRE with =- Q, and do is the unique dynamic program, then
(1) number of +’s in do <= number of +’s in .
(2) number of )’s in do <= number of ’s in .
The proof appears in the appendix.
For example, the dynamic program presented for the parenthesization problems

is optimal within the context of our model.

4. Future directions and summary. We see three areas for extending our results.
The first is broadening the complexity results to problem structures in which includes
more than X X (e.g., when is associative or commutative). We strongly suspec.t
that under some very reasonable assumptions on and the comparability relation
dynamic programs can be shown to be op,timal within the context of our model. (We
do know that some restrictions on and will be necessary, as we have been able to
construct examples of problem structures for which dynamic programming is not
optimal.)

All our optimality results are with respect to computations which can be stated
in the model. A second area for future study are the classes of computations beyond
the model’s computational power. A major restriction on the computations stated in
our model is that they be oblivious, that is to say the operations performed are not
influenced by the data and can thus be modeled by a circuit. This rules out, for example,
branch and bound enumerations. We are currently attempting to extend the model so
as to be able to include these schemes, and thus provide a common formalism for the
statement and analysis of dynamic programming and branch and bound enumerations.
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Finally, the generalization of strings to conjuncts allows the modeling of parallel
algorithms. Though parallel dynamic programming and branch and bound algorithms
have appeared in the literature, they cannot be formalized in the setting of the
DDP/SDP. In terms of the DDP/SDP, strings X and Y are comparable if they take
the automaton from the initial state to the same state q. If the string X is the least
cost string among the set S of comparable strings then, for any a E, X. a is the least
cost string among { Y. al Y s}. This provides a means of comparing only policy initial
segments. It allows only for serial, one step at a time combinations.

Our abstraction of the principle of optimality allows nonsequential combinations
of objects. In the context of optimization problems, if X is the least cost co.njunct in
Rep () and Y is the least cost conjunct in Rep (I2) (assuming the I)l are -NREs),
then X (3 Y is the least cost conjunct in Rep ( 2).

This allows and 2 to be "solved" in parallel, and then for their solutions to
be combined. We will explore extentions to our model that would permit such computa-
tions to be formally stated and analyzed.

Summary. The model makes three fundamental contributions:
1. Neither dynamic programming nor our formalism requires the associativity of

string concatenation. Nonassociative "parenthesization problems" are easily modeled
by an operation which grafts trees together.

2. We model implicit enumerations of conjuncts in one algebra, and evaluate
conjuncts in another. This allows us to formally identify the commonality between
algorithms which make identical assumptions about problem structure and use the
same enumeration scheme, but perform different evaluations. The formalism developed
in this paper allows for the statement of only optimization problems, i.e., problems
which require the selection of a conjunct in Rep (Q). In a forthcoming paper, we show
that the same "implicit enumeration" strategy, based on a generalization of Axiom
C2, can apply even when the underlying computation is not a minimization (e.g.,
context free language recognition, probability calculations). The problem structure is
unchanged, and the computation is performed in a new algebra. Theorems and 2
directly generalize to this new class of problems.

3. The model provides a structure for studying implicit enumeration schemes and
for analyzing their complexity. Our relevant results include a formal definition of
dynamic programming, and a theorem showing that for an enormous class of problems,
dynamic programming is optimally efficient within the context of our model.

Appendix--Proofs of theorems and lemmas.
LEMMA 1. IfX is a conjunct, then Rep (X)= [X].
Proof. The proof is by induction on k- the number of ’s in X.
k-0. Then X is an atom and Rep (X)=[X] by definition.
Assume true for k < n.
Show true for k n. Let X be a conjunct containing n ’s. Then there exist

conjuncts A and B, each containing fewer than n ’s, such that X (A (3 B). Thus
we must show

U [(W Y)]=_ [A (3 B]__-.
We Rep(A)
YRep(B)

By the inductive hypothesis, Rep (A)= [A]__- and Rep (B)= [B]___. Thus we must show

U
WeEA]=,
Ye[B]_

[( W (S) Y)]__: [A (S) B]-_.
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That the LHS contains the RHS is obvious. To show containment in the opposite
direction, let

Z I1 [(W q) Y)].
W[A]
Y[B]

Then ::l W- A, :! y B such that W C) Y Z. But since C) preserves (Axiom PS 1),
we have that W q) Y A (3 B. Since is an equivalence relation, Z

Define << as"

[X]_<< [Y]__ if[ X ~Y and choice ((X+ Y))X.

That << is well defined is a consequence of the fact that refines and that the value
of choice () depends only on the set represents.

LEMMA 2. << is a p.artial order on the -classes of CONJ. Two -classes are ordered

iff their conjuncts are -comparable.
Proof. The only nontrivial part of the proof is to establish that << is transitive.

Suppose IX]__-<< [Y]_= and [Y]_ << [Z]-__. Then by definition of

choice ((X + Y)) X and choice (( Y+ Z)) Y.

But then we have choice (((X+ Y)+Z))=choice((X+Z)) by Axiom C1 and also
choice (((X + Y) + Z)) choice ((X + Y+ Z))) X. Therefore choice ((X + Z)) X
and thus [X]=_ << [Z]_=.

Proofs ofthe theorems. Before Theorems and 2 can be proved, a few intermediate
results must be obtained.

DEFINITION. Conjunct X is a factor of conjunct Y if there exists atoms

a, a2," ", aL, aL+l," ", aR and a parenthesization of

al a2 @ @ aL @ (X) (S) aL+ @... @ aR

such that (al a2 at. 0 (X) a+ aR)i Y. X is a proper factor
of Y if it is a factor and X # Y.

Notice that X "is a factor of" Y is a partial order on CONJ.
DEFIra’iON. "-class C’ is a [proper] descendent of "-class C if there exist X C’

and Y C such that X is a [proper] factor of Y.
Notice that, since (3 preserves if some X C’ is a proper factor of some Y C,

then each element of C’ is a proper factor of some element of C.
An NRE can represent a set of conjuncts from only finitely many different

-classes. Hence, when is the identity, an NRE (in particular Q) can represent a
set cont.aining only a finite number of conjuncts. In what follows, we are interested
only in -classes which are descendents of Rep (Q). Since [Rep (Q) is finite] implies
Jail descendents of Rep (Q) are finite], when is the identity we restrict attention to
finite -classes.

LEMMA APxl. Let be the identity. Then [C’< C iff C’ is a descendent of C] is

a partial order.
Proof. Reflexive is trivial.
Anti-symmetric. Suppose C’< C, C < C’, and C’ # C. Since C’ < C, :IX C’

and atoms a, a2, , a, a+l, , aR (R 0 since C’ C) and a parenthesization
such that (al a2 (3... aL q) (X.) q) aL+ ag) C. (Abbreviate this to

ALXAR C.) But since q) preserves for IXi C’, At.XiAR C.
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Similarly, :IA,, A, (using the notation from above) such that for VY C,
A’,YA’R, C’. But then we have

(At.XAR) C

(A’t,(ALXAR)A’R,) C’

(At,(A’,(ALXAR)A’R,)AR) e C

violating the fact that classes are finite when is the identity
Transitive. Follows from the fact that "is a factor of" is transitive. I-i

The rank of a class is well defined when - is the identity, since in this case < is
a partial order.

DEFINITION. A class C is minimal if C’< C- C’= C.
Notice that if C is minimal, then all of its conjuncts are atoms.

DEFINITION. The rank of C is defined recursively:
If C is minimal, then Rank (C)- 1.
If C is not minimal, then Rank (C) / max {Rank (C’) C’ is a proper descendent
of C}.

Notice that C # C’ and C’ < C --> Rank (C’) < Rank (C).
THEOREM 1. For each problem structure in which is the identity (i.e., distinct

conjuncts are never equivalent), there exists a unique (down to the commutation and
association of + operations) dynamic p.rogram.

Proof. We prove that if C is any -class then there is a unique dynamic program
which represents C. The proof will be by induction on r Rank (C).

r 1. Then C {a, a, , a,} and a + a+. + a, is a dynamic program which
represents C. Any NRE whose terms are not exactly these same atoms (unless it
contains redundant atoms and is thus not a dynamic program) must represent a ditterent
set (since is the identity), and thus this dynamic program is unique down to order
of +’s.

Assume true for all r < k.
Show true for r= k. Let Rank (C)= k. Partition C into conjuncts which are

atoms and conjuncts which are not atoms, i.e., C={(L R), (L_ R),...,
(Lk q) Rk)}{a, a2,"" ", a,,}. It follows from the fact that q) preserves and that C
is an entire class that k_-I (Li O Ri)= k__ ([L](R)[R]). Renumbering the L’s and
R’s to eliminate redundant pairs of classes, we have C==I([L](R)[Ri])
{al,’" ", a,,}. Since Rank ([Li]) and Rank ([R]) are both less than k, the inductive
hypothesis implies that there are unique dynamic programs CpL, and R, representing
[Li] and [R] respectively (1 _<- _-< q). Therefore

P ((., (3 )+. .+(. (3 CR,)+a+’’ .+a,,)

is a dynamic program which represents C.
Further, suppose (I)’ is another dynamic program representing C, with

((, q) (p,) +. + (opt,q, q,) + a +. + a’,). Suppose that and (P’ differ by
more than order of + operations. There are two possibilities. The first is that they differ
on their atoms, i.e., al + a2 +" + a, and a + a+. + a’, differ by more than order
of + operations. WLOG, assume ai is in the first sum, but not the second. Since - is
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the identity, ai ; Rep (a;)(1 _-<j_-< m’), and (since ai is an atom) a, Rep ((j q) j))
<_-j _-< q’). Therefore ai Rep () Rep (’), and thus @ and ’ cannot both represent

C.
If they do not differ on their atoms, then they differ on their products. WLOG,

suppose (L, q)()Ri) is a product in but not @’, i.e., for all <-j <- q’(@ L, 63 fRi
differs from (@ q).) by more than order of + operations. We will show that
Rep (’) f) Rep ((@ L, q) R,)) , and hence and ’ cannot both represent C.

For all 1-<_j=< m’, Rep (aj) and Rep ((L, q)R,)) are disjoint since is the

(3) for anyl_-<j <identity and aj’ is an atom. Consider (@L q .WLOG, suppose
by more than the order of / operations. Since and @’ areL, differs from Lj

dynamic programs, so too must be L, and . Further, they both represent classes
of rank less than k (since both classes are proper descendents of C), and thus by the
inductive hypothesis they cannot represent the same -class, i.e., they must represent
disjoint sets of conjuncts. It then follows from the "Sub-lemma" below that Rep (( t, (3

R,)) and Rep (( )) are disjoint, giving us the desired result.
SUB-LEMMA. Let be the identity, and suppose that Y1 and Y2 represent disjoint

sets. Then for all Y and Y, (Yl q) Y) and (Y2 q) Y) represent disjoint sets, and
similarly so do (Y q) Y-l) and (Y_ q) Y2).

Proof. Simply observe that when is the identity [( W (3 X) Y Z) if[ W Y
andX=Z]. [3

Before proving Theorem 2, we need the following simple definition and lemma.
DEFINITION. A term is an NRE which is either an atomic expression or a product.
LEMMA APX2. Let be the identity and and interpretable NRE representing

the -class C, with i (k () it /" / k () tt tk / a /" / a,, ). Let X
Rep ($i), YRep () for some <-_i<-k. Then

[W X and Z Y]
[there exists j (1 <-_j <= k) such that W Rep (j), Z Rep (j)].

Proof. Since (3 preserves and C is an entire class, W q) Z) Rep () C. Thus
for some term T in {(1 (3 ),. ., (k q) ,), al," ", a,}, (W q) Z) Rep (T).
But since is the identity, T must be a product( q) j)(1 -<_j _-< k) with W Rep ()
and Z Rep (j). [3

THEOREM 2. If is the identity (i.e., distinct conjuncts are never equivalent),
is an interpretable NRE with =-Q, and dp is the unique dynamic program, then

(1) number of +’s in dp <__ number of +’s in .
(2) number of ’s in dp <_ number of q)’s in .
Proof. We will show the result holds if represents any class C. The proof is by

induction on c number of q)’s contained in .
c=0. Then must be al + a2/’" "/ ak, where a A. To obtain the required

dynamic program @, choose a subset of the {a, a2," , ak} such that there is exactly
one a from each of the m-classes [al],’’’, [ak]-.

Assume true for all c < k.
Show true for c k. Let

,=[(, @ ,.)+. .+(, @ , )]+...

+ [(I,,, (3 I,)+... +(,, ’,,)]+

where each group [(, ,)+...+(, ’)] contains exactly those terms in
which the left members represent subsets of th class C and the right member ’
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TABLE
Summary of terms and symbols.

Term or symbol Brief definition

A

conjunct
CONJ

[X]
NRE

[x]
-NRE
interpretable
choice
A choice

Comp ()
Rep

subexp ()
product
term

finite set of "atoms"
nonassociative analogue of string concatenation
expression over A and (3

set of all conjuncts
equality relation on CONJ. X Y denotes that X and Y represent the same application
object
m-equivalence class containing X
nonassociative regular expression
the union operator for NREs
the product operator for sets of conjuncts
NRE representing the set of conjuncts which are to be enumerated
the comparability relation on CONJ
-equivalence class containing X
an NRE which represents a set of -comparable conjuncts
an NRE whose subexpressions are all -NREs
function which chooses the optimal conjunct from a set of’-comparable conjuncts
operation which chooses between two -comparable conjuncts
computation derived from NRE by replacing each + with a Achoice
Rep (V) is the set of conjuncts represented by the NRE
V Y means Rep () Rep (Y)
is the set of subexpressions of the NRE
NRE of the form ( (3 Y)
NRE which is either a product or single atom

represent subsets of the class C’i. (Obviously the terms of any interpretable NRE can
always be so grouped without changing the set represented nor the number of
operations. Also assume that the ai are from m distinct classes; if not, remove
redundancy as in the basis.)

Consider any one of these groups of terms, [( (3 )+.. "+(k q) ,)]. (We
have dropped one of the subscripts as a notational convenience.) Let q be the largest
integer such that Rep (q) contains a conjunct not in any Rep (r), __--< r < q. It then
follows from Lemma Apx2 that

q k

U Rep (%)= C, and U Rep (xIs’.)= C..
j=l j=q

(The second equality follows because there is a conjunct X Ci which is not in any
Rep () for j< q. Lemma Apx2 implies that every Y C must appear in some
Rep (q’r) for which X Rep (r). Since X appears only when r => q, each Y C’, must
appear in some Rep (q’r), q<- r-< k.)

Thus the group of terms [(q q)+... + (k )] can be replaced by the
single term ( +. +q) (3 (+. +). This term has exactly the same number
of /’s, k (q + (k q), as the original group, and only one . This replacement
is completely "localized" within since Lemma Apx2 insures the set represented is
not altered, and the way the terms of were originally arranged insures no term
( q) appears outside of the collection. ( +. +q)(and (+. +)) is
an interpretable NRE because

(i) each i is interpretable, since is interp,retable, and
(ii) the Rep () are all subsets of the same -class.
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We replace each group of terms in in a similar manner, obtaining

,* [(,, +...+,,,,) c) (,i,, +... +,I,’,. )]+.
+[(,I,,,+. .+,,,) c) (,+. .+,,)]+.
+[(.,+. .+...) (’%.+...+’..)]+[(a,+...+a,,)].

For each <- -< n, (i, +" +iq and (q +. +k,) are interpretable NREs, each
containing fewer than k (i)’s, representing th’e classes Ciand C. Thus, by the inductive
hypothesis, each pair (i,+. .+,,) and (q,+. .+k,) can be replaced by the
dynamic programs and I (which represent C and C) without increasing the
number of + or (i) operations. It is also the case that the transformation does not
increase the overall cost when common subexpressions are counted only once. It is
easy to see that, at each inductive step, the replacement of (, +. + q’,,) by i either
leaves each subexpression of (,+...+,) available for use elsewhere, or replaces
it with a subexpresson which can be used anywhere in its place, i.e., by a product
which represents the -class containing the set represented by the original subexpression.

Therefore the dynamic program

(I) ((I), Q) (I)) +... + ((I)k (Z) (I) J,) + a, +. + a.,

represents C with no more +’s or E)’s than . F1
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ON DISCRETE SEARCH FOR A MULTIPLE NUMBER OF OBJECTS*

MARK CIANCUTTI

Abstract. In this paper we discuss discrete search for a number of objects distributed among a number
of cells. A cell is chosen during each inspection period and objects removed. The initial number of objects
in each cell has a discrete probability density independent of the number in another cell. Under a wide
variety of conditions, it is shown that in order to maximize the expected discounted value of objects discovered
in a fixed and infinite number of inspection periods, the myopic rule of selecting the cell at each stage which
has largest expected value of objects is optimal.

We prove this in the first part of the paper when objects are binomially distributed in each cell and
later in the second part show that the myopic rule is optimal for a wide variety of distributions using the
same proofs presented in the first part of the paper.

AMS(MOS) subject classifications. 62L99, 68E05, 68E10

1. Introduction. The problem of searching for a single object in a number of cells
has been discussed extensively in the literature. (See Chew, Black, Blackwell, Matula,
Kadane, and DeGroot.) Enslow has even compiled a bibliography on the research
which has some of its roots in the work by Bellman. Some of the aspects considered
have been various costs for searching the cells and overlook probabilities for finding
objects in attempting to find an optimal procedure to minimize the expected cost of
finding the object. These aspects are included in the beginning portion of the paper
with Theorem 1 and used to motivate the generalizations in the latter portions.

Theorem 1 is new in the sense that a multiple number of objects may be in the
cells whereas the literature previously cited deals with the search for a single object.
Another paper by Kimeldorf and Smith deals with an optimal search procedure for a
random number of multinomially hidden objects, but by assuming the number of
objects in a cell to be distributed independently of those in another cell the present
paper develops an allocation rule under wider conditions of cost and overlook consider-
ations. To do this, the present paper uses the techniques of dynamic programming to
develop a simple rule for searching through the cells in a fixed number of periods.

Of mathematical interest is the way stochastic dynamic programming is applied
to problems of this type with a fixed number of searches and the generalization to the
case involving an infinite number of search periods. The results are of such a general
nature that they may be construed as the theoretical justification for employing the
myopic rule of sequentially selecting the most valuable cell in each search period.

2. Discrete search for a multiple number of objects. Consider the model for
discrete search where there are a multiple number of objects distributed among G
cells and discrete time period inspections of the cells conducted to discover and remove
objects. Specifically, let Xi represent the random variable corresponding to the number
of objects in cell i, i= 1,..., G. Initially, let Xi, i= 1,..., G be independently
distributed such that Xi has a binomial distribution with parameters N and s. Here
the N and s are known. We also have known overlook probabilities p associated

* Received by the editors July 6, 1983 and in revised form February 8, 1984. This work was presented
at the SIAM Second Conference on the Applications of Discrete Mathematics held at Massachusetts Institute
of Technology, Cambridge, Massachusetts, June 27-29, 1983.

" Robert Morris College, Pittsburgh, Pennsylvania 15219.
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with each cell such that

Pr (overlooking exactly k objects in cell bi objects in cell i)

Given the above condition, the number of objects remaining in cell after rn
searches of cell is distributed as a binomial with parameters Ni- d,, and i where
d,, is the number of objects found in the m searches of cell and s"= Tl’(si). Here
T" is the ruth-fold composition of the operator T, where T(x)= pix/1 +px-x.

To prove this last statement, let B be the random variable denoting the number
of objects left behind after the first search and let A be the random variable denoting
the number found in the first search. We have

( N ) k+j Si-(k+j)(k+j)pk(l__p)Pr(B=klA=j)=c
k+j

s. (1-si)
k

where c 1/Pr (A =j), which does not involve k. Now

k + ] k 1 + sip- s 1

where c’ is a constant not involving k. This latter expression is proportional to the
probability that a binomial random variable with parameters N-j and sp/1 + sip- s
is equal to k. Therefore, distribution of B given A is binomial with these parameters.
By using the above argument inductively on the number of searches of cell i, it is easy
to see that if we continue to search cell i, there is a binomial distribution for the
remaining objects whose parameters are N-d, and T")(si).

In addition to the above assumptions for the model, there is a cost ci associated
with each search of cell and a value V for each object found in cell i. We are going
to search through the cells in n stages in order to maximize the expected discounted
net value, E(__1/3v). Here v is a random variable defined to be v =fVl-Ct if we
find f objects in cell which we have chosen in the ith search. The/3i are discount
factors such that

Now all search strategies through the cells in n stages may be viewed as sequential
decision procedures. If the system is in state Xi (a vector of binomial random variables
as discussed above) at the ith stage, a procedure designates which cell is to be searched
at the ith stage as a function of the system at the ith stage. The state of the system is
completely described by the vector of random variables which represent the distribution
for the undiscovered objects in the system.

THEOREM 1. The optimal policy for the above model selects the cell with the highest
expected net value of objects available at each stage. That is, the optimal rule is the
myopic rule.

Proof. We are going to use backward induction, from stage n, describing the
optimal strategy and eliminating all search procedures which do not fit the optimal
policy. Any procedure which at the nth stage selects a cell which does not have the
highest expected net value cannot be optimal since we can replace this procedure with
one which selects, at stage n, a cell which has highest expected net value and get a
policy which has a higher E(i= ivi).

Now we are ready for the induction step. It is assumed that at the (i + 1)st stage
only procedures which, given state vector X(/I) select a cell which has highest expected
net value can be considered optimal. We intend to show that a procedure from this
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collection which at the ith stage with state vector Xi selects a cell which does not have
highest expected net value cannot be optimal.

Suppose we have just such a procedure and that at stage with state vector Xi it
selects a cell that does not belong to the subset B of cells b which attain the highest
expected net value at this stage. By the induction hypothesis, the procedure must select
a cell from B at the (i + 1)st stage--no matter what we find in amsince these same
cells will again have highest expected net value for the stage vector X+I. Suppose the
procedure has followed the strategy tr which has led to the state vector Xi and that
after a cell in B is selected at the (i+ 1)st stage the procedure continues with policy

on the remaining state vectors until the nth stage. We now examine an expression
for the expected net worth of the procedure {tr, a, b, } which is defined to be the
strategy which follows tr, then selects cell a at stage i, then selects cell b at stage + 1,
and then continues with policy for the remaining stages, where tr, a, b, and are
as given above.

To do this, we will employ the following notation. Let Xr be the random variable
designating the number of undiscovered objects in cell r after having followed tr to
the ith stage for r= a, b,..., G. We have Xa-" Bin (N, s) (i.e. Xa is a random
variable distributed binomially with parametersN and s’) where N’ equals Na minus
the number of objects found in cell a during tr and s sk) where k is the number
of times cell a was investigated during tr. Let at be the probability of finding f objects
in cell a at stage i, X (f)" Bin (N-f, Sak+l)). Let W, denote the expected net worth
already gotten from tr. Then, if /’,,,b,a.(Xi) is the expected net worth of the procedure
under investigation and Wb,a, the expected net worth of its argument under the
procedure {b, } we have:

t,,,.(x,) ,,,.(x, x,..., x)

Y’. aI (i(fVa (’a) "1" ]4/’[b,}(Xa(f), Xb,""", XG)) +

Now let bg denote the probability of finding g objects in cell b at stage i+ 1, Xb(g)
Bin (Nd-g, sbk’/l)), where k’ is the number of times cell b is visited during tr, and
let W, be the expected net worth of its argument under the procedure . We may
expand the above expression and get:

N N
+ E Y’. a[bglg’’a(Xa(f),Xb(g), ,XG)+
f=O g=O

Now we are going to construct another procedure, not necessarily optimal itself,
but one with higher expected net worth than {r, a, b, }. Suppose that applies a
certain policy to the state vector (X(f),Xb(g),’’’ ,XG) at the (i+2)nd step. We
construct a new procedure ’ which applies that same policy to the same state vector
which has now resulted from the procedure {tr, b, a}. We now investigate the expected
net worth of {tr, b, a, ’}.

We have:
N N

{-,b,a,’}(Xa, Xb, XG) E bg(fli(gWb b)) + Z af(fli+l(fWa- a))
g=0 f=0

N N
+ E E bgar’,i(X(f),Xb(g),... ,Xa)+.
g=O f=O
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If we take {tr,b,a,..qa,}- c{tr,a,b,Oa}, the /g-terms cancel out because
W.,(Xa(f),Xb(g)," ,X) W.(Xa(f),Xb(g)," G). Hence t,,,b,,,’--
f’,,a,b,9" > 0 since N(1 Pb) S’ Vb Cgb > N’(1 p) s’j V CCa and therefore
tr, a, b, 9 is not optimal. By the induction hypothesis, then, a procedure which at some
stage does not select the cell which has highest expected net value is not optimal. Since
the only procedure left for consideration is the procedure r, which selects at each
stage the cell with highest expected net value, it must be optimal.

We now let n
THEOREM 2. Under the conditions of Theorem 1, if , i= < oo then the procedure

tr’,, which selects a cell with largest expected net value maximizes E(=I flv).
Proof. Again the proof is by contradiction. Since the expectations are finite,

suppose that there exists a procedure tr’ not the same as tr’,n such that

for some e > 0. Now since ; fli is convergent and since the v have bounded
expectation, we know there exists an n such that for all e S’ where S’ is the set of
all infinite stage sequential decision procedures,

Er ( i=l ivi) E,r ( il ivi) E

for any e > 0. By the choice of n,

E,r’ ( i= fliVi) E,r’ ( i= fliVi )
and

Er;,,( i=l iI)i) Er’( il iVi)

E

E

Hence, E,,,(__1/3N) > E;,(Y__/3ivy) which is a contradiction to the optimality of
choosing the cell with highest net value for the n stage system. Hence r optimizes
E Ei=I #iVi) in

3. A subcase and generalization of the model. As a special case of this model,
consider the instance where N 1 for 1,. , G. That is, there is at most one object
per cell. In order to associate these results with the Fermi-Dirac distribution described
in Theorem 1, the joint distribution for the number of objects in each of the cells must
be equal to the product of the marginal distributions for the number of objects in each
cell. Under these conditions, the only possible distribution for the total number of
objects in the model of Theorem 1 is Bin (G, P0) for some P0.

To see this first note that if the total number of objects in the system has a binomial
distribution, Bin (G, P0), it can be represented as the sum of G independent Bernoulli
random variables with parameter P0, one for each cell. Thus we satisfy the condition
that the joint distribution for the number of objects in each of the cells must be equal
to the product of the marginal distributions for the number of objects in each cell.
Furthermore, for any fixed number of objects, any arrangement among the cells will
be equally likely, thus satisfying the Fermi-Dirac distribution criterion.

Conversely, suppose that the conditions of marginal independence for the number
of objects in each cell are satisfied with at most one object per cell. Then the distribution
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for the total number of objects in the cells must be the sum of G independent Bernoulli
random variables with cell having parameter Pi. However, the configurations
(1, 0, 0,..-, 0), (0, 1, 0,..., 0), , (0, 0,. , 1) must have the same probability by
the Fermi-Dirac- distribution. That is, Pl I-Ijl (1-pj) =p2 I-I,2 (1-p)
p3 I-I3 (1 -p]) Pk I-Ijk (1--p). Hence the parameters pi are equal and the total
number of objects in the system has a binomial distribution.

Noting the vital points in the proof of Theorems 1 and 2, we can make appropriate
generalizations of the model for these theorems and still arrive at the same conclusions.
Let X1,’",X be independent, discrete random variables. Let X represent the
number of objects in cell i. Let Xk) be a random variable representing the number
of objects remaining in cell after the kth search; 1,.. , G; k =0, 1,.... We use
the notation X)= X. Also we have functions f; i= 1,..., G. Here fi(Xk) is the
random variable representing the number of objects found in the (k + 1)st search of
cell i. We also have functions V, i= 1,. , G representing the value of objects found
in a search of cell i. We require-o3<E(Vi(fi(xk+l))))<=E(Vi(fi(Xk))))<oo for
i= 1, G and k 0, 1, 2,... In this model we wish to maximize E(Y"i=I flirt) in
a search through the cells in n stages where the/3 are discount factors as in Theorem
1 and v is a random variable denoting the value of objects found in the cell chosen
for the ith search. Under these conditions, the optimal policy is to choose at each
stage the cell with highest expected value.

The proof of this statement follows exactly the lines of Theorem 1 except that
now we have appropriately generalized the initial conditions and valuation functions.
Following the proof of Theorem 1 step by step, let Xa (f,) be the random variable for
the number of objects in cell a after finding f at stage i, Xb(g) be the random variable
for the number of objects in cell b after finding g at stage i+ 1, and .,’ be the random
variable for the number of objects in cell j a or b at stage i. We have:

{tr,a,b,9} al,iEV,(f)]+ bgfl,+l[Vb(g)]
f e,

Similarly, we have

t’{tr,b,a,,,}-- E bg[3i[Vb(g)]-[- E affli+l[Va(f)]

+X ., b,aflC’,, b g ff f ff +

Thus Wt,,.b.,,,a,’)-- {tr,a,b,..,} ) 0 since E(Vb(fb(ffb))) > E( V(f(.,,))). This last
inequality turns out to be the optimal rule. Hence the myopic rule is optimal for this
generalization.

Furthermore, if we assume that there exists a number M such that for all and
k [E(Vi(fi(xk))))[<=M <c3; and if Ei=I i <O0, then the myopic rule holds in the
limit as the number of steps n approaches infinity. The proof of this follows exactly
the lines of Theorem 2. Hence with the restriction of bounded expected values, we
have an analogue of Theorem 2 for this generalization of Theorem 1.
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SOLUTION OF THE DISCRETE LYAPUNOV EQUATION*

SHEAU-WEI FU" AND MAHMOUD E. SAWAN

Abstract. The lower bounds for the geometric means of the eigenvalues of the positive definite solution
to the discrete Lyapunov equation are investigated. The results obtained by different methods are compared
in search of an optimal value.

1. Introduction. The numerical solutions to the discrete Lyapunov matrix
equation are frequently needed in the control system design and analysis. The computa-
tion involves the proper selection of an initial guess of the solution matrix to assure
the convergence of the solution. For large scale real-time system application, it is
particularly important to know a proper initial guess of the solution matrix that provides
fast convergence. Thus an estimate of the size of the solution matrix will be useful. In
this paper we try to establish the optimal lower bounds of the geometric means of the
eigenvalues of the positive definite solution to the discrete Lyapunov matrix equation.
The proof of Theorem 1 was presented by Tran and Sawan [4] and the proofs of
Theorem 2 and Theorem 3 were presented by Mori and Fukuma [5].

In the following, the notations x, Ai(X), tr (X), Ixl and p(X) denote the transpose,
eigenvalue, trace, determinant and spectral radius of the matrix x, respectively. The
discrete Lyapunov equation is given as

(1) p=ATpA+Q, O--" oT> 0,

where A, P, O R"" and > denotes positive definiteness.
Assuming p(A)< 1, i.e. the matrix A is stable, the solution P pT> 0 uniquely

exists. The geometric mean of the eigenvalues of P is defined as

rng(P) a= hi(P) IPI ’/.
i=

For our later derivation, we will make use of the following results [1, p. 70], [2,
p. 225], [3].

(i) For matrices L and H, L > 0, L, H e Rnn

(2) tr (L-HLHT) >- [h,(H)I -> l[(tr (H))]e.
i=1 n

(ii) For matrices X and Y, X X> 0 and Y yT> 0, X, Y Rn"

(3) IXl 1/ min
tr (XY)

Iyl=l n

(4) IX + YI/ >= IXl1/ +IYI/ (Minkowski inequality for determinants),

(5) Ix+ YI->-Ixl +IYI.
2. Inequalities satisfied by matrix P.
THFORF.M 1. The solution matrix P to (1) satisfies the following inequality:

(6) m(P)>-
nmg(O)

n-E=llX(A)I
g0(A)< 1
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Proof. The proof of this theorem follows (2) and (3) by letting L P, H AT,
X p-1 and Y Q/IQI/" [4].

Premultiplying (1) by p-1 and computing the traces of both sides yields

(7) tr (p-1Q) n-tr (p-1ATpA),

(8)

From (7) and (8)

tr (P-’ATpA) >= I;t,(AT)I= E I;t,(A)l.
i=1 i=1

(9) tr (p-1Q) <= n IX,(A)I 2.
i=1

From (3)

(ao) IP-’l’/" <

Hence

tr (p-1 Q)
<
n -Yi=l la(A)l

nlQill, nlQlll,

ms(p ipi1/. >_ nmg(Q)
n-E" la,(A)l2" Q.E.D.

i=1

THEOREM 2. The solution matrix to (1) satisfies the following inequality:

ms(Q)(11) m,(e)>- /fp(A) < 1.
1- m2(A)g

Proof. The proof of this theorem follows the inequality (4) by letting X ATpA,
Y Q [5].

(12) IPI ’/ IATpA + QI 1/" >= IPI1/"IAI/" +1OI ’/".

Since IAI2/n < 1 because of the assumption p(A)< 1,

ms(Q)ms(P) IPI ’/ -->
2 Q.E.D.

1-ms(A)
THEOREM 3; The solution matrix P to (1) satisfies the following inequality:

ms(Q)(13) ms(P) >=
(1- mn(A)) 1/" ifp(A) < 1.

Proof. The proof of this theorem follows the inequality (5) by letting X -ATpA,
Y=Q [5].

(14) IPI IATpA + Q[ >= IP11312 +1OI.
Since IAI2 < 1 because of the assumption p(A) < 1,

IolIel--> I_IAI=
which yields (13). Q.E.D.

3. Comparison ot results. Our purpose is to determine the optimal (maximum)
lower bounds of the geometric mean of the eigenvalues of matrix P. A comparison of
the lower bounds in (6), (11) and (13) is given below.
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For n positive numbers, the arithmetic mean is always greater than or equal to
the geometric mean; thus

(15)
1

iA(A)l__> iA(A)l [h(A)l
F/ i=1 i=1 i=1

Since ,o(A) < 1,

(16)
1

IAi(A)I2 < 1
/’/ i=1

and

(17) leI Ih(A)l < 1.
i=1

After simple manipulation (15), (16) and (17) yield

(18)

(19)

1 1

1-1In in=l IA,(A)I2-- 1- (I-ILl A,(A))z/’’

nrng(Q) > me,(Q
n-E,=l ]hi(A)[ 2 1-(I-Ii=l hi(A))2/"’

which shows that the lower bound given in (6) is superior to that given in (11). From
(17) it can be shown that

(20) fi IAi(A)I fi IAi(A)I
i=1 i=1

and

(21) 1

From (19) and (21)

<1- /2(a) <- 1 A,(A)
i=1 i=1

(22)

Hence

nrng( O) > mg( O) > rag(Q)
n-Zi=l la,(n)l2 1-[I-Ii=l Ai(A)]2/n (1-I-Ii=l A2(A)) /’’

nmg(O) > rng(O)
2n 1/nn-Yi= ]Ai(A)I2 (l-rag (A))

which shows that the lower bound given in (6) is superior to that given in (13).

4. Conclusion. The inequality (6) provides a good estimate of the size of the
solution matrix P to the discrete Lyapunov equation. We have proved that the lower
bound given in (6) is superior to the lower bounds given in (11) and (13). However,
the computation of the eigenvalues of matrix A generally requires more effort than
the computation of the determinant of matrix A. For practical applications, if the
eigenvalues of matrix A can be computed without much difficulty or if matrix A will
be used repeatedly in (1) to solve for different matrix P, inequality (6) can be used
to estimate an initial guess of the solution matrix to yield fast convergence. Otherwise,
inequality (11), which yields lower bounds that are superior to inequality (13), can
still be used to estimate the initial guess of the solution matrix. The additional
computational time due to inferior initial guess may be offset by the ease of computing
the determinant.



344 SHEAU-WEI FU AND MAHMOUD E. SAWAN

REFERENCES

[1] E. F. BECHENBACH AND R. BELLMAN, Inequalities, Springer-Verlag, Berlin, 1965.
[2] R. V. PATEL AND M. TODA, Modeling error analysis of stationary linear discrete-time filters, NASA

Ames Research Center, Mottett Field, CA, TM X-73, Feb. 1977.
[3] M. MARCUS AND H. MINC, A Survey ofMatrix Theory and Inequalities, Allyn and Bacon, Boston, 1964.
[4] M. T. TRAN AND M. E. SAWAN, On the discrete Lyapunov and Riccati matrix equations, Pi Mu Epsilon

J., 8 (1983), pp. 574-581.
[5] T. MORI, N. FUKUMA AND M. KUWAHARA, On the discrete Lyapunov matrix equation, IEEE Trans.

Automat. Contr., AC-27 (1982), pp. 463-464.



SIAM J. ALG. DISC. METH.
Vol. 6, No. 3, July 1985

(C) 1985 Society for Industrial and Applied Mathematics
001

COVERING MULTIGRAPHS BY SIMPLE CIRCUITS*

N. ALON AND M. TARSI"

Abstract. Answering a question raised in [SIAM J. Comput., 10 (1981), pp. 746-750], we show that
every bridgeless multigraph with v vertices and e edges can be covered by simple circuits whose total length
is at most min (e, e+v-). Our proof supplies an efficient algorithm for finding such a cover.

Key words, bridgeless multigraphs, Eulerian subgraphs, graph algorithms, nowhere-zero flow

AMS (MOS) subject classification. 05

1. The main results. Let G (V, E) be an undirected bridgeless multigraph (i.e.,
a multigraph with no isthmus) and put v vI, e IEI, m family C1, , C, of simple
circuits (=cycles) in G is a cover of G if every edge of G is in at least one of the
circuits (2-cycles are allowed if they contain different edges of G). The size of such a

cover is the sum of the lengths of the circuits C1," ", C,. We are interested in the
problem of finding covers of minimum size.

Itai, Lipton, Papadimitriou and Rodeh considered this problem in [ILPR]. Their
main result is that every bridgeless multigraph G with v >= 2 vertices and e >= 4 edges
has a cover of size at most

min (3e-6, e+6v-7),

and that such a cover can be found in O(e + v2) time. (Note that since G is a multigraph,
it is possible that e >> v-.) This improves a result of Itai and Rodeh in [IR].

The authors of [ILPR] ask if the multiplicative constants in their bound can be
improved. In 5 we settle this question in the affirmative by proving the following.

THEOREM 5.1. Every bridgeless multigraph G with v vertices and e edges has a cover

of size at most

min e+v ).
Such a cover can be found in polynomial time.

For planar multigraphs we have a better (and, in a sense, best possible) result:
TIJEOREM 4.2. Every bridgeless planar multigraph with v vertices and e edges has

a cover of size at most

min (e, e +v -35-).

For a bridgeless multigraph G, let s(G) denote the minimum size of a cover of
G. One can easily show that if G is cubic then s(G) >=-e. Therefore, Theorem 4.2 gives

4the best possible upper bound for every cubic planar multigraph. In fact, s(G)= e
for every cubic planar multigraph G.

One can also show (see [ILPR]) that if P is the Petersen graph (with 15 edges),
then s(G)= 21. This implies that if G is a graph obtained by substituting a path of
length k for every edge of P, then s( G)/ e( G) 7/ 5, where e(G) 15k is the number
of edges of G. Therefore, the coefficient in Theorem 5.1 cannot be replaced by any
constant smaller than .
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In order to prove our results we use some known results about nowhere-zero flows
in multigraphs. In the next section we state these results. In 3 we develop a general
method of constructing covers of small size from covers by Eulerian subgraphs. In 4
we combine this method with the fact that every bridgeless multigraph has a nowhere-
zero 8-flow and obtain a slightly weaker version ofTheorem 5.1. We also prove Theorem
4.2 in this section. In 5 we finally use nowhere-zero 6-flow to prove Theorem 5.1.

During the completion of this manuscript we were notified that our main result
(Theorem 5.1) was recently proved independently by Bermond, Jackson and Jaeger
[BJJ], with a different method.

2. Nowhere-zero flows. If G (V, E) is a directed multigraph and v V, then
A/(v) is the set of nonloop edges with tail v and A-(v) the set with head v. If K is
any Abelian group (with additive notation), a K-flow in G is a function f: E - K such
that for every v V,

{f(e)" eeA+(v)}=. {f(e): eA-(v)}.

If f(e) 0 for all e E, f is called a nowhere-zero K-flow. For k > l, f is called a
nowhere-zero k-flow in G if f is a nowhere-zero Z-flow in G such that -k <f(e)< k
for all e E. (Here Z denotes the set of all integers.)

It is easy to see that if G has a nowhere-zero k-flow (K-flow) under some
orientation of its edges, then it has one under every orientation, and thus the existence
of such a flow depends only on the underlying undirected multigraph.

Tutte [Tu] conjectured that every bridgeless multigraph has a nowhere-zero 5-flow.
Jaeger [J ], [J2] proved:

PROPOSITION 2.1 (Jaeger). Every bridgeless multigraph has a nowhere-zero 8-flow.
Seymour [Se] improved this result by showing:
PROPOSITION 2.2 (Seymour). Every bridgeless multigraph has a nowhere-zero 6-flow.
An Eulerian multigraph is a multigraph (not necessarily connected) in which every

vertex has an even degree. Equivalently, as is well known, an Eulerian multigraph is
an edge disjoint union of cycles. Thus the problem of covering a multigraph by a
family of cycles of minimum total size is equivalent to that of covering the multigraph
by a family of Eulerian subgraphs of minimum total size. The existence of nowhere-zero
flows in a multigraph is closely related to the minimum number of Eulerian subgraphs
that cover it. This is shown in the following known results.

PROPOSITION 2.3 (Jaeger [J2]). Let (3 be a bridgeless multigraph. The following
conditions are equivalent for every k >-_ 2"

(i) There exists a nowhere-zero Zk-flOW in G.
(ii) For every Abelien group K of order k there exists a nowhere-zero K-flow in (3.

(iii) There exists a nowhere-zero k-flow in G.
PROPOSITION 2.4 (Mathews [Ma]). Let G be a bridgeless multigraph. For every

k >= 1, G can be covered by k Eulerian subgraphs iff it has a nowhere-zero Z2k-flow.
In 4, 5, we combine Propositions 2.1-2.4 in order to obtain for every bridgeless

multigraph (3 a cover by Eulerian subgraphs. From this cover we obtain a cover of
small size of (3 using the method we develop in 3.

Our results showing the connection between nowhere-zero flows and short cycle
covers are summarized in Table 1.

3. Generating covers of small size from covers by Eulerian sulgraphs. Our main
result in this section is the following:

PROPOSI’rION 3.1. Let G=(V,E) be a bridgeless multigraph, and let C=
C1, C2," ", Ck) be a given cover of G by k Eulerian subgraphs. Then there exists a
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TABLE

If G= (V, E) has a
nowhere-zero k-flow

for k=

then G has a cycle
cover of length at

most:

2 IEI
4 lEI
6 lEI
8 lEI

cover of G of size at most

k.2k-’.[E[(3.1) s= 2k_l

Such a cover can be found in o<2 =lEI) time.

Proof. Identify each Ci with the corresponding element of the cycle space of G,
i.e., with the characteristic function of C,, regarded as a function from E to GF(2).
For every binary vector u (u,, u2, Uk) define C(u) =(k uiC,. (Here ( denotesi=1

the sum over GF(2).) Obviously C(u) is an Eulerian subgraph of G. For every edge
f E, let v(f)= (v, , Vk) be a binary vector in which v, ittf C,. One can easily

kcheck that for every vector u (u,... Uk), f C(u) itt (v(f), u) ={)= vu, 1. This
implies the following"

Fact 1. For every edgef E, the number ofvectors u such thatf C(u) is precisely
2k-I"

Let u u2 u(k) be a basis of (GF(2))k If f E then v(f)SO, and thus
(v(f), u) 0 (i..e., f C(u’)), for at least one index _<- _-< k. Therefore"

Fact 2. For every basis u1, u2, uk of (GF(2)) k, C(u), C(uk) is a
cover of G by Eulerian subgraphs.

Let B be the set of all bases of (GF(2)) k, and put b IBI. By Fact 2, every element
of B induces a cover of G. We now compute the sum of the sizes of these b covers.
By symmetry, every nonzero vector u (GF(2)) k belongs to exactly b. k/(2k- l) bases.
Combining this with Fact l, we conclude that every edge f E is covered precisely
(b" k/(2k- 1))" 2k- times by the collection of all the b covers associated with the
elements of B. Therefore the sum of sizes of these covers is b. k. 2k-. IEI/(2k- 1),
and the average size is just the number s given in (3.1). Thus, there exists a cover of
G corresponding to an element of B of size at most s. This establishes the first part
of Proposition 3.1. The time bound follows from the fact that

k-

1-I (2k 2’) < 2k. llb g.’ ,=o =K,
Next we prove the following proposition, which is an improvement of [ILPR,

Cor. 1]. (There is a misprint in this corollary. IEI/ x<lvl, 21vi-2) should read IEI+
21 vl- 2 + s(I El, 21 vl- 2).)

PROPOSITION 3.2. Suppose that one can find in time O(e2) a cover of size
<=d. e(d > 1) for any bridgeless multigraph G with v vertices and e edges. Then we can

find a cover of size -<min (de, e+(2d-1)(v-1)) in time O(e+v2).
In order to prove Proposition 3.2 we need the following result of [ILPR]:
LEMMA 3.3. (i) Let T=(V, Er) be a spanning tree of a multigraph G=(V, E).

Then there exists an Eulerian subgraph C (V, Ec) of G with Ec
_
E- Er. C can be

found in O([EI) time.
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(ii) Let T (V, ET) be a spanning tree of a bridgeless multigraph G. Then there
exists a bridgeless subgraph H V, EH) of G such that EH

_
ET and IE.I <- 21 wl- 2.

Such T, H can be found in O(IEI) time.

Proof of Proposition 3.2. Let G (V, E) be a bridgeless multigraph. Put v wl
and e= IE]. If de<= e+(2d-1)(v-1), then e O(v) and there is nothing to show.
Otherwise we argue as follows. Clearly we may assume that G is connected" otherwise
apply the theorem to each of its connected components. Let T V, ET) be a spanning
DIS tree of G. By Lemma 3.3(ii), there exists a bridgeless subgraph H =(V, EH) of
G such that EH_ET and IEHI<--_2v--2. Define (= (V,/) where ff,--E-(EH-ET).
Clearly T is a spanning tree of G. By Lemma 3.3(i), there exists an Eulerian subgraph
C V, Ec) of G with Ec

_
E E-. By assumption there exists a cover of H of size at

most dlE.I. This cover together with C forms a cover of G of size at most

dlE.I + IE-I dlE.I + I/ 1- dlEHI + IEI IE.I + lEvi
e+(d-1)IEHI / v-1--< e+(d- 1)(2v-2)+ v-l= e+ (2d-1)(v- ).

T, H and C can be found in O(e) time. The cover of H can be found in
O(IEHI2) O(v2) time. Therefore, the total time bound is O(e+ v2). This completes
the proof of Proposition 3.2. [q

4. Consequences of nowhere-zero 8-flow and nowhere-zero 4-ttow. Combining Propo-
sition 2.1 with Propositions 2.3 and 2.4, one can easily deduce the following result of
Jaeger [J2]. His result appears also in [Ma]. The proof in [ILPR] supplies the algorithms
and the time bound.

LEMMA 4.1. Every bridgeless multigraph with e edges can be covered by three Eulerian
subgraphs. These subgraphs can be found in O( e2) time.

Combining this lemma with Proposition 3.1 (with k 3) and Proposition 3.2, we
obtain the following weaker version of Theorem 5.1"

Every bridgeless multigraph G with v vertices and e edges has a cover of size at
most

min (e, e+v--).

Such a cover can be found in O(e + v2) time.
The following result [Ma] (see also J2]) is equivalent to the four color theorem:
Every planar bridgeless multigraph can be covered by two Eulerian subgraphs.
Combining this with Proposition 3.1 with k 2 and Proposition 3.2, we obtain:
THEOREM 4.2. Every bridgeless planar multigraph with v vertices and e edges has

a cover of size at most

min (e, e +-v -).
Similarly, Jaeger’s result [J2] that every 4-edge-connected multigraph has a

nowhere-zero 4-flow implies:
THEOREM 4.3. Every 4-edge-connected multigraph with v vertices and e edges has

a cover of size at most

min (e, e +v ).

Such a cover can be found in O(e + v2) time.

5. A consequence of nowhere-zero 6-flow. In this section we prove our main result.
THEOREM 5.1. Every bridgeless multigraph G with v vertices and e edges has a cover
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of size at most

min (e, e+7v-7).
Such a cover can be found in polynomial time.

5Proof. By Proposition 3.2 it is enough to show that G has a cover of size =e.
Let G1 V, E) be an orientation of G. By Propositions 2.2 and 2.3, Gl has a nowhere-
zero Z2 Z3-flow fi, i.e., for every e E, fl(e) {(1, 0), (1, 1), (1, 2), (0, 1), (0,2)}. For
any K-flow f and g K define

Put

E(f,g)={eE’f(e)=g}.

E E(fi, (1, 0)) E(f, (1, 1)) [.J E(fl, (1,2)).

Clearly E is an Eulerian subgraph of G. Let G2 be an orientation of G in which E
is a directed Eulerian circuit, and let f2 be the Zz Z3-flow obtained from fi by defining
fi(e) =fl(e) if the directions of e in G and G2 coincide, and f2(e)-- -fi(e) otherwise.
Clearly there exists an i, 0_-< <_-2, such that

IE(A, (1, i))I_->IEll- (IE(A, (1, 0))l + IE(fi, (1, 1))l + IE(A, (1,2))1).

Let f3 be the flow obtained from fi by letting f3(e)=fi(e) if e f:E and f3(e)=
fi(e) (0, i) if e e E. Obviously

(5.1) IE(f3, (1, 0))l I(f2, (1, i))[_-> 1,1.

Put ]3 ] (/3, l, 0)), ]2 ]\]3" The second coordinate off3 is a nowhere-zero Z3-flow
in E2. By Proposition 2.3 there exists a nowhere-zero 3-flow in E2, which is, of course,
also a 4-flow. By Proposition 2.3, E2 has a Z4-flow, and by Proposition 2.4, Ez can be
covered by two Eulerian subgraphs C and C3. By Proposition 3.1 with k 2, E2 has
a cover C of size at most [E21--(IE[-IE3[), In order to obtain a cover of G, we add
to C an Eulerian subgraph D of G that contains E3. There are four possibilities to
such a subgraph: El, E@ C2, El C3 and E C2@ C3. Let D be that of smallest size.
One can easily check that

[El + [El ( C21 nt-IEI ( C31 + IEI @ C2( C31 41E31 / 2(11- IE31) 2(IEI + [E31).
Therefore

Since IDI -< Ill, (5.1) implies

IDIIEI+IE3I.2

IE3I1/21D[.
C together with D is a cover of G of size at most

IDI+IEI-IE3I =1ol-IE31+IDI-IEI+IEI
<-- IDI- IE31/ IEI <- IEI/ IE3I- IE31/ IEI- IEI.

This establishes the existence of the desired cover.
We now briefly sketch an evaluation of the complexity of the construction. The

constructions which are explicitly described in the proof can clearly be executed in
O(e2) time.
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However, the proof uses the following two existence theorems:
1. the existence of a nowhere-zero Z2 Z3 flow for every bridgeless multigraph;
2. the fact that one can obtain a (Z2)2 nowhere-zero flow from a given Z3

nowhere-zero flow.
In [Yo] Younger shows that the needed Z2 Z3 flow can be formed in O(v. e)

time. Statement 2 can be settled by means of maximal matching algorithms, and thus
the time complexity certainly does not exceed O(e2). Thus the total time bound is at
most O(e2), which can be reduced, by Proposition 3.2, to O(e + v2). []
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CONVEX SETS OF HERMITIAN MATRICES WITH
CONSTANT INERTIA*

CHARLES R. JOHNSON," AND LEIBA RODMAN:

Abstract. For n-by-n Hermitian matrices A, , A,, the situation in which all matrices in the convex
hull of A, , A, have the same inertia is studied. It is shown, for example, that if m 2 or n --2 and
the matrices are nonsingular, then they are simultaneously congruent to matrices of a special form in which
the upper left principal submatrix is positive definite and its complementary principal submatrix is negative
definite. The singular case is also studied, and the nonsingular case for rn > 2, n > 2 remains open.

AMS(MOS) subject classifications. 15-A21, 15-A57, 15-A63

1. Introduction For an n-by-n Hermitian matrix A, the inertia of A is the triple

i(A) i+(A), i_(A), io(A)),

in which i+(A) (respectively, i_(A), io(A)) is the number of positive (respectively,
negative, zero) eigenvalues of A, counting multiplicities. It is straightforward, for
example using the interlacing inequalities, to make the following observation.

Observation (1). If A is a principal submatrix of the n-by-n Hermitian matrix A,
then

i+(A) >-_ i/(,) and i_(A) >= i_(,).
It follows directly from (1) that if A has a k-by-k positive definite principal

submatrix, then i+(A)>= k. In some cases the inertia of the n-by-n Hermitian matrix
A may be fully determined by such observations. For example, it also follows from
(1) that if A may be partitioned as

(2)
AI1 AI2 AI31A A*2 A2 A23
A*3 A*3 A33

in which Ajj is kj-by-kj (j= 1,2,3; k+k_+k3 n), so that A is positive definite,
is negative definite and A3 =0, j 1, 2, 3, then clearly,

i(A)=(k,,kE, k3).

(If k 0, the blocks involving the index j are, of course, empty.) We call an Hermitian
matrix inertia explicit if it can be partitioned as in (2).

Two n-by-n matrices A, B are said to be congruent if there is a nonsingular
n-by-n matrix C such that B C*AC. Since convex combinations of inertia explicit
(Hermitian) matrices (same k, k2, k3) are inertia explicit, and since congruence pre-
serves inertia of Hermitian matrices, we may make a second observation which moti-
vates the current study.

Observation (3). Suppose that A, A2,... A, are n-by-n Hermitian matrices,
i(Aj)--(k, k2, ka),j l,’’’, m, and suppose that there is a nonsingular, n-by-n matrix
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C such that

C*AjC is inertia explicit, j 1,’. ", m.

Then every convex combination

aA+...+a,,A,,,, aj=l, aj>-0, j=l,...,m
j=l

of the Aj has the same inertia (k, k2, k3). In the situation of (3), we say that A,. ,
are simultaneously inertia explicit.

For an Hermitian matrix A, put

S+(A) {x F"lx*Ax > 0}, SV_(A) {x F"lx*Ax < 0},

where F =C or F =. Also put S(A)= {x F"]x*Ax =0}. It is straightforward to
make the following observation.

Observation (4). Hermitian matrices A,. , A,, are simultaneously inertia explicit
if there exist subspaces M+, M_, Mo C" such that M+ -i- M_ -i- Mo C" and

M+/- = SC(Aj) U {0}, Mo S(Aj), j= 1,. .,
The converse holds if A1,"" ", A,, are nonsingular.

An analogous observation holds also for real symmetric matrices A,...,
which are simultaneously inertia explicit with a real congruence matrix (in this case
one has to replace C by in Observation (4)).

The conclusion of (3) is that matrices in the convex hull of simultaneously inertia
explicit matrices have constant inertia. Our goal here is to investigate the extent to
which the converse of Observation (3) holds. In particular, we show that if n 2, or if
m 2, and one of the components of inertia is zero, then the converse does hold. An
example shows that the restriction that one of the components of inertia be zero is, in
general-; necessary.

2. Main result; two matrices. In this section we present and demonstrate the extent
to which the converse of (3) holds in case m 2, with dimension, n, arbitrary.

THEOREM (5). Let A1 and A be n-by-n Hermitian matrices. Suppose that

(Sa) i(aA, +(1-a)A2)= i(A,), 0=<a--<_l

and that at least one of the numbers

i+(A,), i_(A,), io(A,)

is zero. Then A and A2 are simultaneously inertia explicit; i.e. there is a nonsingular
n-by-n matrix C such that C*AC and C*A2C are inertia explicit. Furthermore, in case
the matrices Al and A2 are real, then the matrix C can be chosen to be real as well

An example which indicates that (5) is not in general valid if all components of
i(A) are positive is the following.

Example (6). Let

AI--
0

and A2-- 0

0

Then i(A)=i(A2)=i(aA+(1-a)Az)=(1,1,1), 0<-a=<l. If there were a nonsin-
gular 3-by-3 matrix C with C*AC and C*AzC simultaneously inertia explicit, then
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the vector

would be orthogonal to the range of both A and A2. As these two ranges together
span all of C3, the only possibility for v is the zero vector, which contradicts the
required nonsingularity of C.

We make two further observations prior to demonstrating (5).
Observation (7). Let A, A2 be n-by-n Hermitian matrices with A nonsingular.

The following statements are then equivalent:
(a) i(aAl+(1-a)A2) is constant, 0-<_a-<l;
(b) det(aA+(1-a)A)O, O-<a_-<l;
(c) A-(A2 has no nonpositive real eigenvalues.
Proof Statement (a) implies (b) since det A 0, and (a) implies that det (aA1 +

(1-a)A) has the same sign as det A; multiplication of aA +(1-a)Az on the left
by A- implies det ((a/(1 a))I + A[A2) 0, 0-<_ a < 1, so that (b) implies (c). Con-
verses of both implications are similar.

So, in case io(A)= 0, the condition (Sa) in Theorem (5) can be replaced by either
of the conditions (Tb) or (7c).

In the case of m nonsingular Hermitian matrices A, A2,’’" Am, it is clear that
the obvious analogues of (7a) are equivalent. That is, all matrices in Co ({A, , A})
have the same inertia if and only if every matrix in Co ({A, , Am}) is nonsingular.
Here, Co(. denotes the (closed) convex hull of a set. Thus, study of convex sets of
Hermitian matrices with constant inertia includes the study of the structure of convex
sets of nonsingular Hermitian matrices. Observation (3), for example, implies that if
A,. ., A,, are nonsingular and simultaneously inertia explicit, then
Co ({A, ., A)) includes only nonsingular matrices.

Observation (8). For n-by-n positive semidefinite Hermitian matrices A, A2, the
following statements are equivalent:

(a) i(aA+(1-a)A2) is constant, 0=<a-<l;
and

(b) Ker A Ker A2.
Proof Straightforwardly, (b) implies (a). Conversely, assume (a) holds. Then, for

any x 0 in the orthogonal complement of Ker A1 f-) Ker A2, at least one of the numbers
X*AlX or x*A2x is positive, and then

x*(aA+(1-a)A2x>O, 0<a<l.

Since the inertia of aA+(1-a)A2 is the same as that of A, it follows that
dim (Ker A f-) Ker A2)- =< dim (Ker A)-. This means that Ker A Ker A2. Similarly,
Ker A2 Ker A, and (b) follows.

Note that (8) holds in the real case as well as in the complex case. (In the real
case, the matrices A and A2 are considered as linear transformations on ".)

For the proof of Theorem (5), we adopt the following notation. We denote by Pk,
the k-by-k "backward identity" permutation matrix,

0 0 .1

Pk--
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and by Qk, the k-by-k O, matrix with l’s only one stripe down from those in Pk,

The special matrix

hPk + Qk

is denoted by Jk(h); note that PkJk(h)= P-J(,) is just a basic Jordan block. The
k-by-k identity matrix is denoted by Ik, where it is helpful to specify the dimension.

Proof of Theorem (5). It suffices to consider two cases: (I) i_(A)=0; and (II)
io(A) =0. The remaining a priori case, i/(A)=0, is trivially equivalent to case I by
replacing Aj with -Aj, j 1, 2.

Consider the first case. By (8), Ker A1 Ker A2. If r=dim Ker Al, then we may
construct a nonsingular C so that the vectors Ce,_r+, , Ce, form a basis of Ker A1.
Here, ei is the ith vector in the standard basis, with a in the ith position and zeros
elsewhere. If A and A2 are real, then C can clearly be chosen to be real. In any event,
C*AC and C*A2C now have the necessary form.

Now consider the second case, which is equivalent to det (aA +(1- a)A): O,
0=< a _<- 1. (The sign ofdet (aA +(1 a)A2) is that of (--1) i-(A’) throughout the interval
0 =< a =< 1.) We employ a version of the canonical pairform for two Hermitian matrices,
see e.g., [2, Chap. S.5] or [4], [5]. There is a nonsingular matrix T such that

T*AiT= Ai" "Air, i= 1,2,

in which Ai is k-by-kj, j 1,
forms:

r, and the pair A, Aj has one of the following two

in which Im (h)< 0 (here k is, of course, even); or

(10) Al=ePk, e=+/-l, and A2=Jk(h),
in which , 0 is real. Evidently, via rearrangement with permutation congruence, it
suffices to consider A, Aj, given in the special form (9) or (10), in place of A and
Az. In so doing, we shall suppress the subscripts j. (Note that the product of blocks
in the canonical pair form, one from A- and one from A2, is just a basic Jordan
block, or pair of basic Jordan blocks, in the Jordan canonical form of A-IA2.)
Furthermore, since we may replace Az with/3Az,/3 > 0, without loss of generality, we
may suppose that I 1, in either (9) or (10), is arbitrarily large or small.

Consider first the situation in which (10) holds. Since det (aA+(1-a)A)O,
0-< a <= 1, it follows that h > 0 if e 1, and A < 0 if e 1. Suppose, for example, that
e and A > 0. Note that A is the only eigenvalue of AA2. Let

I,,/2 P,,/2] if n is even,
P./ -I./

0 if n is odd,

Pk 0 --IkA

n-1
k-

2

o J.()](9) A, Pk and Azj jk,/2() 0
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Thus, Sn S,* is an n-by-n matrix, as are A and A2. A computation then verifies that

0 -Iq P= q=n-p,

and

SnA2Sn 2hiIp 0 ] +s.L(o)s..o -I
For A > 0 sufficiently large (without loss of generality), both matrices S*,AiSn S,AiS,,
i- 1, 2, are inertia explicit, as was to be shown.

Consider, then, the situation in which (9) holds and the dimension n is even. Define

Ct [ Ik tPk ]Pk (-- Ik

in which k n/2 and is a real parameter. A computation then verifies that

and

C*’AC’=2t2[ Ik* --Ik* ]

C.A2C,=2t[(-Im(A)+tRe(A))Ik+1/2[([-iE]+[-iE]*)+t(E+E)] * ](Im(A)-t Re(A))Ik+1/2[([-iE]+[-iE]*)-t(E+ET)]

in which E PQ. Since Im (A) < 0, C*AjCt,j 1, 2, are inertia explicit for IAI sufficiently
large and > 0 sufficiently small. The corresponding choice of C, completes the proof
in the situation of (9).

We have proven (5) in case Al and A2 are complex Hermitian. We next suppose
that A and A2 are real symmetric and wish to show that the simultaneous congruence
can be achieved with a real matrix. The breakdown into cases is as before, and the
proof in case I has already been noted (exactly as before using the real version of (8)).

Assume then, case II, that det(aA+(1-a)A2)#O, 0<-a<= 1. The strategy is as
before using the real canonical pair form for two symmetric matrices (see, e.g. [1],
[3]), which is to the real Jordan canonical form as the (complex) canonical pair form
was to the (complex) Jordan canonical form. There is a real nonsingular matrix T
such that

T*AiT All@" "@ Ai, i= 1,2,

in which Ao is kj-by-k, j 1, , r and the pair Alj Az has one of the following two
forms:

(9’) Alj=Vkj and A:j= .X where E= [-z z]
12

with r real and z < 0 and k, of course, even; or (10), as before.
Again, it suffices to prove the theorem for pairs A, A2j of the form (9’) or (10),

and we suppress the subscripts j. Also, we may, without loss of generality, replace X
with a positive scalar mutiple of it. In case A, A2 is of the form (10), the proof is
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exactly as it was before, since the matrix Sn was real. In case of the form (9’), we now
use

Ct diag

if n/2 is even, in which there are n/4 blocks of the first kind and n/4 of the second
kind and is a real parameter, or

Ct=diag
-1 -1 c d

if n/2 is odd, in which there are (n-2)/4 blocks of the first kind, one [ db], and
(n -2)/4 blocks of the second kind and is a real parameter. In case n/2 is odd, [ db]
is chosen so that [ db]TE[ db] is of the form [ _] and u > 0 is as large as necessary.
As before, calculations again show that

C TtACt, 1, 2,

are inertia explicit for appropriate values of (trY+ ’)/, and u (in case n/2 is odd).
This completes the proof of Theorem (5). 71

3. The case of many matrices (m>-3). In the case of arbitrarily many (complex
Hermitian or real symmetric) n-by-n matrices A,..., A,, it is also clear, using (8),
that the converse of (3) holds if the constant inertia includes i/ 0 or i_ 0.

Observation (1 1). Suppose that A,..., A,, are n-by-n Hermitian matrices and
that ogjAj) (kl, k2, k3), Oj 0, j 1, , m and Y: a 1. If k 0 or if kz 0,
then A,..., A,, are simultaneously inertia explicit. Furthermore, if At,’", A,, are
real, the simultaneous congruence matrix may be taken to be real.

Proof Using (8) and appropriate convex coefficients, Ker (A,) Ker (A) for each
pair j, j2. Thus Ker (A) Ker (A) Ker (A,,), and the construction used in
the proof of (5) yields the desired result.

COROLLARY (12). Suppose that Al," ", A,, are n-by-n Hermitian matrices. If the
smallest (respectively, the largest) eigenvalue of= aA hmi (respectively, hmax) with
multiplicity k for all a >-O, ’= a l, then all the A, j- l,..., m, have a common
k-dimensional eigenspace corresponding to hm, (respectively, hmax)-

Proof This follows directly from Observation by replacing each A with A-
hminI (respectively, A- hmaxI), j 1,’" ", m.

The question of the converse of (3) remains open in general when the number m
of matrices A, , Am is greater than two, there is constant inertia in the convex hull
Co ({A,..., A,,}), and io(A)=0, j= 1,..., m. However, we are able to prove the
converse of (3) for 2-by-2 real matrices.

4. The case n 2 (2-1y-2 matrices). In this case we note that the converse of (3)
is also valid when n-2, m is arbitrary and A, A,... A,, are real.

THEOREM (13). Suppose that A,..., A, are real symmetric 2-by-2 matrices. If
i(_, ajA)=(k,,k,k3), , a= l, a>-O, j= l,. .,m, then A,,. .,Am are simul-
taneously inertia explicit.

In order to prove (13), it suffices, in view of (l 1), to suppose i(EaA)= (1, l, 0).
Now S+F, S_F and SoF are defined relative to F=. The vectors in S(A) are called
isotropic vectors for the real matrix A, and the one-dimensional subspaces of [n in
S(A) are called isotropic lines. We call S+(A) the "plus set" for A and S_(A) the
"minus set" for A.
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If A is a 2-by-2 real symmetric matrix, i(A)= (1, 1, 0), then R2 may be partitioned
as two isotropic lines for A with the plus and minus sets in between (see Fig. 1).

FIG.

In fact, the isotropic lines and the plus set determine A up to a positive scalar
multiple, so that there is a one-to-one correspondence between iostropic lines and plus
set pairs on the one hand, and scaled indefinite matrices on the other.

Proof of Theorem (13). It suffices to suppose that k k2 1, and then to show
that there is a real nonsingular C such that

[+*]
Equivalently, we may show that

S(Aj)J and
j=l

Because of (5), we know that the constant inertia condition implies that for each pair
the plus sets (respectively, the minus sets) must intersect.

Suppose m--3. (It will turn out that this case is sufficient.) For (13) to be false,
it would have to be that

(14a)

and

(14b)

but

(14c)

or

(14d) S_(A,) n S_(A2) n S_(A3) Q.

Interpreting vectors from R2 as complex numbers, we see that

S+(ai) {z CI0 < arg z < -j or 0j + 7r < arg z < rj +

for some numbers 0j, j such that 0_-< 0j < 7r and 0 < r-0j < yr. Also,

S_(Aj)={zCl)<Argz<Oj+vr or rj+vr<Arg z< 0j+27r}.

So the statements (14a) and (14b) are equivalent, as are (14c) and (14d). It is not

S+(A1) S+(A2) , S+(A2) N S+(A3) # , S+(A,) N S+(A3) .
S_(A,) S_(A2) , S_(A2) S_(A3) , S_(A) n S_(A3) ,

S+(A,) S+(A2) n S+(A3)

n S_(Aj) .
j=l



358 CHARLES R. JOHNSON AND LEIBA RODMAN

difficult to see that statement (14a) together with (14c) can happen only if

0 < 01 < 7" < 0 < 7" < 0 -t- 77" < "/’3

(possibly after a permutation of indices { 1, 2, 3, }). But then for any set of signs e, E2,

e + such that exactly one of them is -1, we have

S+(GIAI) (’ S+(GaA2) (’ S+(G3A3)

and

S_( e,A,) f"l S_( e2A2) 1"1S_(e3A3) e .
Hence, using Observation 3, we obtain that if (13) is false, then

det (aA + a2A2 + 03A3) 0

as long as any two of the real coefficients ai are positive (or any two are negative).
We shall obtain a contradiction (and thereby prove Theorem (13)) by showing that
there are coefficients a, a2, a3, two of which are of the same nonzero sign, such that
the matrix atA + ce2A2 + ce3m3 is singular.

Since a simultaneous congruence does not change anything relevant to the problem,
we may assume one of the matrices, say A3, is

Let

Write

all a12 ( a21A and A2=
a2 a3] a22

a22.
a23]

A A a___3 A+ a2 A3.
(/23 a23

Then A is diagonal and has a zero entry in the lower right. Similarly we may try

a a22A= AI all
A2+ a2 A3

a2 a2

or

A A_-a_ A + a A

or

/a23 a23a12A A2- A + |
a13 \ a13

Each of these constructions produces a matrix which is singular by virtue of being
diagonal with a zero diagonal entry. There are two possible ways in which all of them
could fail to produce a singular linear combination of A1, A2 and A with at least two
coefficients of the same nonzero sign:

(i) all =a13=a21=a23=O, a12, a22#0

(none of the constructions could be carried out because all the denominators would
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be zero); and

aa:z2 a3a:z:z a a3(ii) a2 >0
a2 a23 a2 a:z3

(in each case one coefficient is zero and the others are opposite in sign).
Note that these cases have been presented so that they are mutually exclusive. In

case (i), both AI and A2 are nonzero multiples of A3, and it is clear how to produce
the 0 matrix with all coefficients nonzero. In case (ii), A and A2 must be the same
matrix, up to a positive factor of scale, and in this event the assumed configuration
of plus sets as in (14) could not occur.

If m->4, for (13) to be false, it would have to happen that each (m-1) of
S/(A), , S/(A,) intersect nontrivially while all m of them not have a common
intersection. Since it is clear geometrically that this cannot occur (for m >- 4), the proof
of the theorem is complete.

5. An example: n m =3, F=I. We close with an example of three 3-by-3
nonsingular real-entried matrices which are not simultaneously inertia explicit (over
the reals), but whose convex hull has constant inertia (2, 1, 0). This example was
constructed by Steve Pierce, and we do not know if these matrices are simultaneously
inertia explicit under complex congruence. Let

A= 0 A2 0 and A3-- 0 --1

0 0 0 0

Then, a computation verifies that det (alA1 + a2A2+ o3A3) < 0 for al,

2 d- a 1, SO that the inertia of all such matrices is (2, 1, 0). However, there is no two-
dimensional subspace of R on which all of AI, A2 and A are positive definite. (Of
course, there is such a two-dimensional subspace for each pair, and there are one-
dimensional subspaces on which all three are positive definite and on which all three
are negative definite.) This observation follows from graphing two-dimensional cross
sections of the isotropic sets for a fixed first coordinate.

Acknowledgment. Some of the questions addressed here were raised by Steve
Pierce. They were of interest to him in connection with the geometric study of linear
maps on matrices which preserve certain matricial properties, in particular the determi-
nation of those linear transformations on Hermitian matrices which preserve inertia.
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DOUBLY-PERIODIC SEQUENCES AND
TWO-DIMENSIONAL RECURRENCES*

STEVEN HOMER? AND JERRY GOLDMAN

Abstract. In this paper we study doubly-periodic sequences, which are a natural generalization of
(singly) periodic sequences, a class which has proven to have wide-ranging applications. We present
two-dimensional recurrence relations characterizing doubly-periodic sequences over finite rings and derive
a number of properties of these double sequences using power series rings in two variables. Conditions for
"factoring" such sequences as tensor products over fields are given and some results of Zierler on linear
recurring sequences are extended. Applications are made to automata and product codes and conditions
sufficient for a set of doubly periodic sequences to be a field with respect to certain operations are given.

1. Introduction. Let R be a commutative ring with identity and let N be the set
of nonnegative integers. Define the double sequence (infinite matrix) s (sij) N N
R to be doubly-periodic if there exist positive integers p and q such that

Si+p, Sij Si,j+q

for all i,j in N. The class of such doubly-periodic sequences is closely related to the
work of Nerode 12] in linear automata and to that of the authors in quadratic automata
[4]. A number of authors have studied doubly-periodic sequences for application to
algebraic coding theory [11], [13], [14], [15] and in particular have concentrated upon
sequences with maximal periods for coding purposes. Our results generalize some
power series ring results of Zierler [18] for arbitrary sequences and our tensor product
result clarifies the construction of some two-dimensional arrays in [11] and [13].
Moreover we can apply the tensor product result to view doubly-periodic sequence
spaces as fields under certain conditions. In this paper we apply our results to automata
and also connect double-periodicity to direct product codes. Finally we mention that
doubly-periodic sequences have been applied to classical tomography 16] and to the
geometry of fabrics [5].

Doubly-periodic sequences are natural generalizations of periodic sequences
which, together with their recurrence relations, have a long history and an enormous
range of applications [1], [2], [3], [6], [7], [18]. Recall that a sequence u (ui): N- R
is periodic if there is a positive integer p such that Ui/p--ui for all in N. Call the
least such p the period of the sequence (ui). The theory of periodic sequences, often
called linear recurring sequences, and their recurrence relations is well known and we
rely particularly upon the basic results of Zierler 18], an exposition of which may be
found in ].

Recurrence relations with two indices have been studied in the literature [10],
[17], with the relation between binomial coefficients indicating the construction of the
Pascal triangle being the most famous example. Unlike the previous literature on the
general theory of doubly-periodic sequences of which we are aware [11], [13], [14],
we begin our study with recurrence relations over a finite commutative ring.
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2. Recurrence relations and an application to automata. For integers m and n, each
_->1, choose an element c= (Co, c,..., c,) R"/ and an element d =(do,’’-, dn)
R "/1 with Co and do invertible in R. Given mn arbitrary elements so, i= 0,..., m-
and j--0,. ., n- of R, recursively define a double sequence (s0) of elements of R
using the following two recurrence relations on two indices"

(1) E cgsi-g, =0
k=0

and

for all integers i-> m and integers 0, 1,. , n-

(2) d,s,j_, 0
t=0

for all integers j->_ n and all integers k_-> 0.

Denote the set of all double sequences constructed in the fashion above satisfying (1)
and (2) by S(c, d). Observe that the sum of two such sequences as well as the product
of such a sequence by an element of R (both the addition and R-multiplication
operations taken componentwise) also satisfy (1) and (2). Consequently S(c, d), the
set of solutions to (1) and (2), is an R-module.

Now suppose (so is doubly-periodic in the sense of 1. For given sij, i=
0,. .,p- and j=0,. , q- 1, it is clear from the definition that for rn =p, n q,
c=(1, 0,..., 0,-1), d=(1, 0,..., 0, -1), we have (si) S(c, d).Thatis, every doubly-
periodic sequence satisfies recurrences of the form (1) and (2). Our first theorem
establishes the converse for a finite ring.

THEOREM 1. Let R be a finite commutative ring with identity. For fixed c=
(Co,"’, c,,) Rm+ and d (do,’", d,) R"+ with Co, Cm, do, d, invertible, let S(c, d)
be the set of double sequences satisfying (1) and (2). If (so) S(c, d) then (si) is

doubly-periodic.
Proof We apply the results of Zierler [18, Lemma 2] (or cf. [1, p. 372, Thm. 1].

Since (so) satisfies (1) and c, is invertible, for each 0, 1,..., n-1 the sequence
(sit) i=o is periodic with period Pt. Set p the least common multiple of Po, P, ",

Then for any 0, , n 1, we have sit si+v,, for any N.
We now claim that for any N we have sit Si+p., for each i N. The proof of

this claim proceeds by induction on t. It has been established above that the claim is
true for =0, 1,..., n-1. As induction hypothesis assume that for any t< e where
e _>- n, we have s. s+p,t for each 6 N. If we show that Sic Si+p, for each 6 N then
the claim will be established. Apply (2), then the induction hypothesis to obtain, for
iN,

-(dlSi, -t- d2si, at-. at- dnsi,e_n)
do

--( dl S i+p,e_ "+" d2s i+p,e_2 at-. .at_ dns i+p,e_n)
do

-----Si/p, after another application of (2).

Consequently every column of the infinite matrix (so) is periodic with period p and
the claim is proved.

Again using the results on linear recurring sequences and (2), together with dn
invertible, we have that for each k =0, 1,. , p- 1, (Skj)je-_ 0 is periodic with period qk.

Set q the least common multiple of qo," ", qp-. Then for any k, say k =fp + r where
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0 <= r < p, we have for any t,

Sk,t+ q Sfp+r,t+q-- Sr, t+ q (using the claim proved above)

st, (by definition of q)

"-Sk! (by the claim again).

Thus q is a period of every row and (sij) is doubly-periodic. Theorem is proved.
Denote the cardinality of a set A by IA[. As we remarked above, S(c, d) is an

R-module and the proof of the next theorem is immediate.
THEOREM 2. IfR= F, afield, and S(c, d) is the set of solutions to (1) and (2) as

defined at the outset in 2, then S(c, d) is a vector space of dimension nan over F. If, in
addition, F is finite, then IS(c, d)l FI.

We can apply our results thus far to count the number of linear and quadratic
automaton transformations over a finite field. Only one definition is necessary to state
the result and we refer the reader to [4] and [12] for all other definitions. Define a
double sequence (uij)" N N R to be eventually doubly-periodic if there exist positive
integers N, N2, p, and q such that uj U+p,j for all _>- Nl, for all j N and u li,j+ q
for all j=> N2, for all i N. It is shown in Nerode [12] that there is a one-to-one
correspondence between linear automaton transformations and eventually doubly-
periodic matrices. In the event that 1/2 is in the base field, the same correspondence
holds for quadratic automaton transformations [4].

THEOREM 3. The number of linear automaton transformations over a finite field F
(and of quadratic automaton transformations when 1/2 F) determined by an eventually
doubly-periodic sequence (u) for given N, N2, p, and q, where p and q are (least)
periods as in the definition above, is

Proof It follows directly from the definition and Theorem that the eventually
doubly-periodic matrix (ui) corresponds to a unique doubly-periodic matrix deter-
mined by (N +p)(N+ q) elements uj of F with 0 <= i=< N +(p- 1), 0=<j -< N2+ (q- 1)
satisfying the recursions (1) and (2) with na N +p, n N2+ q. Consequently the
conclusion of Theorem 3 follows directly from Theorem 2.

3. Characterizations of solutions and an application to codes. We now introduce
several notions for use in the sequel. Let R[[x, y]] be the ring of formal power series
in two variables x and y over the ring R. Consider the polynomial rings R[x], R[y],
and R[x, y] to be subsets of R[[x, y]], where we identify ao+ ax +. + a,x’ with the
power series ao+ax+" "+atx’ +0+...+0..., etc. Each double sequence (s) has
associated with it the generating function, Y=o /--o s/x y, a formal power series in
R[[x, y]].

Define two operators X- and Y- on double sequences in the following manner.
For any double sequence (s), let

X-’(sij) (si+,,j) and Y-’(sij) (si,j+,).

The operators X- and Y- commute; moreover, we interpret their powers, sums of
them, and R-multiples of them in the usual fashion. Thus, one has available the
operators which are polynomials in X- and Y-" i.e., for any polynomial p(x, y)
R[x, y], p(X- Y-) is unambiguously defined
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Now let s=(so)eS(c, d) as in 2. If k=0, 1,..., m,j>=n, and i>-_k, multiplying
(2) by Ck yields

Ck d,S i_k,j_, O.
t=O

Summing this last relation over k produces

(3) cds_,_ 0 for all -> m, j _-> n.
k=0 t=0

Therefore if we set

f(x, y)= CkdtX"-ky"-’ R[x, y],
k=0 t=0

then (3) is equivalent to the operator relation

(4) f(x-, Y-1)(s) =0,
for any s S(c, d). We call the polynomial

f(x, y)= Ckd,xky’
k=0 t=0

the characteristic polynomial of (1) and (2) and call f the reciprocal polynomial of f.
Observe that we have the formal relation f(x, y) x’y"f(1/x, 1/y), which can be made
rigorous in the ambient ring of formal Laurent series in two variables.

Finally, for use in the next lemma, note that f(x, y) is invertible in R[[x, y]] since
its constant term codo is invertible in R.

LEMMA 4. Let s(x, y) be the generating function of a double sequence solution
s S(c, d) of (1) and (2). There exists a unique a(x, y) R[x, y] of degree in x<= m-
and degree in y <= n- such that

a(x,y)
s(x,y)=

f(x,y)’

where f(x, y) is the characteristic polynomial of and (2).
Proof. The coefficient of xiy in s(x, y). f(x, y) is

(5) ., , ckdtsi_.j-,.
k=O t=O

But k> m implies Ck =0 or t> n implies dt =0. Furthermore, (3) implies that the
coefficient of x’y" in s(x, y). f(x, y)=0. Thus,

g h

s(x, y) f(x, y) a(x, y) E E aox’Yj,
i=0j=0

whereg-<m-1 andh-<n-1.
THEOREM 5. If R=F, afield, S(c, d) is the set of solutions to (1) and (2) as in

2, and f(x, y) is the characteristic polynomial of (1) and (2), then the vector subspace
in F[[x, y]] of generating functions of solutions in S(c, d) is equal to

a(x,y)Qf I.f(x, y)
e F[[x, y]] x degree of a (x, y) <- m 1, y degree of a (x, y) <- n }.
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Proof Lemma 4 has established containment in one direction. We now show that
xiyJ/f(x, y) Qy is the generating function s(x, y) of a solution s S(c, d) for any
0 -< =< m 1, 0 ---j -< n 1. The expression (5) computed in the proof of Lemma 4 shows
that this amounts to solving the mn linear equations

g h

’ CkdtSg-k,h-t agh,
k=0 t=0

where aij and agh --0 for all 0-< g-< m- 1, 0 _-< h <_- n- 1, (g, h) (i, j), for the mn
"unknowns" s,.

Rewrite these equations in standard form by ordering the unknowns in (ascending)
lexicographic order from the left on their indices to obtain the mn mn matrix system

Soo ’ -O-
-codo 0 0 0 0

Sol
cod codo 0 0 0

0
* codo 0 0

S0,n_ 1.=

* codo 0 s..o 0

codo
Sm_l,n_lJ 0

Note that the on the right-hand side occurs in the (in +j + 1)st row. The coefficient
matrix is nonsingular since its determinant is (codo)’" O, so solutions s0 exist. Extend
these st to s S(c, d) using (1) and (2). It is now apparent that s(x, y) .f(x, y)= xyj.

Thus
xy

By= Y(x,y) O<--i<=m-l’O<---J<----n-1

is contained in the set of generating functions of solutions in S(c, d).
It is easy to show that By is a linearly independent subset of Qy and that the

subspace it generates is Qy of dimension mn. Since, by Theorem 2, S(c, d) has dimension
mn, the equality asserted in Theorem 5 is proved.

We make several observations before stating our next result. Let c(x)= Yk--O Ckxk
and d(y) ,=o d,y’ for ce R"+, d R"+ chosen as in 2. Then f(x, y)=c(x) d(y),
where f(x, y) is the characteristic polynomial of (1) and (2). It follows from the theory
of linear recurrence relations in one index [18] that if c(x) is the characteristic
polynomial of the recurrence Yg=o CgU_k--O, i-->_ m, then the set Qc of generating
functions of solutions to this recurrence is of the form Qc
{v(x)/c(x) F[[x]] degree v(x) <- m 1}. In a similar manner, d(y) is the characteristic
polynomial of a recurrence relation t=o dtw-,=O,J >= n, with analogous set Qd
{z(y)/d(y)F[[y]] degree z(y)<-n-1}. The proof of the next corollary is now
immediate from Theorem 5.

COROLLARY 6. If f(x, y) is the characteristic polynomial of (1) and (2), then
f(x, y) c(x)d (y), the product of the characteristic polynomials of the associated single-
index recurrences. Moreover, if Qy, Qc, and Qd are the vector spaces of Theorem 5 and
above, then Qy QcQd, the set ofsums ofproducts ofgeneratingfunctions of single-index
recurrences.

We now introduce polynomials which are reciprocal respectively to c(x) and d(y)
defined prior to Corollary 6 by setting (x)= Yk=0 Ckxr"-k and t(y)--Y,=o dy"-’ We
have f(x, y)= (x)d(y) for f(x, y) the reciprocal polynomial of the characteristic
polynomial f(x, y) of (1) and (2). We are now in a position to state the next result.
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LEMMA 7. Let R F, a field, let ((x) and d(y) be defined as above, and suppose
and fl are nonzero elements of F. Set sij a’flJ for i, j N. Then sij) satisfies (1) and

(2) if and only if ?(a)=d()=O.
Proof Substitution for Si-k,, yields

k =0 k =0 k =0

Hence (s0) satisfies (1) if and only if -(a) 0. Similarly, (s0) satisfies (2) if d(/3) =0.
This proves Lemma 7.

The next theorem succinctly characterizes solutions of (1) and (2) in the event
that F contains the splitting fields of 6(x) and d(y). First, we informally motivate the
result by displaying a notation suitable for expressing these ideas.

Assume p (ro, rl, r2, ") and tr (Cro, trl, tr2, .) are infinite sequences of ele-
ments of R. Consider t9 and r as (infinite) row vectors. Thus, to’, the transpose of p,
is an (infinite) column vector. Extend the notion of Kronecker product (or direct

product) to this setting by defining

roo roo .1p ()r= rlro rlcr

that is, p’ (R) tr is an (infinite) matrix whose row is the row vector rtr for 0, 1, 2, .
It is a consequence of the one index recurrence relation theory that a is a root

of t?(x) if and only if the sequence a =(1, a, a, a3, .) is a solution to the linear
recurrence associated with c(x) [1, p. 374]. In a like manner, the sequence b=
(1,/3,/32,/33, .) is a solution to the recurrence of the characteristic polynomial c(y)
iff ’(/3)= 0. Lemma 7 and the above informal definition of Kronecker product show
that ?(a)=0= d(fl) imply that a t(R)b is a solution to (1) and (2). We show more
carefully below that all solutions are linear combinations of these in the event ’(x)
and d(y) split into distinct linear factors in that S(c, d) is isomorphic to the tensor
product of S(c) with S(d).

THEOREM 8. Let R be a field F. For fixed c=(co,’", c,,)6 Fm+l and d
(do,’", d,)6 F+ with Co, Cm, do, and d, nonzero, let S(c, d) be the set of double
sequences satisfying and (2). Suppose ao, a,- a,,,_ are distinct roots of6(x) and
/30, fl, , fl,_ are distinct roots ofd (y) in F. Define the sequences ai, 0, l, , m
and bj, j=O, n-1 by ai=(1 a,,a ,,’’’) and bj (1, fly, fl,...). Then

S(c, d) S(c) (R)FS(d)

as tensor products of vector spaces, where S(c) and S(d) are the spaces of solutions to
the recurrences associated with c(x) and d(y).

Proof First note that all a and/3 are nonzero since both c,, and d, are nonzero;
consequently Lemma 7 applies here. Furthermore, it follows from Lemma 14 of [18]
that {ao,"" ", a,,_} and {bo,"" ", b,_} are linearly independent sets of solutions to
their respective recurrences and that these sets are bases for the vector .spaces S(c)
and S(d). For the pair of sequences (a, bj) define a map (a, bj)-> Do, from S(c)x

kS(d)--> S(c, d) by defining the double sequence Dij to have the entry a/3j in its row
k, column for k=0, 1, 2,... and =0, 1, 2,.... It follows from Lemma 7 and the
hypotheses that Do S(c, d) for --0,. , rn- and j 0,. ., n- 1. Since the map
above is a bilinear map out of the Cartesian product, S(c) x S(d), it follows from the
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universal mapping property of a tensor product that there is an F-linear map q out
of the tensor product S(c)(R)S(d) into S(c, d) such that q(ai(R)bj)= Do. Suppose

m--I n--I

e= E E eijai(R)b
i=0 j=0

is an element of the kernel of @. Then @(e)=O=ideoDO. However, for k=
0, 1,. ., m- 1, row k of the right-hand side of this last relation must equal 0, which
yields

2 eoakb ejak b=O.
i=0 j=0

But {b} is linearly independent, so

m-I

(6) eoak o
i=0

E0j E j,

for all j 0,. ., n- 1.

For each fixed j the system (6) of linear equations in the unknowns.., e,,_,j has coefficient matrix given by
2 m--1ao ao ao )Om O

2
m--I Om

whose determinant is the Vandermonde determinant [I i<j (Oli- Ogj) Oo Thus, all ei 0,
therefore e=0 and , is 1-1. S(c)(R)S(d) is a vector space of dimension ran, which
implies that 4’ is an isomorphism and Theorem 8 is proved.

Our last theorem has an immediate application to difference codes [1], with the
codewords in this case being doubly-periodic sequences. When F is a finite field there
are IF[ such codewords (using our Theorem 2) which satisfy relations (1) and (2).

COROLLARY 9. With the same hypotheses as Theorem 8 and assuming, in addition,
that F is finite, then the linear difference code S(c, d) is the direct product of the linear

difference codes S(c) and S d ).
Proof It follows directly from our construction that the rows of a matrix in S(c, d)

are codewords of S(d) and that the columns are transposes of codewords of S(c). But
this is exactly the definition of direct product codes given in van Lint [9].

It is pointed out in [9] that when (m, n) 1, there is a transmission method which
is effective in combatting burst errors.

4. Periods of doubly-periodic sequences. Recall from Corollary 6 that the charac-
teristic polynomial of the relations (1) and (2) factors as f(x,y)=c(x)d(y), where
c(x) and d (y) are the characteristic polynomials ofthe associated single-index recurren-
ces. Within this section we will often denote the set S(c, d) of solutions to (1) and (2)
by S(f(x, y)). Furthermore, we will often identify s S(f(x, y)) with its generating
function s(x, y). Note that any f*(x, y) in F[x, y] for which the variables can be
separated in the sense thatf*(x, y) c*(x) d*(y) defines associated recurrence relations
of the form (1) and (2).

LEMMA 10. Suppose S(c, d) and S(c*, d*) are solution sets of recurrences of the

form and (2) with associated characteristic polynomials f(x, y) and f*(x, y) respec-
tively. Then S(c, d)_ S(c*, d*) if and only iff(x, y) divides f*(x, y) in F[x, y].

Proof Assume that S(c, d) S(c*, d*). Since by Theorem 5, 1/f(x,y) is the
generating function of a solution in S(c, d), the assumed containment implies the
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existence of some a(x, y) such that 1If(x, y)= a(x, y)/f*(x, y), where Theorem 5 is
used again. Thus f* (x, y) a (x, y)f(x, y) or flf*.

Conversely, suppose f(x, y)= c(x)d(y) and f*(x, y)= c*(x)d*(y) with flf* in
F[x, y]. It follows from the fact that gcd(c*(x), d*(y))= in F[x, y] that c(x)lc*(x)
in Fix] and d(y)ld*(y) in Fly]. Thus, c*(x)=cl(x)c(x) and d*(y)=d(y)d(y.),
yielding f*(x, y) c(x)dt(y)f(x, y). Now consider any generator of the vector space
S(c, d) of the form xiy/f(x, y). We must have

x"y c,(x)Xidl(y)y
f(x,y) f*(x,y)

S(c*,d*)

since the degrees in x and y of the final numerator satisfy the proper conditions. This
completes the proof of Lemma 10.

THEOREM 11. Let f(x, y) and f*(x, y) be the characteristic polynomials of two-
dimensional recurrence relations of the form (1) and (2) with R F, a field. Then

S(f(x, y)f*(x, y))= S(f(x, y))S(f*(x, y))

where S(f(x, y))S(f*(x, y)) is the set of all finite sums ss* for s6 S(f(x, y)) and
s* S(f*(x, y)), taken in F[[x, y]].

Proof From Lemma 10, each of S(f(x,y)) and S(f*(x,y)) is contained in
S(f(x,y)f*(x,y)). It follows from Corollary 6 that all products ss* are in
S(f(x, y)f*(x, y)) as well. Since the latter is an F-vector space, S(f)S(f*) is contained
in S(ff*). A comparison of dimensions, using the representation of Theorem 5, finishes
the proof of Theorem 11.

If s (sij) is a doubly-periodic sequence, define the functions p and P2 by p(s) p
and Pz(S) q where p and q are the least positive integers satisfying so S i+p,j s,j+q
for all i,j. Iff(x, y) is the characteristic polynomial of relations (1) and (2) then write
f(x, y) c(x)d(y). It follows from the theory of linear recurrence relations that there
is an r> 0 such that c(x) divides xr- [18]. Define ord(f(x, y)) to be the smallest
positive integer e such that c(x) divides xe- 1. Similarly, define ord2(f(x, y)) to be
the smallest positive integer e such that d(y) divides ye-1.

THEOREM 12. Iff(x, y) c(x)d(y) and f*(x, y) c*(x)d*(y) are relatively prime
characteristic polynomials of two-dimensional recurrence relations of the form (1) and
(2) over a finite field F, then for s S(f(x, y)) and s* S(f*(x, y)),

p(s + s*) lcm (p(s), p(s*))

fori=l,2.
Proof Both s and s* are doubly-periodic by Theorem 1. It follows that (f(x, y),

f*(x, y))= in F[x, y] if and only if (c(x), c*(x)) in F[x] and (d(y), d*(y))=
in F[y]. Moreover, since the periods of a double sequence in each index are indepen-
dent, we can now apply the one-dimensional theory 1], 18] to derive the conclusion
of Theorem 12.

The following theorem is another immediate conclusion from the theory of linear
recurrence relations.

THEOREM 13. Iff(x, y) c(x)d(y) is the characteristic polynomial of relations (1)
and (2) over afinitefield Fand c(x) and d (y) are irreducible in F[x] and F[y] respectively,
then for 0 s S(f(x, y)),

pi(s) ordi (f(x, y))

fori= l,2.
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For reasons similar to those used in the previous two results, we can carry over
a final conclusion regarding maximal period sequences from [1] and [18]. In fact, it
follows immediately from the one-dimensional theory that if s S(c, d) of (1) and (2)
and F is finite, then p(s)<-IFI- and p2(s) <- IFI- where m and n are the degrees
of c(x) and d(y). Furthermore, the next theorem provides a sufficient condition for
double sequences to have maximum periods (cf. [1, p. 387]).

THEOREM 14. Let f(x,y)--c(x)d(y) be the characteristic polynomial of (1) and
(2) over a finite field F with deg c(x)= rn and deg d(y)= n. Suppose c(x) divides
xIFI’’-- but c(x) divides no Xr- for r < IFI- and d(y) divides ylFl"-l_ 1, but
d(y) divides no y- for r<lF[- 1. If O sS(f(x,y)), then

p,(s) IFI and p2(s)--IFI 1.

Sequences with maximal period are particularly important for applications in the
one-dimensional case and we can use their connection with fields to obtain the following
result.

THEOREM 15. Let f(x,y)=c(x)d(y) be the characteristic polynomial of (1) and
(2) over a finite field F and suppose c(x) and d(y) are primitive and separable in F[x]
and F[y] respectively with relatively prime degrees. Then S(c) and S(d) are fields, and
S(c, d) can be endowed with a field structure over F.

Proof. As in [l 1], take c(x) and d(y) primitive to mean that c(x) and d(y) are
irreducible and that S(c) and S(d) consist of sequences of maximal period. Further-
more, both S(c) and S(d) can be endowed with multiplications which give them the
structure of finite fields [1 l, p. 1721] or [6] in which c(x) and d(y) respectively split.
Let k be the composite of the fields S(c) and S(d). From Theorem 8, S(C)(R)kS(d)
and S(c, d) are isomorphic as vector spaces over k. Consequently, since S(c) and S(d)
are algebras over k, S(C)(R)kS(d) is a k-algebra under the multiplication ( a(R)b).
( al(R)bl)= aa(R)bb. Take S(c,d) to have the multiplication induced by this
k-algebra tensor product. Since c(x) is the minimum polynomial of a primitive element
of S(c), we can apply results from field theory [8, pp. 83-87] to conclude that (c(x))
is a maximal ideal of S(d)[x] and that

S(d)[x]
S(C)(R)kS(d)--

(c(x))

Thus S(c, d) is a field over S(d). Since the degrees of c(x) and d(y) are relatively
prime, S(c, d) is a field over F.

5. Remarks and open problems. The carryover of one-dimensional results to their
two-dimensional analogues in certain cases might lead the reader to the false conclusion
that this always happens. The fact that the two-dimensional case is essentially more
complicated is clear not only from the previous tensor product results but from the
following considerations as well.

Let s be a double sequence. For any t, r N define the t, r-translate of s to be
the double sequence X-tY-(s). Observe that s is a solution to (1) and (2) if ?.(X-)(s)
0 and (Y-)(s) 0. Thus if s S(c, d), then

?.(X-’)(X-’Y-r(s)) X-tY-r(O(X-1)(s))=0,

with a similar relation resulting when r(Y-l) replaces C(x-l). Therefore S(c, d) is
closed under the operation oftaking t, r-translates. Consequently, that a finite nonempty
set A is "an F-module for finite F, closed under t, r-translations and contained in the
set of doubly-periodic sequences" is a necessary condition for A to be the set of
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solutions to (1) and (2). But, surprisingly, this condition, which is analogous to the
one-dimensional case [18, Thm. 3], is not sufficient, as the following counterexample
shows.

Consider the binary doubly-periodic sequences generated by the double recurrence
relations.

(7) si "4r" Si+l, + Si+2, 0

(8) so + si,+ + si.+2 =0

The four double sequences

0 0 0 0 0

0 0 0 0 0

0 0 0 0

for all i=>0,j=0, 1,

for all j=>2, i=>0.

0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

satisfy this recurrence, for a Z2-module, and are closed under t, r-translations as well.
Clearly these are not the only sequences satisfying (7) and (8) and, since rn and n are
> here, our Theorem 2 shows that no other double recurrence relation is satisfied by
exactly these four sequences. Finding a characterization of such sets A, which, in our
R[x, y] module approach, generalizes the one-dimensional result remains an open
problem. It should be noted here that Sakata 14] has established such a result assuming
that sequences form a module under the action of a certain truncated Laurent series ring.

We also mention here that recurrences similar to (1) and (2), but which instead
extend mn given s, 0<=i<= m- 1, 0_<-j_<-n- first with respect to the first rn rows,
then with respect to columns would have served equally well as basic definitions,
yielding theorems isomorphic or identical to those of this paper.

Finally we remark that there remains a wide class of open problems connected
with autocorrelation of a doubly-periodic sequence and with shift registers which
generate such sequences.
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AN EXTENSION OF THE MATRIX INVERSION LEMMA*

NARIYASU MINAMIDE"

Abstract. As an extension of the matrix inversion lemma, the representation of the pseudoinverse of
the sum of two matrices of the form (S+*) with S hermitian is considered by a geometric approach
introducing orthogonal projections associated with the orthogonal decomposition of the related subspaces.
As an example, the pseudoinverse of the matrix ($ + bb*) with b a vector is explicitly calculated.

1. Introduction. A system of equations

AXA= A, XAX= X, (XA)*=XA, (AX)*=AX

has a unique solution for an arbitrary matrix A with complex elements (see Penrose
[2]). This is called the (Moore-Penrose) pseudoinverse of A and is written as X A*.

Recently, Greville [3] developed a representation for the pseudoinverse of an
arbitrary matrix A partitioned as A [Ao, a] where a is a single column vector. From
Greville’s expression, Cline [4] inferred the structure of the representation for the
pseudoinverse of a matrix A partitioned as A U, V] in which U and V are sub-
matrices, and extended Greville’s representation to any matrix A U, V]. As a direct
application of this extension, Cline [5] then developed a representation for the
pseudoinverse of the sum of two nonnegative matrices.

In the present paper, a representation for the pseudoinverse of the sum of matrices
of the form (S +*) with S hermitian is developed by a geometric approach based
on the orthogonal decomposition of the related subspaces. Since this representation
may be regarded as a generalization of the well-known matrix inversion lemma, it is
called a matrix pseudoinversion lemma.

Various useful properties ofthe pseudoinverse are listed below. These are employed
in the following discussion without explicit mention. Let R(A) and N(A) denote the
range and null spaces of A, respectively.

(pl) A** A, A** A**;
(p2) R(A*)= R(A*) and N(A*)= N(A*);
(p3) A’A, AA*, I-A*A and I-AA* are orthogonal projections onto R(A*),

R(A), N(A) and N(A*), respectively;
(p4) (A’A)*= A’A**;
(p5) a*= (A*A)*A* A*(AA*)*;
(p6) If A A*, AA* A*A.
2. Matrix pseudoinversion lemma. Let

(2.1) H=S+*

and consider the problem of finding a representation for the pseudoinverse of H. Here,
S is an n x n hermitian matrix and is an n m matrix with complex elements.

When S is nonsingular, the representation of H* H-I is already well known as
the matrix inversion lemma. We are interested in the case in which $ is singular.

Before proceeding directly to the representation for the pseudoinverse of (2.1),
the following two important special cases are first considered.

(C1) H S+* with S nonnegative.
(C2) H S-* with H nonnegative.

* Received by the editors April 19, 1983, and in revised form April 6, 1984.
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2.1. The case (C1). Let T be an orthogonal projection onto N(S), i.e., T=
I S*S I SS*.

LEMMA 2.1. Let H S + di)O* with S nonnegative. Then,

(2.2) N(H) N(S) CI N(O* T).

Proof. Since the inclusion N(H) D N(S)f’) N(O*T) is obvious, it suffices to show
N(H)c N(S)CI N(q* T): Let (S+Ocb*)x =0. Then, T(S+O*)x= TO*x =0, and
so *xe N(T). Let B denote the orthogonal projection onto N(TO), i.e., B=
I-(T)*(Tcb). Then, q*x= BO*x. Multiplying both sides of Sx+O(BO*x)=O by
Sf gives

(2.3) x Tx- S+BO*x.
Operating on (2.3) with B* and using BO*Tx 0 yields

(2.4) (I+ BO*S*OB)BO*x a- DBO*x=O,

where D (I + BO*StOB). Since, by assumption, S is nonnegative, D is nonsingular.
Therefore, O’x= Bq*x =0 and Sx=-O*x=O. Hence x N(S)CI N(O*T).

COROLLARY 1. The following identity among the projections holds:

(2.51 HH SS + TO)(TO)+.
Proof. Since (I-SS+) the orthogonal projection onto N(S) commutes with {I-

(TO)(TO)+} an orthogonal projection onto N(O*T), the product

(I- SS+){I-( Tcb)( TO)+}= I- SS+-( TO)( TO)

defines an orthogonal projection onto N(S) f-) N(cb* T). Therefore, by Lemma 2.1,

I-HH+= I-SS*-(TO)(TO)*
which is (2.5).

COROLLARY 2. R(H) has the following orthogonal decomposition:

R(H) R(S)(R) R( TO).

We now prove the following result.
THEOREM 2.1. The pseudoinverse of H S+ dpO* with S nonnegative is given by

H {I -(O* T)to*}st{1-0(TO)t} + (0" T)t(TO)
-{I -(O* T)to*}StOBD- BO*St{I -O( TO)t}

where

B I-( TO)+(TO), D I + BO*S+OB.

Proof. By (2.5),

(2.6) (S + OO*)H+= SS + (Ttl))(TO)+.
Multiplying (2.6) by T from the left yields

TO{O*H+-(TO)+}=O.
Therefore,

(2.7) O,H+_ TO)+= B{O,H+_ TO)+} _a_ BY.
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Now, multiplying (2.6) by S from the left and using (2.7) yields

(2.8) S SH* S S*(*H*) S S*(T)* S*BY.

Therefore, by (2.6), (2.7) and (2.8),

H* HH*)H* SS*H + Tcb( Td H* SS*H* + (d* T)*d*(I SS*)H

(2.9) {I-(dP*T)tdP*}SStH + (*T)t*H
cstc* CStBy+(*T)t(T)

where C I-(*T)t*. Multiplying (2.9) by * from the left and using (2.7) yields

(T) + BY=*cstc*-d*cstBy+*(dp*T)t(T)t.
Therefore, by the identity *C B*,

(I + Bdp*StB)BY Bdp*stc*.

Hence,

(2.10) BY= D-Bd*StC*

Thus, substituting (2.10) into (2.9) yields the theorem.

2.2. The ease (C). This case may be regarded as the special case of (2.1) since
(-H)t= -H and H S-* can be rewritten as H -(-S+*). On this observa-
tion and the analogy to the case (C), let

T= I- SSt, B I-( Td)( T)t= I,

D I-B*StB I-*st, Q I-DtD,
where T=0 since H being nonnegative implies N(S)c N(*) or equivalently,
R(S)=R().

LEMMA 2.2. Let H S-dp* with H nonnegative. Then N(H) has the following
orthogonal decomposition"

N(H) N(S)O) R(S*Q).

Proof. N(H)cN(S)O)R(S*Q)" Let (S-*)x=0. Then Sx=dd*x=
SS**x. Therefore, x S*d*x N(S) N(*). Thus, *(x S*d*x) D*x
0. Hence, *x Q*x N(D). Then,

x=(x-S**x)+S**x= T(x-S**x)+S*Q(*x) N(S)O)R(S*Q).

N(H)N(S)O)R(S*Q)" The inclusion N(H)N(S) being obvious, the
inclusion N(H) R(S*Q) is shown. This follows from the observation

S d*)(S*Q) Q *S*Q (I-*S*)Q O.

COROLLARY 3. Let G StQ. Then,

(2.1 l) H*H S*S-GG*.
We now prove the following result.
THEOREM 2.2. The pseudoinverse of H S-dp* with H nonnegative is given by

H (I- GGt)(s + stdpDtp*st)(I- GGt)
where

D= I-*st, G sty(1 DDt).
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Proof. Note first that since N(H) N(S) and N(H) R(G) imply R(H)c R(S)
and R(H)c N(G*), respectively, the following identities hold;

(2.12) H* S*SH*,
Now, by (2.11),

H* =(I-GG*)H*.

S *)H* SS* GG*

and so,

(2.13) H* S*SH* S*(SS*-GG* +*H*) S*-S*GG* + S*d*H*.

Multiplying (2.13) by * from the left yields

*H* =d*S*-dp*S*GG*+(*S*)*H*.
Therefore,

Since

(I DD*)d*S*( I GG*) G*(I GG*) 0

i.e., R(*S*-d*S*GG*)c R(D), there exists an appropriate matrix Y such that

(2.14) *H*=D**S*(I-GG*)+(I-DD*)Y.
Substituting (2.14) into (2.13) yields

H* S*- S*GG* + S*D**S*(I GG*) + GY.

Hence,
H* (I- GG*)H* (I- GG*){S* + S*D*gP*S*}(I- GG*).

2.3. The general ease. We now consider the general case. Let

T=I-SfS, B=I-(T)*(T),
D I + B*S*B, Q I- DD*,
G= {I -(dP* T)tdP*IStdPQ.

By definition, it can easily be checked that
(1) N(D) N(T),
(2) QB BQ Q,
(3) the subspaces {N(S) N(O*T)} and R(G) are orthogonal, i.e.,

{N(S) CI N(O* T)} d.. R(G).

LEMMA 2.3. Let H S+*. Then, N(H) has thefollowing orthogonal decompo-
sition:

N(H) {N(S) CI N(*T)} R(G).

Proof N(H) {N(S)f’IN(*T)}R(G): Let (S+*)x=0. Then, by (2.3)
and (2.4) in the proof of Lemma 2.1, we have *x B*x Q*x N(D) and

(2.15) x Tx- S*Q*x.

Multiplying (2.15) by (*T)** and noting (*T)**x =0 yields

(2.16) 0= (*T)**Tx-(*T)**S*Q*x.
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Then, by (2.15) and (2.16)

x= Tx- S*Qd*x-(T)(T)*x + (*T)**S*Q*x

{I -( T)( T)*} Tx -{I -(*T)**}S*Q(,*x)
e {N(S)t3 N(* T)}O) R(G).

N(H) {N(S)f3 N(*T)}0)R(G)" The inclusion N(H) {N(S)O N(*T))
being obvious, N(H) R(G) is shown. Observe that

(S+*){I-(*T)**}S*Q= SS*Q+{I-(*T)(*T)*}*S*Q
SS*Q+B*S*BQ

=ss*Q+(D-I)Q

(ss*- I)Q -(T)SQ O,

which proves N(H) R(G).
COROLLARY 4. The following identity among the projections holds"

(2.17) HH*= SS* + Tdp)( T)*- GG*.

We now state the main result.
THEOREM 2.3. The pseudoinverse ofH- S/dp* is given by

H* I GG*){ CS*C* + *T) T)* CS*BD*B*S*C*}(I GG*)

where

C I (*T)**.

Proof By (2.17),

(2.8) (S+*)H SS* +(Tp)(T)*-GG*.

Multiplying (2.18) by T from the left yields

(2.19) Tp*H*= Tp(T)*- TGG*= T{(T)*+(T)*(*T)**S*QG*},

which shows that *H* has an expression of the form

(2.20) *H* T)*+ ,G*+ BY

where Y is an appropriate matrix and denotes a sequence of matrix products whose
precise form is of no interest. On the other hand, multiplying (2.18) by S* from the
left yields

(2.21) S SH +st*H St- S GGt.

Substituting (2.20) into (2.21) then yields

(2.22) StsHt=st-st(T)t-stBY+*Gt.

Hence, by (2.17), (2.20), (2.22), R(Ht)c N(Gt) and (q*T)tB 0,

H (HHt)H SStHt + T)(T)tHt- GGtHt

(2.23) SS H + (* T)t,(i SSt)H CSS H*+ (P* T)t,H

CS C* cStBY+ *G + (*T)t(T)t.
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Multiplying (2.23) by from the left and using *C B* yields

*H* =*CS*C*-*CS*BY+,G*+*(* T)*( T)*
(2.24)

B*S*C*- Bt*S*BY+ ,G*+ (T)*.
Equating the right-hand sides of (2.20) and (2.24) gives

(I+ B*S*B)BY= DBY= B*S*C*+,G*.

Therefore,

Since

DBY(I GG*) B*S*C*(I GG*).

QB*S*C*(I- GG*) Q*S*C*(I- GG*) G*(I- GG*) =0

i.e., R{B*S*C*(I-GG*)}c R(D), there exists an appropriate matrix Z such that

(2.25) BY(I- GG*) D*B*S*C*(I- GG*)+ QZ.

Consequently, by (2.23) and (2.25),

H* (I- GG*)H*(I- GG*)
(I GG*){CS*C* + (* T)*( Tfb)* CS*BD*B*S*C*}(I GG*)
-(I- GG*)CS*dQZ

which, in view of (I-GG*)CS*dQZ-0, proves the theorem.

2.4. An example. As an important example, the pseudoinverse of H given by

H S+bb*

is now calculated, where b is an n vector.
Case 1. Tdp # O. In this case, we have

*TB=I-(T)*(T)=I-
4* T$

D I + B*S*B 1,

=0,

Q I DD* O,

G CS*Q O.

Thus, by Theorem 2.3,

(S+bb*)*= I b;/
Case 2. T$ 0. Similarly, we have

d$* T) Tbck *__T
4 * T,

+
4* T, "

B 1, D= +$*S*

To write down Q and G explicitly, we need to consider two cases:
l) D + b*Stb # 0,

Q=0, G=0, C=I.
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Therefore

(S+ tt*) St- stdpDtdp*S St-

2) D= +b*S*b =0,

Q=I, G=stb, C=L

Therefore
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RECURSIVE BEST APPROXIMATE SOLUTION ALGORITHMS*

NARIYASU MINAMIDEt

Abstract. Recursive best approximate solution algorithms for computing a best linear unbiased estimate

to the linear multivariable estimation problem are developed by using the matrix pseudoinversion lemma.

Depending on how the old data are discounted, exponential and rectangular window algorithms are proposed.
The recursive form for computing the current residual error is also pursued.

1. Introduction. A least squares approach has been widely accepted as the most
fundamental and useful technique for system identification. For real time computation,
sequential-processing algorithms are handy and convenient. Such recursive algorithms
can be derived with the help of the matrix inversion lemma. The resulting estimates
may coincide with those of batch-processing algorithms provided that correct startup
has been taken place.

Recently, as an application of pseudoinverses, recursive best approximate solution
algorithms have been proposed by Albert and Sittler [2] for scalar estimation models
(see also Albert [1]). Possible advantages of these algorithms are 1) the ability to
provide with correct startup, 2) the characterization of the general solution that gives
rise to the same residual error. Some generalizations of the algorithms are also
considered by Boullion and Odell [3]. Their derivation is based on the representations
of pseudoinverses of partitioned matrices developed by Cline [4], [5].

In the present paper, recursive algorithms for computing the best approximate
solution to the linear multivariable sequential estimation problem are developed by
using the matrix pseudoinversion lemma presented in the companion paper [6] (this
issue, pp. 371-377). Two kinds of recursive algorithms, an exponential window
algorithm and a rectangular window algorithm, together with the recursive characteriz-
ation of the current residual error, are considered. The exponential window algorithm
is a generalization of the one developed by Boullion and Odell [3]. The rectangular
window algorithm may be new, though a similar algorithm for deleting bad observations
has also been developed by Boullion and Odell [3], but their algorithm is not of
recursive type.

The matrix Xo R"r is a best approximate solution of the equation AX B with
A R " and B R r if for all X, either

(I)
(II)

AX B > AXo B or

IIAX- nil IIAXo- BII and Ilxll > IlXoll,
where IIAll2=tr {A’A} (trace of A’A). The best approximate solution Xo is given by
Xo= A*B [3].

2. Recursive best approximate solution algorithms.
2.1. Exponential window. Given the measured data { Yk} corrupted by the noise

{v}

(2.1) Yk I):-,K,+ Vk (k= 1, 2,...)

consider the problem of recursively identifying an unknown matrix K., where Yk
R"r, k-! R"", K. R"r and Vk R ’’" and k-! is a known matrix. It is assumed

* Received by the editors December 1, 1983, and in revised form April 6, 1984.

" Department of Electrical Engineering, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-

ku, Nagoya, 464, Japan.
378



RECURSIVE BEST APPROXIMATE SOLUTION ALGORITHMS 379

that {Vk} is a white Gaussian process having element-wise uncorrelated covariance
with zero mean.

Under an appropriate assumption on the magnitude of variance of Vk, a best
linear unbiased estimate (BLUE) K, based on the data up to time is a solution with
minimum norm that minimizes the functional J,(K) defined recursively as

J(g)- A,(k)J_,(g)/ A2(k)ll Yk-dP’_, gll = (k= ,2,... t)
(2.2)

o(K) =0,

where 0 < A (k) =< and 0 < A2(k) are weighting scalars. In particular, letting A (k) A
and A2(k)= in (2.2) gives an exponential weighting to the past data values.

THEOREM 2.1. A BLUE solution K, may be computed recursivelyfrom the equations"

(2.3) /, /,_,+(O’ Y,-O’ /,_ )+CP,_, BD-’B(Y,-’ ,_,_,r,_,)*( ,_, ,_, ,_,
where

C--I-(’t-I rt-I t-l

B I-( T,_,dP,_,)+( Tt_,d,_,),
D h,( t)I + 2( t)B’t-,Pt-,dP,-, B,

and Pt and T, may be computed recursively from
C

P’ A (t)[I-A2(t)P,_,,_,BD-’B’,_ ,]Pt- C’

(2.4)
+ (i) ("-’ T’-’)+(T’-’’-’)*’

(2.5) T

with the initial conditions

/o=0, Po=0, To =I.

Proof. The proof is by induction. Assume that R(K_) R(Pt_), Pt- is nonnega-
tire and symmetric and J,-I(K) can be expressed as

J,_(K)=tr{(K-Kt_)’P_ (K Kt_l)} + Et_,,

where Et_ is the residual error that is independent of K. Then,

Jt(K) tr {A(t)(K -/,_l)’P_, (K -/,_)
+ A2( t)( Y,- ’,_, K)’( Y, -’,_, K)} +

(2.6)
=tr[K’{,,(t)P*,_, + Z2(t)t_,’,_,}K

2K’{h,(

+ A_(t) Y’t Y,]+ Al(/)E,-i

Let

(2.7) P= A,(t)P_, + A2(t)(I)t_lftt_l

Then, P,_)
R(Pt) and R(,_) R(P). Thus, completing the square of (2.6) gives

J,(K) =tr {(K- I,)’P(K-/,)} + E,,
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where
I, P,{A,(t)P*_,[(,_, + A2(t),_, Y,},

(2.8)
E, tr {-/’tPtKt + Al(t)’t_lPt_l K,_ + A2(t) Y; Yt}+ Al(t)Et_i

It is seen that K =/, is the BLUE solution that satisfies R(/,) R(P,). Now apply
[6, Thin. 2.1] to (2.7) by letting

S= A,(t)P_,, t /A2(t)(It_
and substitute the resulting P, into (2.8). Then there follow (2.4), (2.5) and

Kt {I-(’T)*d’}K,_t CS*dBD-B K,_ + CS*BY
(2.9)

+ (di,’T)*( T)*Y- CS*dBD-’ B’S*dBY,
where Y=x/A2(t)Y. In deriving (2.9), R(/_,) R(P,_,)= R(S) and C’d=dB are
used. Substituting the equation

CS*dpBD-’ Bd’S*dBY CS*dpBY- CS*dpBD-’ BY

into (2.9) thus yields (2.3). Since, for 0, the induction hypothesis is trivially satisfied,
the induction is now complete.

COROLLARY 1. The residual error is subject to the recursion"

E, A ( t) E,_, + tr {A2( t)( Yt -’,_, f(t- )’BD- B( Yt -’t-, f(t-,)}
COROLLARY 2. Suppose that the observed data are free from disturbance. Then
(1) /, is equal to the orthogonal projection of K, to the subspace spanned by the

column vectors of {qk- k 1,,,2, , t}, i.e., K PP*tK,.
(2) The general solution K satisfying

Yk-6,-,/=O fork= l,2,.

is given by

I I, + T,K

where K R" is arbitrary.

2.2. Rectangular window. An algorithm of computing estimate based on a finite,
fixed number of past data is now derived. This is called a rectangular window algorithm
of fixed length. In a recursive form, a new data point is first added and an old data
point is then discarded, thus maintaining the active data length N.

Consider the following functional

Jr-N+!
k=t-N+!

A solution of minimum norm that minimizes the functional Jtt_l+l(K) is denoted by

t-N+l.

THEOREM 2.2. The best approximate solution f(tt_rV+l may be recursively computed
by applying the following algorithms"

(1) The algorithm for adding the latest data point Yt is given by Theorem 2.1 with

Al(t) A2(t)= and a change of notation such as

(/,-,, Pt-,, Tt_,)

(2) The algorithm for discarding the old data point Yt-N is given by

(2.10) It_m+,=(I-OoO*o){lt_u P,-m,-m-i
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where
Do I--d’t-N-Ptt-Nt-N-, GO Ptt-Ndt-N-I(I--O*oOo)

and P’t-N+ and Tt,_N+ may be computed recursively from
(2.) P:_,,,/, (I D*oO’-GoGo){P,_,v+ P,_,,,,I,,_,,,_, ,__e,_}(-GoG*o),
(2.12) T’,-N+ T,_N + GoG*o.
Initially, the adding algorithm (1) is applied until the data length exceeds N.

Proof It suffices to show the discarding algorithm (2). Note first that by arguing
as in the proof of Theorem 2.1 J’ J’,-N(,-N+,(K) and K) can be expressed as

(2.13) J’t-N+,(K)=tr{(K /,-N+,)’(P,-N+,)*(K ,-N+,)}+E,-N+,,
(2.14) jt_N(K)t tr {(K Rtt-N) (Pt-N)’ *(K R t’_N)}+ Et_N

^tHere, since K,_N can be generated from ’,-N+ by adding the old data point Y,-N,
these are related by

+0 Yt-N},K,_N P,_N{(P, N+I) tt-N+l t-N-I
(2.5)

(pt ),t--N)t ,-N t-N-l-Pt-N+ + dp _ldp

On the other hand,
Jtt- N+l(g) Jt’-N(K)- Yt-N --Oft -,K =

-tr [K,{(p ,t-N) --Or-N- t-N-I}K
(2.16)

--2K’{(P’t_N) K’t_N --Or_N_, Yt-N}

q_(It,-) (P,-N) I’,-N- Y,-N Y,-N]+ E ,_.
Operating on (2.15) with (P’,-N)* from the left and using R(P’,_N) R(P’,-N+) and
R(P’,_N) R(,-N-,) yields

(P’t-N)*I’ --0 Yt_N=(P t-N+!

Therefore,

t{ t_N)tt --0 Yt-N}
(2.17)

P,-N+,(P,-N+,) (P, t-N t-N-I

^t(Pt-N) Kt-N--fJt-N-I Y’t-N"
Thus, completing the square in (2.16) gives

j’,_N+,(K) =tr {(K K)’(P’(2.8)

where

(2.19)

(2.20)

g=pt {(p,,_ )t/, -0 Y,_ },t-N+l N t-N t-N-1 N

E’ (l,_N--tr{K’(P’t-N+,)*R t-N)’(P’,-N) I’t-N + Yt-N Yt-N}.

It follows from (2.13) and (2.18) that

(2.21) ’ -/, E’ =/.t-N+! t-N+l

Now, applying [6, Thin. 2.2] to (2.19) by letting S (Pt,_N)* and ,-N- and noting
(2.17) yields (2.11), (2.12) and

K --OY,-N),-N+, (I- OoO*o)(S* + S**D*oa)’S*)(SI t--N

(I OoOo*){(I + S*D*o’)I ’,-N S*D*o Y,-N}
thus, establishing (2.10).
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COROLLARY. The residual error E’t-N+l is subject to the recursion"
(l) In an adding process,

(2.22) E ,_, ,_) BD B( Y,-’,_,K,_m)}

where B and D are defined as in Theorem 2.1.
(2) In a discarding process,

(2.23) E’ ,- ,--i ,-, o,- ,--, ,-)}.

Proof It suffices to show (2.23). Note that, by (2.17), (2.19), (2.10) and
R(P’,-+l) = N(O),

K’(P,_u+, ,_u-Y,_u)’{’,_ S**D( Y,_ -.’K,_)}

(2.24) (Y,_-.’R’ ’* -.’’ ’_)’SR’,-, o,- ,-)+(, ,-

Y’-NDoD
Since, by (2.17),

C;oO*o(SI’,_ -,t, v,_)= o,*(’/ ’,_,, Y,_ )=0
we have

(2.25)

Y’t- (I- DoD ’S*S Yt-Nv(I- DoD ’K GoGo GoSKt-N Yt-N t-N

y;_ ,, ^t G*oGoYt-GoGo K t-u Yt-u
Thus, substituting (2.24) and (2.25) into (2.20) and using the equation DoD*o + G*oGo I,
which follows from N(Do) f-) N( Go) {0}, yields (2.23).

2.3. An example. Consider the scalar case (r= m l) in (2.1), i.e.,

Yk b,_t 0. + vk (k= l, 2,- .),

where 0. is an unknown parameter vector. A rectangular window algorithm of fixed
length N that minimizes the functional

k=t-N+i

is given by the following recursive process.
(1) The algorithm for adding the latest data point Yr.
Case (a). T,_ub,_ # 0. In this case,

T’-v$t-- t--lt--iB=O, C=I-
’,_lT:,_l

and so, by Theorem 2.2 and its corollary,

N 0,_+ (y, $’ 0,S)

’ T’-t-t-I t-

I- -- P,_ I-
_

t-,Tt-

E’ E’-t-N t-

D=l

Ttt-6t_,6, ,-
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Case (b). Tt-Nd?t-’- =0. Similarly,

B=I, C=I,

Therefore

0,_v 0,- + (y, b’,_0,_),

p,,_ P’t:6,-

Tt ,-_
T,_,

t )2t--It_N=Et
1+’,_P,_,-

(2) The algorithm for discarding the old data point y,_"
Case(a). Do 1-’t-s-P,-t--i # 0. In this case, Go =0 and so, by Theorem

2.2 and its corollary,

t , P’,-t--
-N+I t-N-lOt-N),

1-’
(Y,--’

t-N-IPt-Nt-N-I
ptPt-Nt-N-lt-N-l

N+I -’,-N-IP,-N,-N-
T-N+I- Tt-N,

0,_)2

E E (Yt-N t-N-I
t-N+l t-N -c’ Ptt-N--l t-N()t-N-l

Case (b). Do 0. Similarly, Go Pt,-Nbt-N-I and so,

(__ N-It-N-IPt-N) t:_ I P:-nt-
t-N-I(Pt-N) +t ,

( ( Pt-Nt-N-It-N-IPt-N
2 P’ I-+, I-

6,--,(P,-) 4,--, } ’- 4,--(P,-) ;-76,__ }’
pt,_,__,’t-N-iet-NT’,_+ T_N+
4’ ),__,(P’,_

E t-N+l E t-N.

REFERENCES

1] A. ALBERT, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York, 1972.
[2] A. ALBERT AND R. SITTLER, A methodfor computing least squares estimators that keep up with the data,

SIAM J. Control, 3 (1965), pp. 394-417.
[3] T. L. BOULLION AND P. L. ODELL, Generalized Inverse Matrices, John Wiley, New York, 1971.
[4] R. E. CLINE, Representations for the generalized inverse of a partitioned matrix, SIAM J. Appl. Math.,

12 (1964), pp. 588-600.
[5], Representations for the generalized inverse ofsums of matrices, SIAM J. Numer. Anal., 2 (1965),

pp. 99-114.
[6] N. MINAMIDE, An extension of the matrix inversion lemma, this Journal, this issue, pp. 371-377.



SIAM J. ALG. DISC. METH.
Vol. 6, No. 3, July 1985

(C) 1985 Society for Industrial and Applied Mathematics
006

HILL CLIMBING WITH MULTIPLE LOCAL OPTIMA*

CRAIG A. TOVEY

Abstract. We investigate the behavior of local improvement algorithms applied to combinatorial optimiz-
ation problems with multiple local optima. In general, these algorithms display two characteristics: speed
and inaccuracy. This behavior is correctly predicted by our model: we show that the expected number of
iterations is linear for a wide range of randomness assumptions, and that the number of local optima tends
to be exponentially large. We also give some results and constructions that suggest that known NP-complete
problems cannot be solved even probabilistically by any "reasonable" local improvement method.

Key words, local improvement, average performance of algorithms, clique problem

AMS(MOS) subject classifications. 68C25, 90C10

1. Introduction. In Tovey [1981] it is shown that for problems with one local
optimum the average performance of local improvement algorithms is good, while the
worst case performance is exponentially bad. Local improvement is also frequently
used in combinatorial optimization problems with multiple local optima, most notably
those that are NP-complete, though of course it is not guaranteed to find a global
optimum in such cases. Many algorithms for "hard" combinatorial problems, such as
0-1 integer programming or the travelling salesman problem, make use of local
improvement, and are justified because there is no known way to solve them exactly
in a reasonable amount of time. Many artificial intelligence applications employ hill
climbing, although the problems often turn out to have multiple peaks and ridges
(Nilsson [1981], Winston [1977]). The obvious questions to ask are, "What are the
chances of a local improvement algorithm working?" and "How long will such a
method take?"

We present a structural model of local improvement that confirms its fast and
inaccurate performance. That is, local improvement will quickly find a local optimum
that is unlikely to be globally optimal. In the next section we extend the model used
in Tovey [1981], [1983] to show that the expected number of iterations to find a local
optimum is low order polynomial under a broad range of randomness assumptions
and is in fact linear for a large class of distributions. In 3 we investigate the number
of local optima and address some complexity issues.

2. How fast? Consider the problem of maximizing a real valued functionf defined
on the vertices of the n-cube. For ease of presentation, we assume that the values of
f are distinct. All that is necessary is a way of breaking ties that prevents cycling, e.g.,
lexicographic ordering (Dantzig 1963]). Two vertices are adjacent or neighbors if they
differ in exactly one component. A vertex is a local optimum if its function value is
better than any of its neighbors. For any f we can construct an ordering, a list of the
vertices from best to worst function value. In the case where f is local-globalAa local

* Received by the editors September 29, 1982, and in filial form March 23, 1983.
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optimum is a global optimum--only orderings with the property, "Every vertex except
the first has at least one neighbor preceding it," are possible. This case is discussed in
Tovey [1982]. In this paper multiple local optima are allowed, so the set of possible
orderings is not restricted. The first random distribution we consider is that all orderings
are equally likely to occur. A local improvement algorithm is defined as a procedure
taking the following form:

DEFINITION 2.1. Local Improvement Algorithm.
Step 1. Start at some random vertex x.
Step 2. Select a point y adjacent to x such thatf(y) >f(x). If no such y exists, stop.
Step 3. Set x equal to y and return to step 2.
Note that the selection rule in step 2 is not precise. If we always choose the

neighbor with the best function value, we have the Optimal Adjacency (OA) Algorithm;
if we choose among all better neighbors with equal probability, we have the Better
Adjacency Algorithm.

(Note: in the following, e denotes the logarithmic constant.)
THEOREM 2.1. Under the assumption that all orderings are equally likely, the expected

number of iterations of any local improvement algorithm is less than en.
Proof. Let Po denote an arbitrary vertex. A simple path of length k starting at Po

is an ordered set of vertices {Po, Pl,’", Pk} such that the Pi are all distinct and pi is
adjacent to p_ for i= l, 2,..., k. Since each vertex has n neighbors, the number of
simple paths of length k emanating from Po is not more than r/k.

We say that a path P={Po, P,’’’,Pk} is improving if f(pi)>f(pi_) for all
i= 1,. ., k. What is the probability that a particular path P is improving? This is the
same as the probability that the sequence (Pk, Pk-1,"" ", P0) is a subsequence of the
ordering. Now, the (k + 1)! permutations of P induce a partition of the orderings into
equivalence classes, each class being the set of orderings containing a particular
permutation as a subsequence. Since all orderings are equally likely to occur and the
partitions are of equal cardinality, the probability that P is improving is 1/(k + l)!.
Therefore, the probability that there exists some improving simple path of length k
emanating from Po is not more than n k/(k + l) !.

Then the probability that the ordering contains some improving simple path of
length k is less than or equal to

2"n k 2"(en) k

(k+ 1)! kk

Let k-en. Then the probability is less than 2"()3e"/2< ()’. For instances in which
no improving path of length k exists, the number of iterations must be less than k.
But since the number of iterations is never worse than 2", the expected number of
iterations must be less than

(en 1)(1 -()’) + (2")()" < en.
Note that this proof applies no matter what the rule is for choosing which better
adjacent vertex to go to. Even a dumb rule such as picking the worst better neighbor
has an expected performance of less than en. The key to the proof is the rapid growth
of k! compared with r/k. This allows an extension of Theorem 2.1 to a broad range of
probability distributions.

THEOREM 2.2. Suppose the ratio ofprobabilities of occurrence satisfies
Prob Iv]

_<
Prob v’]

2""
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for all orderings v, v’. Then the expected number of iterations of any local improvement
algorithm is less than a + 2) en.

Proof. Let P be a simple path of length k. For each permutation q of the vertices
of P construct an equivalence class t] of all orderings containing q as a subsequence.
Since all the equivalence classes have the same cardinality, the maximum ratio between
the induced probability measures of the equivalence classes cannot exceed 2’n, the
maximum ratio of the probabilities of the constituent elements of the original space.
Hence the probability that P is a subsequence of the random ordering cannot exceed
2n/k!. The total number of simple paths of length k is less than 2"n k, so the probability
that at least one such path is a subsequence of the ordering is less than

2(a+l)n/,/k
k

<2-", when k=(a+2)n.

The remainder of the proof is the same as for Theorem 2.1. Note that a need not be
a constant but can be any polynomial in n.

The preceding proof does not depend on the exact structure of the adjacency. All
it assumes is that each vertex has n neighbors. This leads to a very general result which
applies to any reasonable (data independent, polynomially many neighbors) local
improvement scheme.

TqEOREM 2.3. Suppose the vertices of the hypercube are assigned neighbors in such
a way that every vertex has at most p(n) neighbors, where p(n) >- n is a polynomial Then
for any probability distribution satisfying

Prob v]
2

Prob v’]
-< / orderings v, v’,

the expected number of iterations of any local improvement algorithm is less than
e(a+2)p(n).

Proof The proof is as for Theorem 2.2, where the total number of simple paths
of length k is less than 2"(p(n)) k. Again note that a can be any polynomial in n. We
remark that the hypothesis ofTheorems 2.2 and 2.3 can clearly be weakened to requiring
an upper bound on the probability of occurrence of sets the size of the equivalence
classes, allowing some orderings to occur with zero probability.

The assumption that all orderings are equally likely is appealing, partly because
it is easily stated. However, it may not be realistic. In particular, it fails to take into
account correlations between function values of neighboring points. The family of
distributions in Theorem 2.2 retains the low order bound and allows for such correlation
by weighting some orderings more (up to exponentially) than others. Now we consider
two other classes of distributions which naturally incorporate some positive correlation
between neighbors’ function values. Some preliminary notions from Tovey [1982],
1981 are necessary first.

Given the function f or the ordering, we can construct an acyclic directed graph
as follows:

1) Each point in the graph corresponds to a hypercube vertex.
2) For every point x that is not a local optimum, there is one directed edge (x, y)

where x and y are adjacent and f(x) <f(y).
When the ordering is local-global, the graph is a tree. It is called a Better Adjacency

Tree, or BAT for short. We adopt the convention that all better neighbors of x are
equally likely to be the father of x when BATs are randomly generated. We define the
subset called Optimal Adjacency Trees, or OATs, by requiring that y be the optimal
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vertex adjacent to x. For orderings in general, the graph is a forest of trees. It is evident
that BAFs (Better Adjacency Forests) and OAFs (Optimal Adjacency Forests) depict
the actions of the Better Adjacency and the Optimal Adjacency algorithms, respectively.

The pathlength of a vertex in a forest is the length of the path to the root of its
tree; the mean pathlength is the sum of all pathlengths divided by the number of
vertices in the forest [Knuth, 1973]. If the starting point is chosen at random, the
question "How fast is the algorithm?" is equivalent to "What is the expected mean
pathlength of the forest?" Similarly, Theorems 2.1 and 2.2 are statements about average
height.

COROLLARY 2.4. Ifall orderings are equally likely, then the expected height of BAFs
and OAFs is less than en.

Let V= Vl, V2," ", V2 be random variables taking as their values the vertices
in the ordering. With a slight abuse of notation, let V v denote the condition V- v,
j= 1,..., i, where v= Vl,’", vi is a list of vertices. We define the boundary of
v, B(v), to be the set of all vertices not in v that are adjacent to one or more members
of v. The property that an ordering is local-global is equivalent to the property

Any distribution on local-global problems can be specified by the conditional
probabilities that V/1 b, given V=v, for each b in B(v). The boundary distribution
is defined as giving an equal chance to each boundary member. It automatically includes
some positive correlation between function values of neighboring points. We can
explicitly increase this correlation by giving to each b B(v) a probability proportional
to the number of neighbors it has in v. This distribution is called the coboundary
distribution, because the coboundary of v is the set of all ordered pairs (x, b), where
x v, b B(v), and x and b are adjacent.

TI-IEOREM 2.5 (Tovey 1981]). The expected mean pathlength of an OAT or BAT
with respect to the boundary distribution is less than en 2.

THEOREM 2.6 (Tovey 1981]). The expected mean pathlength of a BAT under the
coboundary distribution is less than 2 en log n. For OATs the expected mean pathlength
is less than 2 en2 log n.

We now define two classes of distributions on the non-LG problems which are
extensions of the boundary and coboundary distributions. A probability distribution
on orderings is said to be boundary uniform if all members of the boundary set of the
first vertices in the ordering have an equal probability of being the i+ 1st in the
ordering. Similarly, a distribution is said to be coboundary uniform if the relative
chances of boundary members are weighted according to the number of neighbors
they have among the first points in the ordering. There are no restrictions on vertices
not in the boundary: their individual probabilities can differ widely, and the overall
probability that a nonboundary member is chosen (and hence that another local
optimum is introduced) can vary depending on what the first vertices are. Since the
pathlength of a starting vertex which is a local optimum is one, we can only decrease
the average mean pathlength by allowing additional local optima. Therefore, the bounds
in Theorems 2.5 and 2.6 extend to the class of boundary uniform and coboundary
uniform distributions, respectively. We state this result in the following theorem.

THEOREM 2.7. The expected number ofiterations ofthe OptimalAdjacency Algorithm
or Better Adjacency Algorithm, under any boundary uniform distribution, is less than en 2.
The expected mean pathlength of a BAF from any coboundary uniform distribution is
less than 2en log n.
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Much like Theorem 2.1, Theorems 2.5 and 2.6 may be broadened to apply to
classes of distributions in which the assumption of equal probabilities is replaced by
a bound on the maximum probability. For example, the following theorem is proved
in Tovey [1982]:

THEOREM 2.8. Suppose that for some polynomial p(n) the distribution on LG
orderings satisfies

Prob V+, x[ V v] <
p(n)

Vi, v, Vx B(v).

Then the expected mean pathlength of the BAT is less than 2en(p) log n.
As before, allowing a nonboundary vertex x a chance of being vi+, the i+ 1st

vertex in the ordering, can only decrease the expected mean pathlength and height,
giving:

THEOREM 2.9. Suppose for some random distribution of orderings and some poly-
nomial p( n ),

p(n)
arob[V=x]V=vandVB(v)]<=lB(v)l Vi, v, VxB(v).

Then the expected number of iterations of the Better Adjacency Algorithm is less than
2ep(n) n log n.

Theorem 2.6 may be extended similarly to coboundary semi-uniform distributions.
Also, the method of proof in Theorems 2.2 and 2.3 can easily be applied to other
domains. To illustrate, we derive a bound for the space of permutations on n objects,
suitable for modeling many sequencing problems. The result is similar to Theorem 2.3.

THEOREM 2.10. In the space ofpermutations on n objects, the expected number of
iterations of any local improvement algorithm is less than e(a+2)p(n), where p(n)>=
n log n is a polynomial upper bound on the number of neighbors, for any probability
distribution satisfying Prob [v]/Prob [v’]-<_ 2"" for all orderings v, v’.

Proof. The number of simple paths of length k is less than or equal to (p(n))knt.
The probability that there exists an improving simple path of length k is less than

2""(p(n))kn! 2’"n! 2""n" 2""
k! (a "k- 2) k en(ot-l-2) e(+z)p(n)< (a "+" 2) t’7(’+2)p(n) <S

(a "-t- 2)P(n)<"
when k=e(c+2)p(n) and p(n)>-n log n. Since the number of iterations cannot be
more than n!, the expected number of iterations is less than (1-n-")k+
e(a +2)p(n). This completes the proof. The principal difference between Theorems
2.3 and 2.10 is that the latter requires p(n) _-> n log n, while the former requires p(n) -> n.
The unifying idea here is that the bound on the expected number of iterations is not
less than the logarithm of the number of points in the space.

3. How inaccurate? Just as the question "How many iterations?" is equivalent to
"What is the mean pathlength?" the question "How many local optima?" is the same
as "How many trees are in the forest?"

PROPOSITION 3.1. Under the assumption that all orderings are equally likely, the
expected number of trees in the OAF or BAF is equal to (2")/(n + 1).

Proof. Let x denote a vertex of the n-cube. For x 0 to 2"-1, let the random
variable Ix equal one if x is a local optimum and zero otherwise. Then the expected
number of local optima equals

(3.1.1) E Ix E(/x).
\ x=O x=O
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The probability of x being a local optimum is the probability that it is the highest of
n / vertices in the ordering (it and its n neighbors). If all orderings are equally likely,
this probability is l/(n + 1). Thus

(3.1.2) E(Ix)- x=0,... 2"-1
n+l’

Combining equations (3.1.1) with (3.1.2) yields the desired result.
For problems with all orderings equally likely, then, a local improvement algorithm

by itself has little guarantee of attaining a global optimum. This is true even for parallel
processing versions that use multiple starting points (unless there are exponentially
many).

As before, the results can be generalized to a class of distributions.
THEOREM 3.2. Suppose that for all orderings w, w’ the ratio ofprobabilities satisfies

P[w]/ P[w’] <= k. Then the expected number of local optima is at least

2
kn+

Proof. Let x be any vertex, and let Cx denote the set of all orderings in which x
precedes all of its neighbors. Under the hypothesis, the smallest possible value of
P[C] would occur when P[v] is the same for all v Cx and is as small as possible,
and when P[ v] is the same for all v Cx and is as large as possible. A simple calculation
shows that this implies

P[v]=(2)!l_kn+ Vve C.

Multiplication by (2’) !/n + 1, the cardinality of C, gives the desired result.
There appears to be a considerable difference between problems that are LG and

those that are not. In particular, it seems that the well-known NP-complete problems
are not LG. For instance, we have the following proposition"

PROPOSITION 3.3. In the traveling salesman problem, if two Hamiltonian circuits

differ only in the order in which two consecutive cities are visited, they are called adjacent.
Then with this noion of adjacency, there exists a class of instances with exponentially
many local optima that are not global optima.

Proof. As the basis for our class of instances, we use a graph with six nodes
labeled a, a’, b, c, d and e. The nodes a, b, c and d form a rectangle with lengths
ab cd 24, ad bc 10 and ac db 26. Node e is located midway between the
short sides and a little closer to side cd than to side ab, thus ed ec= 12.5, and
ea eb 14.5. The node a’ is at some very small distance from node a, so its distances
from other nodes are the same as for a. We remark that the circuit a, d, c, b, e, a’, a
is a local optimum but is not globally optimal since its cost is three more than the
circuit a, d, e, c, b, a’, a. The latter circuit is globally and, of course, locally optimal.
Now construct n copies of this graph, setting all distances between nodes in different
copies to 100, except that the a and a’ nodes are at a distance of 20. Any circuit thgt
starts at some a, goes around that copy with either of the two locally optimal circuits
discussed above (leaving out a, a’), proceeds to another copy and goes around it with
one of the two locally optimal circuits, etc., will be a local optimum in the n-copy
graph. For any order of the copies, only one of these 2 circuits will be globally optimal
(the one that always used the second choice). Moreover there are (n-1)! different
ways to arrange the copies. We have constructed a graph with 6n nodes which has at
least (n- 1)!(2- 1) local optima that are not global optima.
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A similar result is given by Papadimitriou and Steiglitz [1978]. They generate
instances with exponentially many local optima with respect to a larger neighborhood.
The construction in Proposition 3.3, on the other hand, uses fewer nodes and can
easily be modified (by placing the a nodes at the vertices of a regular n-gon) to give
planar Euclidean instances with 2n- local optima that fail to be global optima.

We can further sharpen the apparent distinction between LG and NP-complete
problems by showing that LG problems are essentially in NPf-)co(NP) and hence
unlikely to be NP-complete. To be precise, we define the set recognition version of
the optimization problem,

maxf(x),
xX

to be the following question: Given an instance and a number k, does there exist an
x X such that f(x) is at least k?

THEOREM 3.4. Suppose that, for some discrete optimization problem,

maxf(x),
xX

there exists a notion of adjacency which assigns neighbors to each point in such a way
that: (1) the assignment of neighbors is independent of the instance of the problem
(independent oftheparticular data) and (2) each vertex haspolynomially many neighbors.
Then if the problem is LG, its set recognition version is in NPIq co(NP).

Proof. If, given some particular data and a number k, there is no x X such that
f(x) is at least k, this fact can be proved in nondeterministic polynomial time by
"guessing" the true optimum, showing that its value is less than k, and verifying its
optimality by comparing its value with the values of its (polynomially many)
neighbors. [3

A definition of adjacency is obviously not worthwhile if it does not satisfy the
two requirements of Theorem 3.4, data independence and polynomially many neigh-
bors. We call an adjacency scheme reasonable if it satisfies these requirements. Thus
the next theorem is in a sense the broadest possible.

THEOREM 3.5. The clique problem is not LG under any reasonable assignment of
adjacency. Also, under the ordinary notion of adjacency (two subsets S and T of vertices
are adjacent if one is a subset of the other and their cardinality differs by one), there
exists a class ofinstances with exponentially many local optima that are not global optima.

Proof. We play the adversary against an arbitrary fixed adjacency rule. The instance
we construct will have n nodes, though we will not specify what size n is until later.
Our target clique consists of the first n/4 nodes. It will be locally but not globally
maximal. We connect all of these n/4 nodes with edges so that they form a clique,
and we do not make any more edges incident to these nodes. Consider the next n/2

n/2 n/2nodes: there are ,/4J subsets of order n/4 and (l+,/4J subsets of order (1 + n/4). By
assumption, there exists a polynomial p(n) which bounds the number of neighbors a

ln/2subset can have. We choose n to be large enough that np(n) is smaller than ,/4. Then
there must be a subset of the n/2 nodes with the properties that: (i) it is of order
(l / n/4); (ii) it is not a neighbor of the target clique; and (iii) it contains no subset
of order n/4 that is a neighbor of the target clique. We connect the nodes of this subset
so as to make it a clique; all pairs of nodes not in the subset and not in the target
clique remain unconnected. The subset is therefore the global maximum, but any
neighbor of the target clique will not be a clique or will be of order less than n/4.
Given an arbitrary polynomial adjacency rule, we have constructed an instance that
is not LG.
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The ordinary notion of adjacency states that two subsets of the nodes of the graph
are adjacent if one contains the other and their cardinality differs by one. We start
with a complete graph on n nodes, where the nodes are labelled l, 2,. ., n. Next we
delete all of the edges which are of the form (i, + 1). If a subset of the nodes contains
i, it cannot contain either i/ or i-1 and still be a clique. We can build up cliques
(Vl," )k,"" ") by choosing v equal to either node or 2, and )k+l equal to either
Vk+2 or Vk+3. Since the subsets (k,k+l,k+3), (k,k+l,k+2) and (k,k+2, k+3)
do not have all of their edges, the cliques we build in this way are all locally optimal.
There are more than 2n/3 of these because we make at least n/3 choices when
constructing them. Moreover, most of them (all but 2n, at least) are of order less than
n/2, the maximal order achieved by the clique (l, 3, 5, 7,...). We therefore have
exponentially many local optima that fail to be global optima, lq

Theorem 3.5 is proved directly by constructing instances with the desired proper-
ties. A different method of proof may be employed to produce a stronger result in
some cases.

THEOREM 3.6. In the clique problem, for any data-independent adjacency in which
each element has n orfewer neighbors, there exists a class of instances with exponentially
many local optima.

Proof. We prove the theorem nonconstructively by employing the probabilistic
method of Erd/Ss and Spencer [1974]. For n even, construct a graph of order n at
random by including each edge with probability p, 0 < p < 1, p as yet unspecified. Let
S be any subset of the vertices with ISI n/2, and let Sk, k 1,..’, n denote the n
subsets adjacent to S. (It suffices to prove the theorem when each subset has n
neighbors.) For any subset T, let Ir equal if the subgraph of the vertices in T is
complete, and 0 otherwise. The probability that S is locally optimal is

ProbE/s 11. Prob [Is =OVk s.t. Is l> IsllIs- 1]

(3.6.1) =p(/) Prob [Is =OV/s.t. ISkl> Isll Is 1]

where

>--_ p(/2) (-I (1 pek),
k=!

edges in Sk not in S if Is l > Isl,
ek

if s,

Note. The inequality above derives from the possible positive correlation among
the conditional events if Sj and Sk share an edge not in S.

PROPOSITION I. ek >- n/2 for all k.
PROPOSITION II. ek n/2 for at most n/2 values of k.
PROPOSITION III. If ek > n/2 then ek >= n 1.

Proof. Proposition II, Sk S U v for some vertex v S. In Proposition III, Sk
{SUvUw}-z, wherezeS; v,wS, l-1

It follows from these propositions that (3.6.1) is greater than or equal to

(3.6.2) p(/2)( __pn/2)n/2( _pn-l)n/2 >= rn/4( r)n/2( r2) n/2,
where r pn-/2, so r < p,/2-1 and r < -p"/. By elementary calculus, (3.6.2) is
maximized when r is close to 1/4. Therefore, choose p so that r . Then the probability
that S is a local optimum is at least

(1/4) n/413"n/2[ 15’ n/2
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and so the expected number of local optima of size n/2 is greater than

(n)(-28)n/2>(l.05) ’n >_-- 12.
n/2

Note that

--’)- as /’/---)

so the bound on the expectation grows asymptotically as 4n/2()n/2 (1.4) "/.
Since the expected number is exponentially large, there must exist instances in

which the number is large.
Note that the proof, paicularly the propositions and the ensuing inequalities,

suggests that the usual notion of adjacency is a rather good one from the standpoint
of minimizing the expected number of local optima. Also note that the local improve-
ment algorithm for cliques could be extended to allow movement from S to S’, where
S and S’ are not cliques, and the propoion (or number) of "missing" edges in S’ is
smaller than in S without altering the result.

Many known NP-complete problems, such as knapsack or three-dimensional
matching, originated in the form of optimization problems, so the idea of local
optimality applies immediately. Some other problems, such as satisfiability, 3-colora-
bility or 2-paition, are ordinarily set as recognition version (that is, yes/no) problems,
so the concept of local optimality may not seem to apply. However, we have found
that most such problems can be easily transformed into an optimization version. For
example, the Boolean satisfiability problem becomes the problem of assigning Boolean
values to the set of variables so as to maximize the total number of clauses that are
true. The 3-colorability problem becomes the problem of assigning one of three colors
to each node in the graph so as to minimize the number of pairs of nodes that have
the same color and are connected by an edge. With 2-paition, we try to minimze the
difference between the sums of the two subsets; with subgraph isomorphism (given
two graphs G and H, does H contain a subgraph isomorphic to G?) we try to find a

mapping from the nodes of G into the nodes of H that minimizes the number of
conflicts in the corresponding edge sets.

Using this notion of optimization versions of NP-complete problems, we can now
discuss local and global optimality. We believe that all NP-complete problems have
the propey of exponentially many local optima. However, since this statement implies
that P NP, a proof will not be attempted. (If P NP, then any LG problem in P,
such as linear programming, would be NP-complete.) We do remark, however, that
many of the polynomial transformations used in NP-completeness results presee the
"topology" of adjacencies in such a way that local optima remain local optima. It is

usually easy to show that some paicular NP-complete problem is not LG, (at least)
with respect to the natural notion of adjacency.

To transform the clique problem on a graph G (V, E) to a "Boolean maximiz-
ation" problem, let X or 0 as the ith veex is or is not in the subset, 1, ,
Now maximize the number of true clauses in

{X} {X} ’’’ {X} [n+ 1 identical clauses { v} i,j s.t. (i,j) E].

Clearly two propeies hold for all subgraphs S, S’:
f(S) > f(S’) if S is a clique and S’ is not.
f(s) > f(s’)if Isl > is’l and both S and S’ are cliques.



HILL CLIMBING WITH MULTIPLE LOCAL OPTIMA 393

Hence any local optimum in Theorems 3.4 and 3.5 is a local optimum here (there may
indeed be more). The reader may notice that all clauses in the example above have
one or two variables. All is in order, however, since although 2-SAT is in P, 2-SAT
maximization is NP-hard (Garey et al. [1975]).

We thus have the following corollaries to Theorems 3.5 and 3.6.
COROLLARY 3.7. The optimization version of the Boolean satisfiability problem is

not LG under any reasonable adjacency scheme.
COROLLARY 3.8. For any data independent adjacency rule which assigns n neighbors

to each point, there exist instances of the Boolean satisfiability problem with exponentially
many local optima.

Transformations to integer programming, 3DM (three-dimensional matching) and
other problems are not difficult.

4. Conclusions. Local improvement algorithms have been shown to be quite fast
on the average. On the other hand, the number of local optima can be quite large,
especially when the problem is NP-hard. This indicates that the probability of finding
the global optimum may be poor. Note that this probability is not necessarily the
reciprocal of the number of local optima: there may be many trees in the forest, but
if the tree whose root is the global optimum is large (i.e. contains more than the average
share of vertices), the probability of reaching the global optimum is better. However,
determining this probability appears to be difficult.

A very effective way to improve the probability of finding the global optimum is
to find a better than random starting point or points. Hillier 1969] reports considerable
success in solving integer programming problems by using heuristics that identify
promising initial solutions, followed by local improvement. Our results show that in
general local improvement should be an inexpensive way to improve "good" solutions.
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ASYMPTOTIC NORMALITY IN THE GENERALIZED
POLYA-EGGENBERGER URN MODEL, WITH AN

APPLICATION TO COMPUTER DATA STRUCTURES*
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Abstract. In the generalized Polya-Eggenberger urn model, an urn initially contains a given number
of white and black balls. A ball is selected at random from the urn, and the number of white and black
balls added to (or taken away from) the urn depends on the color of the ball selected. Let wn be the random
variable giving the number of white balls in the urn after n draws. A sufficient condition is derived for the
asymptotic normality, as n , of the standardized random variable corresponding to wn. This result is
then used for estimating the computer memory requirements of the 2-3 tree, a well-known computer data
structure for storage organization.

Key words. 2-3 tree, random insertion, method of moments, martingales

AMS (MOS) subject classifications. 60F05, 62E20, 68E99

1. Statement of problem. The generalized Polya-Eggenberger urn scheme has been
widely studied and has many applications 11]. In this model, an urn initially contains
a total of to balls, of which Wo are white and to- Wo black. A ball is selected at random
from the urn, its color is noted, and it is put back in the urn. If the color of the chosen
ball is white, then a white balls and b black balls are added to the urn; if its color is
black, then c white balls and d black balls are added to the urn (Table 1). A negative
value of a, b, c or d indicates that that many balls are thrown away from the urn
instead of being added. The random variable of interest is wn, the number of white
balls in the urn after n draws.

TABLE

Color of
chosen ball

white
black

Number of balls added to
the urn

white black

The probability distribution of wn is known for some special cases (see 11, 4.3
and 6.3]). In this paper we derive a sufficient condition for the asymptotic normality
(as n c) of the distribution of the standardized random variable corresponding to
w,. We then apply the result to estimate the computer storage requirements of the 2-3
tree, a well-known data structure for organizing information in computers [1]. We
make the following assumptions about the parameters a, b, c, d, to, and Wo:

i) a+b=c+d=s>-_l.

ii) to >= 1, and 0-< Wo -< to.
iii) a - c.
iv) b>0 and c>0.
v) If a < 0 then a divides c and a divides Wo. Similarly, if d < 0, then d divides

b and ddivides to-Wo.
Received by the editors September 29, 1982, and in revised form March 1, 1984.
Indian Institute of Management Calcutta, P.O. Box 16757, Calcutta 700 027, India.
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Let us say that a generalized Polya-Eggenberger urn model is tenable if conditions
(i) through (v) hold. Then the basic result of the paper is as follows:

Given a tenable urn model, the distribution of the standardized random variable
corresponding to wn as n --> oo converges asymptotically to the standard normal distribu-
tion whenever a c <- s! 2.

The proof uses the method of moments. For an example of a tenable urn model,
suppose to Wo 2, and

[ac db]=[ -24 -33].
This is the model for random insertions in 2-3 trees, described in 3.

Assumptions (iii)-(v) are less restrictive than they appear. For instance, (iii) simply
rules out a degenerate case. As for (iv), it does not make sense to allow b and c to
take on negative values. To see this, suppose b < 0, and that the urn contains a white
ball. Since a s-b > 1, it is possible that only white balls are drawn subsequently,
and after a while there may not be any more black balls left in the urn to throw away,
i.e., the model can get "stuck." A parallel situation arises if c < 0. When b- c 0, we
get the simple Polya-Eggenberger model, for which the distribution of w, is known
[11]. The only case which has not been studied here and which requires further
investigation is when

rain (b, c) 0<max (b, c).

This case presents some curious technical problems and appears to need a separate
treatment. Coming to assumption (v), note that if (v) does not hold, it can happen
that a white ball is drawn from the urn, but the urn contains fewer than a white balls,
so that it is not possible to throw away a white balls as required.

We briefly review some related work. Bernard Friedman [8] looked at the special
case that arises when a d->0 and b c >-0. He derived the differential-difference
equation for the characteristic function of wn, and obtained integral representations
for the probabilities of getting a white ball on the nth draw and of having k white
balls in the urn after n draws. D. A. Freedman [7] extended Bernard Friedman’s
analysis and used the method of moments to show, under certain conditions, the
asymptotic normality of w as n-. More general urn models have been proposed
by Athreya and Karlin [2], but they did not allow negative values smaller than -1 of
a and d.

2. Main results. Since the method of moments is being used, it is necessary to
begin by getting expressions for the expected value and the standard deviation of w,,
and then to compute the higher order central moments. Most of the time only limiting
values are of interest, so we use asymptotic methods extensively in the proofs.

Let q a-c. As b + c > 0, we have q < s. For n->_ 0, let tn be the total number of
balls and wn the number of white balls in the urn after n draws. Then

(1) t,, to+ ns

and

Wn Wn(2) P[w,,+, w. + alw.] P[Wn+l w,, + clw,,
t, t,

Thus the sequence {w,} is a Markov process.
LEMMA 1. E(w,)"-ct/(b+c) as n-->oo.
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Proof From (2),

E(w,,+,)=(I +)E(w,,)+c,
Making the substitution

n>=0.

C
(3) y. w, b+c n_>0

we get

which has the solution

where

( c )to B(1 n)E(y,,) Wo [+c n>=O,

B(r,O)=l, B(r,n)= 1+ n_->l
j=O

for integer r-> 1. By Claim of the Appendix E(y.)= o(tq./s) as noo and since q<s,
we conclude that E(w.).--ct./(b+c) as noo. I-]

LEMMA 2. When n 00,

ii) tr(w.)--- (t. In t.) /2 ifq--.
Proof Using the notation of Lemma 1, by (2) and (3), for n >-0,

CS C Yn CS
2 b

+ + Y"+C-b+c c
E(y.+ly.) y.+a b+ b+c b+

This yields the recurrence

(4) E(y2.,+l) ( +2-)E(y2.,)-t b c q2 bcq2)2b+c t.
E(y.)+

(b+c
n>=O.

is
i) First suppose q < s/2, q # O. The homogeneous equation corresponding to (4)

which has a solution

E(yZ.,+,) 1+ E(y2,) 0,

Q(2, n)=B(2, n), neO.

A particular solution of (4) is

R(2, n)= bc(q)2 b-c

s-2q b+c t.- qE(y.), n>=O,
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SO the complete solution of (4) can be written in the form [12]

E(y.) kQ(2, n)+ R(2, n),

where k is a constant which can be determined with the help of the initial condition

ct0 2E (y20) y20 Wo b + c!
The variance of w. is

V(wn) E[w.- E(w.)]2= Ely.- E (y,,)]2= E(y2)-[E(y.)]2,
so by Lemma and Claim of the Appendix, as n-->

q
tn+o(t.).V(w.)

bc
’b+s-2q

ii) Now suppose q s/2. Then (4) simplifies to

b2- c2E(y2.+t) t.+ E(y2.)+ E(y.)+ bc, n >-0.

The homogeneous equation

E(y+) tn+---A E (y) 0
t.

has a solution of the form Q(2, n)= t.. To get a particular solution R(2, n) we try the
substitution R(2, n)= t.g(n)+(c-b)E(y.), n>=O and get the new recurrence

t.+lg(n+l)=t.+g(n)+bc, n>=O,

where we have assumed

g(o)=Y+(b-c)Yo,
to

so that

Thus for n-> 1,

g(n)=g(0)+bc
j=l tj’

n>__l.

E(y):kt.+(c-b)E(yn)+t.g(O)+t.bc
1

j=l tj’

where k is a constant to be determined by the initial conditions. But as n--> o,

l lln
j=l tj s

So we can conclude that as n-->

which gives

E(y2.
bc

t, In t,,
S

V(w,)
bc
t In t.
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COROLLARY 1. If q <-- S/2 then

i) tr -->0 as n-->oo,

ii) w" a.s.> C

t, b+ c"

Proof. i) By Lemma 2.
ii) By i) and Lemma 1,

W p C

tn b+c"

Since the probability space here is countable,

W C

t,, b+ c"

(See Chow and Teicher [5, Ex. 2, p. 43].)
Our problem now is to see if the standardized random variable

w,, E(w,,) y,, E(y,,)
tr(w,) tr(y,)

has an asymptotically normal distribution when q <-s/2. We base our approach on the
method of moments. The idea is to determine the higher order raw moments of y,,
with the help of which the asymptotic values of the higher order central moments of
w,, and hence of z., can be computed. These can then be shown to converge to the
moments of the standard normal variate.

By (2) and (3), for r_> 1,

+ + y,,+c--+E(yr,,+lly,,) y,, + a b b c

so that forr=>l andn->0

(5)

where

E(y+l)- + E(y) Pr,r--j+
qr’r--J E(y-j)

j=l t. /

Pr’r--J= j b+c b+c
bj-I + (-

qr’r-J=
j+ b+

[bJ+’ +(-1)JcJ+l]’

J )=0 forj>l
j+l

It is to be noted that Pr,r-I--0, qr,o=0, and E(y,) 1. The initial conditions for the
recurrences are

ct0E (y) y wo- b + c]
r>=l.
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LEMMA 3. Let q < s/ 2, q O. Then as n
i) For even r >- 2,

E (yr) ertr/2 / O( tr/2)
where er 3" 5 (r-1)e/2 and e2 bc(q/(b/ c))E/(s-2q).

ii) For odd r >- l,

Proo For r and n 0, the homogeneous recurrence corresponding to (5) is

(y+,)- 1+ (y)=0,

which has a solution of the form

Q(r,n)=B(r,n), nel.

For q < s/2, by Claim of the Appendix, as n m

B( r, n o( t/)
so to prove the lcmma it is enough to look at a paicular solution R(r, n) of (5). By
Lcmmas and 2, Lemma 3 holds for r l, 2. So we assume inductively that for j r,
as @,

ejt/ + o(tI) for j even,
R (j, n) o(t/) for j odd.

Let us suppose r is even, and make the substitution R(r, n) =f(r, n)+ e,t/ in (5).
Then

e(t+s)/+f(r,n+l) 1+ [et/+f(r,n)]

t t /

since e (r-1)e.er_, we simplify and get

Then

+
"-’ ]f(r, n)= B(r, n) f(r, k) k B(r,j+ l)j=

where k 0 if rq-t,, for all rn => 0, and k rn + if rq tm for some rn => 0. (See,
for example, Jordan [12, p. 583].) So by Claim 1, for q < s/2,

f(r, n) o(

When r is odd we make f(r, n) R (r, n) and proceed similarly.
LEMMA 4. Let q s/2, q O. Then as n ;
i) For even r >- 2,

E[w, E (w,)] ert/2 + o( t’,/2)
where er is defined as in Lemma 3.
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ii) For odd r >- 3,

E[wn E wn)]r o( t/2).

Proof. Clearly, for n ->_ 0 and r ->_ 2,

E[wn E(w,)]r= E(y, E(y))

=E(y,r,)+ (-1)(r)
j= j

E(Y-)[E(Y)]"

Now use Lemma 3.
THEOREM 1. Let q s/2, q ys O. Then as n -> 00,

{ w E(wn) x} -> (x),P z= tr(wn)

where t is the distribution function of the standard normal variate.

Proof. By Lemmas 2 and 4, as n -> 00,

3 5 (r- 1) r even,
E(z)->

0, r odd.

But this uniquely characterizes the standard normal variate (see Fisz [6]).
The special case s is of great interest, and we make the following observation:
COROLLhRY 2. Given a tenable urn model with s 1, the distribution ofz, as n -> 00

coincides asymptotically with the standard normal distribution.
Proof We observe that for a tenable urn model with s 1, it must be the case

thatq<s/2. El
We now come to the case q s/2.
LEMMh 5. Let q s/2. Then as n->00.

i) For even r - 2,

E(y) e’(t. In tn) r/2

where

e =1. 3 5 r-1)(e) r/2 and e bc/ s.

ii) For odd r >-1,

E(yr,) o( t, In t,) /2.

Proof We proceed as in the proof of Lemma 3. This time the solution Q(r, n) to
the homogeneous recurrence has the form

Q( r, n) B( r, n) O( t/2)
for r as n -> 00. So it is once again enough to look at a particular solution R(r, n).
By Lemmas and 2, Leinma 5 holds for r 1, 2. So we assume inductively that the
lemma holds for 1-j (r, and supposing r even, make the subsitution

R(r, n)=f(r, n)+ e’r(t In t) /2.
Substituting in (5) and simplifying, we get

f(r, n+ 1)-(1 +)f(r, n)= o(t, In to) r/2-1
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which implies

f(r, n, O(tn In t) /2

as required. A smilar procedure can be followed when r is odd. l-]

THEOREM 2. Let q s/2. Then as n-

{ wn E(w")
< x) -> dp(x)P zn= r(Wn)

where gp is the distribution function of the standard normal variate.

Proof. Use Lemmas 2 and 5.
An open problem is to determine the asymptotic distribution of zn when s/2 < q < s.
We now take a look at some alternative approaches to the problem. Note that for

q < s, { wn} is essentially a martingale. Let

Wn= anWn + fin, n >=O

where an, fin are real numbers. Then

(w’,+,lw:,, w,. ., w’)=

provided an+/an tn/(tn+q) and/3n+-/3n =-can+. So we can choose

r(to/s + n)
a.=r((to+q)/s+n) n

Then

Moreover,

fin C t "Jr" 0
--CS l-q/sn

j= b+c

Un E[(w’.+- w’)21w’.] =--’ (an+q (an+q)2.

When q <= s/2, we can now show, by an application of the Hajek-Renyi inequality
(see [5, p. 243]), that lim._.(w’./antn)=O, which implies

W C

tn b+c"

On the other hand, when q > s/2, n__ Un <. Hence by [9, p. 33], limn_. w’
exists and is finite. Thus in

Wn --fin W

the first term dominates, so we get

W C

tn b+c

more easily. It is an open question whether the asymptotic normality of wn can be
proved using martingale theory.

Athreya and Karlin [2] (see also Athreya and Ney [3, pp. 219-224]) have suggested
a natural embedding of Polya’s urn model in a branching process. In their most general
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scheme, there are m colors. If color is drawn (and replaced), then we add Rij balls
of color j, 1-<j <-m, where (Ri. Ri2,’’’, Rm) is a random vector with a preassigned
distribution depending on i. While R, =-1 is allowed, other negative values are not
allowed. It may be possible to extend their scheme to allow several simultaneous
deaths. Multivariate extensions of Theorem of this paper could have interesting
applications to computer data structures like B-trees. Recently, Hoist [10] has given
a unified treatment of various urn problems, but he has not considered the generalized
Polya-Eggenberger model.

3. 2-3 trees. A 2-3 tree T is a rooted, oriented tree in which each internal node
has 2 or 3 sons, and every path from the root to a leaf has the same length. A key is
associated with each leaf (see [1, pp. 148-152]). The keys, which are positive integers
and are all distinct, form an ascending sequence viewed from left to right in T. An
internal node in T is W-type if it has 2 sons and B-type if it has 3 sons. A key is white
if it is a son of a W-type node; otherwise it is black.

Fig. l(a) shows a 2-3 tree having the keys 10, 30, 50, 60, 70, 80, 90. The internal
nodes Bo and Do are W-type, while Ao(root) and Co are B-type. The keys 10, 30, 80
and 90 are white, while 50, 60, 70 are black. Suppose we now want to insert a new
key with value 20 into the tree. Clearly, 20 must be put in between 10 and 30, and we

(a)

o o 50 60 70 80 90 keys

(b)

10 20 30 50 60 70 80 90

t

10 20 30 50 55 60 70 80 90

FIG.
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would get the tree shown in Fig. l(b). Bo has now become B-type, and the only white
keys are 80 and 90. If we now insert another key with value 55 into the tree, then Co
would have 4 sons, which is not permissible. So Co is split into two W-type nodes C
and C2. As a consequence, Ao has 4 sons, and gets split into two W-type nodes A
and A2. The tree has a new root node Eo, as shown in Fig. l(c).

Talking in general terms, let T be a 2-3 tree with r keys for some r_-> 2. Let K,
K2, , Kr be the keys in T in ascending order of magnitude. We make the assumption
that Kr oo; this takes care of an asymmetry inherent in the 2-3 tree insertion algorithm
given in [1]. A new key K is to be inserted into T, where K does not equal in value
any of the keys already present in T. We find i, _<- -< r, such that Ki-l < K < Ki (where
Ko 0). We then attach K to the father of Ki, placing K in the tree between Ki_ and

Ki. If the father of K is a W-type node, then the insertion of K makes it a B-type
node; if it is a B-type node, then it gets split into two W-type nodes, and this can
cause B-type nodes at higher levels of the tree to split also, as Fig. l(c) shows. The
insertion of K is said to be a random insertion if K has equal probability of lying in
any one of the r intervals (K_I, K), -< <_- r.

The 2-3 tree is a widely used data structure for storage organization in computers,
so it is important to estimate its memory requirements. One way to do this is as follows.
Let To be a 2-3 tree with to >= 2 keys of which Wo are white. We make a random insertion
of a key into To to get a 2-3 tree T, then we make a random insertion of a key into

T to get a tree T, and so on. Let t, be total number of keys and w, the number of
white keys in T,, the 2-3 tree after n random insertions, where n =>0. Then w, is a
random variable, and this whole process of random insertions can be modelled using
a generalized Polya-Eggenberger urn scheme, where the matrix

[a b] [-2 3]c d 4 -3

Here s 1, q -6 and t, to + n. If the distribution of w, is known, then it is possible
to obtain bounds on the random variable N,, the number of internal nodes in T,. The
value of N, gives a fair idea about the memory needs of

In [15], Yao derived an expression for E(w,), and with its help obtained bounds
on E (N,). However, bounds on N, are much more meaningful in practice than bounds
on E(N). Using our results we are able to determine the limiting distribution of
and so are able to get bounds on N, for large n with high levels of confidence.

LEMMA 6. As n-

4 4n
i) E(w,)----(n + to)------

6 11 12 3ii) o’(w.) (n +/0) I/2""-
Proof Note that q =-6 and use Lemmas and 2.
THEOREM 3. Let

w.L. =- (n + to)-1---,4
(i) For n>-O, L.<-_N.<-_M..

9n 3 33-(ii) E(L.)--.-, o-(L.)---

2 W.M, - n + to) +---1.3

4 3(M,)---, o-(M,) 7
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(iii) As n--> o, the standardized random variables corresponding to Ln and Mn are
asymptotically normal

Proof. i) Let N’ be the number of internal nodes in Tn at the lowest level. Then

N’ wn tn-- Wn tn Wn
-’---2 3 3 6

Let N"= N,- N’. So N" is the number of internal nodes in T, at higher levels. The
minimum value of N" is (N’-1)/2 when all nodes at higher levels are B-type, while
the maximum value of N" is N’- when all nodes at higher levels are W-type. Hence

N’-
N’+<-N,<=N’+N’-I or L,<-N<=M.

2

(ii) By Lemma 6.
(iii) By Corollary 2. [3

The bounds on N, are not strong. Better bounds on E(N,) have been derived by
Yao [15], but in order adequately to formulate his "second order analysis" in terms
of the generalized Polya-Eggenberger model, a multivariate counterpart of Theorem
must be proved. It appears that such an extension of Theorem would also make

possible an analysis of the memory requirements of B-trees [13], [15]. Brown’s work
[4] on AVL (height-balanced) trees parallels Yao’s work on 2-3 trees, and it should
be observed that the results of this section apply with minor changes to AVL trees as
well.

Appendix.
CLAIM 1. Let tj be as in 2, i.e. tj to +is, where j >-O. Let x be any real number,

and let

f(n)= 1+
j=O

Then as n o, f(n) O( t’ s).
Proof. Clearly,

r(to/S)
f(n)

r((to + x)/ s)

But it is known that for real u, when u--> o

r((t.+x)/s)
F(t,/s)

r(u)-4 u-’/

(see 14, p. 254]). The claim follows.
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ON NONNEGATIVE SOLUTIONS OF MATRIX EQUATIONS*

H. D. VICTORY, JR.f

Abstract. Let A be a nonnegative and nontrivial n x n matrix. In this work, we present necessary and
sufficient conditions for the matrix equation, (AI-A)x- b, to possess a nonnegative solution x whenever
b is a given nonnegative and nontrivial vector and A is any given positive parameter. This analysis extends
a result of S. Friedland and H. Schneider (SIAM J. Alg. Disc. Meth., 2 (1980), Thm. 7.1, pp. 185-200).

1. Introduction. In some fields of applied mathematics (e.g. radiative transfer,
linear transport), numerical approximations of the exact underlying equations often
produce conditional equations of the form

(1.1) Ax Ax + b,

where A is a positive parameter, b is a nontrivial given vector with nonnegative
components, and A is a nonnegative and nontrivial n n matrix. For physical reasons,
say, one wishes to conclude the existence of a solution x with nonnegative components.
The primary purpose of this note is to utilize the Frobenius structure of the matrix A
to provide equivalent conditions for the "nonnegative" solvability of (1.1) whenever
A is any given, positive number. The results we obtain can be viewed as refinements
of the results contained in the work by S. Friedland and H. Schneider [2, Thm. 7.1].

At this point, it may perhaps be useful to provide some definitions and concepts
which will play a role in our analysis. The spectral radius of the matrix A is expressed
as p(A) and will be assumed positive throughout the discussion. We let 92 be the
set of all n n nonnegative matrices, and write A>_-0 (A>>0) forA whenever A
has nonnegative (positive) entries, and A > 0 if A-> 0 and A # 0. Similar definitions
will apply to vectors. We shall also assume that A has been expressed in Frobenius
normal form,

(1.2) A=

AI2
A22

where the diagonal blocks A, a 1, , v, are either irreducible or null matrices.
All subdiagonal blocks are zero. If h n, we write Ihl to mean the nonnegative vector
whose components are the absolute values of the corresponding components of h. ,t
will denote the cone of nonnegative vectors in .

We recall that the (reduced) graph G(A) is a subset of (v) (v), where the vertex
set (u)is given by (v)={1,2,...,v} and G(A)={(a, fl)(u)x(u):A,,#O}. Each
(a, fl) is called an arc of G(A) and we see from (1.2) that a=</3. Also, (a, a) G(A),

-<_ a <= u, unless A is the null matrix 0. A simple path or chain from a to fl in
G(A) is a sequence 7r (ao, a 1, ", as) where either s => 1, -< a ao <" < a, =/3 -<

v, with (ai-l, ai) G(A), i= 1,. ., s, or s=0 and a ao=/3, with (a, a) G(A). The

* Received by the editors April 7, 1983, and in revised form January 29, 1984.
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was also provided by the Faculty Developmental Leave Program of Texas Tech University for the academic

year, 1982-1983.
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support of 7r is the set supp 7r={ao, a,..., as}___(v), where ai, i=0,..., s, are
assumed listed in strictly ascending order. For <= a, /3 <= v, we shall say that/3 has
access to rorn) cr in G(A) if there is a simple path from (to)/3 to (from) a in G(A).

For any matrix B and eigenvalue A, we define Ar(B) to be the space of right or
column vectors annihilated by [A I-B]n. The index of the eigenvalue A is defined to
be the smallest nonnegative integer no such that Vo(B)= ACo+l(B). This subspace is
the algebraic eigenspace of B belonging to A, and its elements are called generalized
eigenvectors.

In our analysis, we shall regard b as partitioned conformably with A in (1.2) as
b’=(b), bt(2), b)) where the superscript denotes transpose. The support of
b > 0 is the set {a 1, , v: b() 0} and is denoted supp b. Before stating our main
result, we call a nonnegative eigenvalue ofA 9 _n distinguished if there is an associated,
nonnegative right (i.e. column) eigenvector. We list the distinguished eigenvalues as
p(A) > 2> > ,, where the integer r/-> 1. The result we prove is"

THWOREM. Let A ,Y with p(A) > 0, and suppose the right (column) vector b > O.
Moreover, assume that A is in Frobenius normal form (1.2) and that the vector b is

partitioned conformably with A. Then the following are equivalent:
(i) There is an x 9, x > O, such that I A)x b.
(ii) No a, for which p(A,) -> , has access in G(A) to any vertex in supp b.
(iii) [h[tb =0 for every h in the algebraic subspace of A’ associated with only the

distinguished eigenvalues hi >- .
(iv) lim,,_ Eo (A/ )b exists.
(v) limm_. (A/h)mb O.
Further, if (iv) holds and x lim,,_ =o (A/,)b, then

(1.3a) x() 0 /f/3 does not have access to a supp b;

xo) >> 0 if has access to at least one a supp b.

As pointed out by Friedland and Schneider in their concluding remarks to [2, Thm. 7.1 ],
the equivalence of conditions (i) and (ii) in this theorem was shown by D. H. Carlson
[1, Thm. 1]; thus the equivalence of conditions (i) and (ii) of our theorem is a direct
generalization of Carlson’s results.

It is interesting to see that the graph theoretic condition expressed by (ii) can be
reformulated in terms of a purely algebraic condition (iii) on the distinguished eigen-
values of A. The latter condition is fundamentally a condition about indices not included
in supp b; and states that nonnegative solvability of (h I-A)x b is equivalent to the
nonintersection of the support of the vector b with the union of supports of the
generalized eigenvectors belonging to the distinguished eigenvalues Ai->_ A. In 2, we
shall prove our main result and give some illustrative examples in 3.

2. Proof of the main result. The bulk of this section will be devoted to proving
the equivalence of the "alternative condition" (iii) to the other conditions in the
statement of the theorem. Toward this end, we first prove a simple result about the
distinguished eigenvalues of the matrix A which is very close to a result stated and
proved in [3] by Frobenius. Then we give some insight into the structure of the adjoint
algebraic eigenspaces associated with the distinguished eigenvalues. This latter result
can be proven by an analysis similar to that by U. Rothblum in [5] and seems to be
interesting in its own right.

PROPOSITION 1. Let Ao> 0 and let (A,,,,: i- 1, 2,..., N(Ao)} be the collection of
diagonal blocks in 1.2) with spectral radius Ao. Then Ao itselfis a distinguished eigenvalue
of A, if, and only if, there is at least one io, <- io <- N(Ao), such that the vertex as has
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access (a) either from only itself in G(A) or (b) from only those vertices fl in G(A) for
which p(A,) < Ao.

Proof. Suppose either (a) or (b) is true. Then, let 1-1,% consist of precisely those
vertices having access to aio in G(A). The matrix A is invariant on the subspace of
(right or column) vectors in ,i" which have support at most II%. We can construct a
nonnegative (right) eigenvector to Ao by first defining it zero on those vertices not in

II%, and then using the constructive procedure in Gantmacher [4, Thm, 6 (Part 2),
pp. 77-78] to generate the portion which is positive on those vertices comprising II,%.

Conversely, let Ao be a distinguished eigenvalue and Xo an associated nonnegative
right eigenvector. Let IIo be a collection of those vertices comprising the support of
Xo. Since A leaves invariant the subspace So of (column or right) vectors with support
at most IIo, we can employ a suitable permutation to express A as

where Ao AlSo and p(Ao)= Ao. Without loss of generality, we can assume that Ao is
expressed in Frobenius normal form (1.2). Again, the analysis in Gantmacher [4, Thm.
6 (Part 2), pp. 77-78) enables us to deduce the existence of a vertex cq having
the properties asserted in the statement of the proposition. Just as importantly, we see
by Gantmacher’s arguments that any other vertex/3 IIo, for which p(At)= Ao, has
access neither to nor from c% in G(A). This completes the proof of Proposition 1.

Remark. A result similar to Proposition is valid for the distinguished eigenvalues
to the adjoint matrix A’ if we replace "access from" by "access to" in the statement
of the proposition.

We now proceed to give some insight into the analytic properties of the algebraic
eigenspace of A’ associated with a distinguished eigenvalue Ao of A. In order to correctly
formulate our result, we shall require some additional terminology which can be seen
to be similar to that of [2, 4] for describing the singular vertices of G(A) (i.e. those
vertices a for which p(A,,) p(A)). Let rr be a simple path from a to/3 in G(A) and
let kxo(rr)+ be the number of vertices in the support of rr whose associated diagonal
blocks in (1.2) possess eigenvalue Ao. We label such vertices, "Ao-vertices". We set

(2.2) ko(a,/3) max {ko(r): ,r is a path from a to/3 in G(A)}

(and set kao(a,/3) =-oo if there is no path from a to/3 and equal to -1 if there is no
Ao-vertex in any rr). The integer kao(a, fl) is denoted as the Ao-distance from a to/3.
A simple path rr from a to/3 is labeled a maximal Ao-path if the number of Ao-vertices
in supp rr is kao(a,/3) + 1. We say that vertex a has Ao-access to/3 in exactly n steps
if kxo(a fl)+ n.

Let Fxo be the collection of M vertices aj (v), j 1,- , M, for which Ajj has
Ao as an eigenvalue, and select a particular aj Fo. Define IIao(J) to be the collection
of all vertices a (v) having access from aj in G(A) and kao(J)+ to be the largest
number of Ao-vertices in any simple path with initial vertex aj. We then partition
IIao(J) in the following manner:

(2.3)

}o(J) {ate Ilxo(J): eel has ao-access from aj in exactly one step},

o(j) {at E 1-Ixo(J)" at has ao-access from tXj in exactly two steps},

}x (J)={alEl-Ixo(J)" al has ao access from aj in exactly (kao(J)+ 1) steps}kxo(j)+
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(We note that such a partitioning provides a recipe for constructing a simple path
between any two vertices in Ilao(J) with a maximum number of Ao-vertices.)

The next proposition describes the support structure of the algebraic eigenspace
of A belonging to Ao:

PROPOSITION 2. (1) A basis for the algebraic eigenspace of A’ belonging to Ao can
be chosen to consist ofgeneralized (right) eigenvectors xt(J, Ao), J Fo, 1,. ., N(J),
where each xt(J, Ao) has support at most on Ilao(J). Also xt(J, Ao)(j is any one of the
N(J) linearly independent (column) vectors annihilated by (AoIj,,,-A,)"’(J, where
m(J) is the index of Ao as an eigenvalue of A,,j (here, I is the submatrix of the
identity matrix associated with vertex aj

(2)

(2.4) Index Ao -< max (mr(J)+ m2(J)+ + mkofj)+t(J)),
JFxo

where each mi(J) is the maximum of the indices of Ao as an eigenvalue of those A3,
with fl any Ao-vertex in o(j), i= 1,..., k;o(J) + 1.

The proof of Proposition 2 proceeds in the same manner as the proof in [5, Thm. 3.1
(Part 1), pp. 284-288]. We now turn to proving the theorem stated in 1. Before showing
the equivalence of (ii) and (iii), we first show (i) => (ii) => (iv) => (i) and then (iv) => (v) =>
(ii) as done in [2, Thm. 7.1].

(i)=>(ii). Suppose that (AI-A)x= b, b>0, has a nonnegative solution x for
A <= p(A). Then the system

(2.5) (p(A)I A)x b’, b’= b + (p(A) A)x

also has a nonnegative solution, and from [2, Thm. 7.1] we can conclude that no singular
vertex/3 has access to any vertex a in supp b’ and thereby to any vertex a in supp b.

To deduce statement (ii), we repeat this analysis. We write (2.5) in block form

(2.6)

and observe that the truncated system

(2.7a) (AI-A)x()- Ax()=(), a=8,+l,..-,,

also has a nonnegative solution. Therefo,re, any vertex /3 satisfying p(Aoo)>-A will
have no access to any vertex a in supp {b); a 3, , K} and thereby to any vertex
c in supp b. Condition (ii) follows.

From (ii), we see that Fb, the set of all vertices in (v) which have access to any
vertex in supp b, includes no vertex a for which p(A) >= I. The subspace of (column
or right) vectors, Sb, having support at most equal to the vertices in Fb U supp b, reduces
A; and hence a suitable permutation transformation enables us to express A in the
form (2.1), where Ao here is AISb and p(Ao)<A. Thus, by using the arguments in
Friedland and Schneider [2, Thm. 7.1], we can deduce (iv), and then (i) (via, say, a

Neumann series argument).
Showing (iv)=>(v) is trivial, and we now turn to proving (v)=>(ii) by a contradic-

tion argument. Suppose there is a vertex a in Fb U supp b for which p(A,,,,) >_- I. Then,
in (2.1), p(Ao)->_ A, and there is an integer N such that the support of (A/A)b will
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include at least some of the components comprising the vertex a. Letting bo (say) be
the block of b conformable with Ao, we have for any n > N that

b bo > p(A). -N

A
y bo x

where y and x are the left (row) and right (column) igenvctors, respectively, to

A belonging to p(A). Statement (v) is thereby violated.
We now show (iii)(ii). Let us first list the distinguished cigenvalues greater than

or equal to A as A,(= p(A))> A:>... > A A. For A,, we collect all the singular
re,ices ,,. , in a set F, and we let Hx, be F, plus other vices in G(A) which
have access from at least one singular vccx in F,. The results of U. Rothblum
[5, Thm. 3.1] can now be exploited to produce a basis for the algebraic igenspac of
A’ corresponding to A, consisting solely of nonncgativc vectors. The union of the
suppos of these basis vectors is precisely Hx,. The requirement that fi’b 0 for any
fi in the algebraic cigcnspacc of A’ belonging to A, then means that b must vanish at
all the vciccs in

Wc note that H, includes all vciccs for which p(A)= A > Au and some (but
not all[) for which p(A)= A. That all vcices for which p(A)> A
is easy to scc" if all arc not in H,, wc list the excluded ones as i, ," ", and pick
the o with the largest spectral radius. Then it (or possibly some other vccx whose
diagonal block in (1.2) has the same spectral radius) has access only from itself or
from those vcices for which p(A)< p(A o) and therefore p(Aoo) would
then bca distingmshcd cigcnvaluc, by Proposition I. A similar analysls appllcs to the
other j, j l,..., r. Because Au is a distinguished igenvalu, we also know from
Proposition that Hx, cannot contain all of those vciccs for which p(A)
Let us enumerate the Au-wiccs excluded from H, as ,, ,. ., (), and define

H to be the set of all vices in <v> not in H, which have access from at least
of the , i=l,...,

Now, a close perusal of the proof of Proposition 2 outlined in the beginning of
this sctionor, equivalently, a perusal of pa (i) of [5, Thm. 3.1, pp. 285-288]wiII
convince us that each , i= 1,2,..., N(A), will be associated with a generalized
cigcnvcctor of A’ associated with Au whenever the set of accessible vciccs from each

is paitioncd as in (2.3). The impoant thing to note hcrc is that each cigcnvcctor
associated with each , i= 1,2,..., N(A), can be chosen to be positive on
appropriately accessible re,ices of H. Therefore, (iii) forces b to vanish on

The proof of (ii) is a repetition of this analysis. We finally note that H,
UH includes all vices for which p(A) A(ifA A). If not, there would

exist one excluded vcx which would generate a distinguished cigcnvaluc not equal
to any A, i= l,..., M. This contradicts the fact that all A, i= I,..., M, wcrc the
only distinguished cigcnvalucs greater than or equal to A.

Condition (iii) trivially follows from (ii), since a basis for the algebraic igenspac
ofA’ belonging to a distinguished cigcnvaluc Ao A can be constructed via Proposition 2
to have suppo only on the subset of <v> described in (ii). Any other set of basis
elements can, of course, bc represented as linear combinations of elements constructed
via Proposition 2.

Items (l.3a,b) are easily shown. This completes the proof of our main result.
Remark. The proof that (ii) is a consequence of (iii) shows that we can euiualntIy

replace fi’ by h’ in the statement of (iii).

3. Some examples. Wc now give some examples to illustrate our theory.
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Example 1. Let A be given by

(3.1) A= 0

0 0 1/2

We easily see that p(A)--1, and is the only distinguished eigenvalue. We also see
that vertices { 1, 2, 3} have access from the singular vertex 1, and thus there is no purely
nonnegative solution of (hl-A)x=b for b>0 for any h e(0, 1]. We also note that
(1, 1, 1)’ is a basis for the algebraic eigenspace of A’, and, of course, there is no b > 0
annihilated by this vector. In other words, nonnegative solvability is possible for
b’= (0, 0, 0), when h e (0, 1], with the result that x’= (0, 0, 0), h < and can be a

nonnegative multiple of (1, 0, 0) when h 1.
Example 2. Let A be given by

(3.2) A= 0-] 1/4
0 0

We see that p(A)=/1 with /2-" and h3=1/2 also distinguished eigenvalues. We
note that v(1) (1, 1, 1)t and h(1) (0, 0, 1)t are eigenvectors of A and A respectively
corresponding to h 1. Corresponding to A2 = are eigenvectors v(])= (0, 1, 0) and
h()=(0, 1,-1) of A and A respectively. Similarly, corresponding to h3=1/2 are
eigenvectors v(1/2)= (1, 0, 0) and h(1/2)= (1, 0,-1) t.

For values of h (-34, ], we see that b > 0 must have support at most on vertices
and 2 in order to guarantee a solution x > 0. For h (1/2, ], b must have support on
vertex only, and there is no solution x > 0 of (h I A)x b for any b > 0 when h (0, 1/2].

Example 3. The following is the Frobenius normal form of an example given by
Rothblum [5, p. 284]:

-3 7
3

(3.3) A

0 6 0 0 0 0 0-

0 0 3 0 4 0 0

8 0 8 0 0 0

2 0 0 0 0

3 5 0 0 0

0 3 0 0 0

0 2 0

3 3
1_

From Proposition 1, we see that p(A)= h 3 and /2"-1 are the only distinguished
eigenvalues. So, for the matrix equation (h I-A)x b with < h _-< 3, we must require
that b > 0 have support on vertex 3 in order to guarantee a solution x > 0. For 0 < h -< 1,
there is no b > 0 for which a nonnegative, nontrivial solution of (hi- A)x b will exist.

Remark. In all three examples, we have not treated the case h > p(A), as nonnega-
tive solvability of (hI-A)x b is well known for any b > 0.
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DECOMPOSITION OF A COMPLETE MULTI-PARTITE GRAPH INTO
ISOMORPHIC CLAWS*

SHINSEI TAZAWAf

Abstract. A graph is called a complete m-partite graph, denoted by Kin(hi, n2,... rim) if its point
set is partitioned into m subsets of hi, n2," ", n,, points each such that every pair of points in the same
subset is not adjacent and if each point in one subset is adjacent to all points in the other subsets. A complete
bipartite graph K2(I, c) with c+ points and c lines is called a claw of degree c. Km(nl, n2," ", n,.) is said
to have a claw-decomposition of degree c if it is a union of line-disjoint subgraphs each isomorphic to a
claw of degree c. In this paper, a necessary and sufficient condition for Kin(hi, n2,’’’, nm) to have a
claw-decomposition of degree c is given.

1. Introduction. The reader is referred to [1] for any term not defined below.
Consider a graph without loops or multiple lines. Let m(=> 2) be an integer and let
K,,(nl, ha,’’’, n,,) denote the complete m-partite graph whose point set may be
partitioned into VI, Va, , V,,, where the cardinality V ni for i= 1, 2,. ., m and
points u, v are adjacent if and only if they belong to distinct sets V, V in the partition.
Each set V is called an independent set. In the particular case when nl n n,
1, the graph is a complete graph. A complete bipartite graph K(1, c) with c+ points
and c lines is called a claw or star of degree c(>= 2), and it is denoted by Sc. Since a
claw is a tree, we call the point of degree c the root. Given a claw So a complete
m-partite graph K,,(nl, n,..., n,,) is said to have a claw-decomposition of degree c
if it is a union of line-disjoint subgraphs each isomorphic to So.

The problems on claw-decomposition of graphs arise in filing theory, since a
claw-decomposition yields a file organization scheme. Yamamoto et al. [4] completely
solved the problem of claw-decomposability of a complete graph. The decomposition
yields an optimal binary-valued balanced file organization scheme of order two under
a measure of redundancy [5]. As for a multiple-list structure well known in filing
theory, Yamamoto et al. [6] showed that a claw-decomposition of K,,(nl, n,..., n,)
gives an efficient structure. Ushio et al. [3], in the case n rl2 r/m, gave a
necessary and sufficient condition for K,,(r/l, t12, r/m) to have a claw-decomposition
of degree c. In this paper, we shall establish a necessary and sufficient condition for
a complete m-partite graph to have a claw-decomposition of degree c. The result covers
both the claw-decomposition theorem in [4] and the one in [3].

2. Main theorem. Let N ’:1 tli and v i=m--ll j=i+lrn nng. The notation N, v will
often be used throughout this paper. In order for K(nl, n2,’’’, n,,) to have a
claw-decomposition of degree c, the condition that the number of all lines

(i) v is an integral multiple of c
is obviously necessary. The following theorem states that this is not sufficient. In the
theorem we can assume nl -< n2 <=" nr, without loss of generality.

THEOREM 2.1. Let nl <= n2 <----" <- n,, be m( >-_ 2) positive integers satisfying condition
(i). Then a complete m-partite graph K,(n, n:,..., n,.) has a claw-decomposition of
degree c if and only if the following conditions hold"

(ii) v/ c is an integral multiple of N-n, if N-n, < c, and
(iii) v/c>=N-n, if N-nm>=C.
The proof of this theorem will be given in 4.

* Received by the editors December 9, 1980, and in final revised form March 1, 1984.
t Department of Mathematics, Kinki University, Osaka 577, Japan.
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3. Some lemmas. The lemmas given in this section will be used to prove the
sufficiency of conditions (ii) and (iii).

LEMMA 3.1. Let aip (p l, 2,. ., hi; i= l, 2,..., m) be N nonnegative integers
satisfying m , aipC= v and ail < ai2. ai,. for all i. Then K,, (n, n2,
has a claw-decomposition of degree c such that the point rip, <- p <- hi, <- <= m, is the
root of alp copies of Sc if and only if

(3.1) c E a,p >-_ E E k,kj
i=l =l i=l j=i+l

holds for every set of m integers k where 0 <= k <= ni.
The necessity of the above condition is obvious. The sufficiency follows from

Moon’s result in [2].
LEMMA 3.2. Let c ,/ N. Suppose ki satisfies 0 <- k <= n for <-_ <- m. Then

(3.2) c
i=1 --- ijProof. Let K im-_lki. By straightforward calculation we have

K(N2- E n -N K2- E k >--E (n,-k){(N-n,)K-(K-k,)k,}.
i=1 i=l i=l

Thus we have (3.2) by c ,/N.
LEMMA 3.3. Let n <= n2 <----" <- nm be positive integers satisfying conditions (i) and

(iii). We write ,/ c in the form

(3.3) Na+nl+n2+" "+nb+l (0<= b < m, 0<= < nb+).

Then ifN rib/ >-- a + c is satisfied, K,, n, n2, , nm) has a claw-decomposition of
degree c.

Proof. Let I { 1, 2,. , b} and 12 { b + 2, b + 3, ., m }, and define

a+l foriI,
(3.4) alp a + for b + 1, nb+ < p <-- nb+,

a otherwise.

Then clearly c(%p aip)-- P. Let ki, < < m, be integers satisfying 0 < ki < ni and
let K ’= k,, N, =ix ni and Ks Eiall3 ki for/3 1, 2. Put

(3.5) S= c(aK + K, + k’)-- K2- E k
i=l

where k’=max (0, kb+--nb+ + l). Then by Lemma 3.1, it suffices to establish (3.1)
which is equivalent to S_-> 0. Define c, c2, c’ and c_ as follows:

(3.6) c=---- N- 2 n
iI

(3.) C;
2g(gl + N2

NIN2(N + N2)- gl
i

n2 , I!

2

for = 1,2, where e=+l, e=-l. Then S in (3.5) can be expressed as the sum of
four pas:
(3.8) S S + S+ $3 + S,
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where S ctK -(K-,, k)/2 for /3 l, 2, $3 c’K, + cK2- K, K2 and S,=
{(a + 1)c Cl c}K + ac c2 c)K2+ aCkb+ + ck’ Kl + K2) kb+. We shall show
S _-> 0 for each fl 1, 2, 3, 4, so that S 0. An application of Lemma 3.2 gives S 0
for fl= 1,2.

Next we consider $3. If a 0, then it is seen from condition (iii) that b m-
in (3.3). Consequently $3 vanishes. Suppose a 1. Then we have $3=
{K1N(N2 K2)c’ + (N Kl)K2N2c}/(N N2). Obviously c’ 0. Since n n2"n and N-nb+(a+ 1)c2c, we get c0. Hence we have $30.

We shall finally show S 0. After a few calculations we have (a + 1)c-Cl- c
ac-c2-c= nb+-(acnb+ + Ic)/(Nl + N2). Since K +K2N+ N2 it follows that

K +K2(3.9) S{(nb.,--kb.,)(N--nb.,--(a+ l)c)+c(nb.,-kb.,-l+k’)}.
N + N

Applying the inequality N rib+ (a + l) c which is an assumption, we get S, 0. This
completes the proof.

4. Proof of Theorem 2.1. In this section we denote m independent sets of K
(nl, n2,""" rim) by V, V2," ", V where ] n, li m, and the pth point of
by Vp, p n.

4.1. Necessi. Let Yip, p n, m, be the number of claws whose roots
are a point Vp. Suppose first that N-n < c. Then we can see easily that Ymp 0 for
every p l, 2,. ., n. We also have n ypC N-n for all except m, i.e.,

(4.1) NYip for p= 1,2,..., n, i= 1,2,..., m-1,

where [xJ is the greatest integer not exceeding x and Ix] is the smallest integer not
less than x. Since N-n <c, it can easily be verified from (4.1) that yp= [n/c]
(1 p n; m 1), so that we have u/c (N- n) [n/c], summing yp over all
p and i. Hence we obtain condition (ii). Put y plYip, < < m. Then if N- n > c,
since K(n, n2,""", n) has a claw-decomposition of degree c, the inequality y n
holds for every except at most one, say jo. Therefore, we have

(4.2) -= E y, > n, E n, no.
C i=1 i=1 i=!

Jo

Hence we obtain condition (iii), since no n.
4.2. Suciency. There are two cases to prove the sufficiency of conditions (ii)

and (iii).
Case 1. N-n<c. Leta=u/(c(N-n)),andputap=afori=l,2,...,m-1

and aip=O for i= m. Clearly c(pl ap)= . We shall show that (3.1) holds.
-l n)/2 Nc where N N-n. Since the left sideConsider c such that (N-=

of (3.1) becomes acK, where K K- k, then we have

(4.3) a, k,k= c,,- - k +(ac-c,-k),.
=l i=l j=i+l i=l

From the relation ac-c n and Lemma 3.2, it follows that (3.1) holds. Hence
condition (ii) is sucient in the case N-n < c.

Case 2. N-nc. We here introduce a new set of m positive integers
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(iii). These integers will be given explicitly later. We partition Vi into two parts for
each i" V=_,v()U V2)(i=l, 2,... m), where VI 1) {lip[p 2,.., n} and V2)--

+ 2, n}. Next we consider a partition of the set E of all lines of{vp}p= n+ 1, n
Km(n, n2, , n,,). We denote by an unordered pair (u, v) the line joining two distinct
points u and v. Partition E as follows:

(4.4) E= E(h) U I E,
=1 i=1

where
z( h vh ),E h { l)ip, tJjq l.)ip E V t)jq E #j} h= 1,2,

E, {(Vp, Vjp) vip V ), Vjq V2), #j}, i= 1, 2,..., m.

Then it is reasonable that we consider the above subsets as follows, where n"-
ni n’i( 1, 2,. m)"

Let E (1) correspond to the set of all lines of K(n, n,. ., n); E2) to that of
, n, n)’, and E to that of K2(n’,’ nj’) for i= 1,2,... m, where ’indicates that the sum is taken over all j except i.

This consideration states that it is enough to prove that these complete m-paite
graphs all have claw-decompositions of degree c for appropriate values of n’. We shall
now proceed to the definition of n’. We write the original parameter n in the form

n cx + y(O y < c) for each 1, 2, , m. Then X X2" Xm, since nl n2
n. Thus three cases are considered.

Case 1. x=0. Put n=y(i=l,2,...,m).
Case2. x >1 andx_t 0 tn’ y(i=1,2, ,m 1) and n’=c+y.
Case 3. x_ 1. Put z =y, zz=y2, Zm_2 Ym-2, Zm-1 C+ym-I and z

c+y. Let n] be the smallest of these z’s, n the next z in order of magnitude,...,
and n the largest z.

As seen in the above cases, it follows that these integers n’ just defined have a
monotone increasing sequence n’ < n2’ <’’= < n.’ Let v’ -==+ n’n.’ Then it is
seen that v’ is an integral multiple of c, that is, condition (i) is satisfied. Moreover, it
can be checked easily that the inequalities

(iii)* v’/ c >= N’- n’=> c
hold, where N’ =l n, that is, condition (iii) holds. This fact shows that the propeies
which the parameters n have are preserved.

Since n"( n- n’) is an integral multiple of c for every i= 1, 2,..., m, we can
observe easily that K2(o’ ou, ’ m, have a claw-decomposition of degree c and
that K(n, n,..., n) has a claw-decomposition of degree c. Thus it remains only
to be proved that K(n, n,..., n.) has a claw-decomposition of degree c. We first
prove the next lemma.

LEMMA 4.1. With respect to n’ just defined above, if we write v’/c in the form

(4.5) N’a + n’l + n+ + n+ (O b < m, O 6 < n+),

then the inequality N’ n+ a + c holds.
Proof Note first that n’ < 2c, which is obvious from the way of constructing n’i-

We may write N’ n’ 2ca +(0< < 2c) for 1, 2,. m. Using both n n’
2c(a-a)+B-B and n] <n<...n<2q we can see that a+lala2

a, that is by putting a a the integers a can be presented as

(4.6) al a + 1, a2 a + 1, , a a + 1, a+l a, a+2 a, , a a,
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where 0-< s < m. As the consequence the left side of (4.5) becomes

(4.7) N’a + r,
c

where r=_-i nl+7’=l n,/(2c). From (4.5) and (4.7), we obtain a= lu’/(N’c)J
a + [r/N’J. Since 0 -< r <2N’, we have two cases to consider. Case (I): r< N’. We
have a a and b-> s in this case. Case (II)" N’_<- r < 2N’. In this case n +... + n,-<
(u’/c)-N’a=r-N’<n’l+.. "+n’b+l and E?=I n’i[3i/(2c)<N’ give us a=a+l and
b < s. Thus we have ab+l a a in the former case and ab+ a + a in the latter
case. Therefore, (N’--n’b+l)--(a+l)c=c(a--1)+[3b+l. Thus N’--n’b+l>--_(a+l)c for
a-->_ 1. In the case a =0, the first inequality of (iii)* gives b m-1. Thus we can
conclude after all that N’-/lg+ => (a + 1)c holds for all a => 0. This completes the proof
of Lemma 4.1.

By using the Lemma 4.1 and Lemma 3.3, it follows that the remaining complete
m-partite graph K,,(n, n,..., n’,,) has a claw-decomposition of degree c. This com-
pletes the proof of Theorem 2.1.
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TOPOLOGICAL BANDWIDTH*

F. S. MAKEDON’, C. H. PAPADIMITRIOUt AND I. H. SUDBOROUGH

Abstract. An assignment of unique integers to the vertices of a graph is called a linear layout. The
bandwidth of a linear layout is the maximum difference between integers assigned to adjacent vertices. The
bandwidth of a graph is the minimum bandwidth of any layout of the graph. The topological bandwidth
of a graph is the minimum bandwidth of all graphs that can be obtained from this graph by subdividing
its edges with some number of degree two vertices.

Topological bandwidth is compared to other, seemingly unrelated, parameters of a graph: its cutwidth
[5], [8], its modified cutwidth 12], its search number [16], and its node search number [20]. It is shown that
the topological bandwidth of a graph is never greater than its modified cutwidth plus one and never smaller
than its node search number. Furthermore, for any degree 3 graph G, the topological bandwidth of G is
identical to the modified cutwidth of G plus one and is also identical to the node search number of G. It
is also shown that the topological bandwidth of any graph is never greater than its cutwidth and never less
than its search number minus one.

The topological bandwidth of a binary tree is also considered. A forbidden subtree characterization of
topological bandwith k, for each k-> 1, in binary trees is given. It is also noted that there is a O(n log n)
algorithm to compute the topological bandwidth of an arbitrary binary tree and that the topological bandwidth
of a complete binary tree of height h is [h/2]. Furthermore, a lower bound on the size of any binary tree
with topological bandwidth k is given.

It is shown that the problem of determining, given a graph G and an integer k, whether the topological
bandwidth of G is at most k is NP-complete. In fact, the problem is shown to be NP-complete even when
restricted to graphs with degree 3. It is also shown that the Min Cut Linear Arrangement problem, the
Search Number problem, the Modified Cutwidth problem, and the Node Search Number problem are
NP-complete even when restricted to graphs with maximum vertex degree three.

Finally, graphs with topological bandwidth two are characterized. This suggests a linear time algorithm
for recognizing graphs with topological bandwidth two. It is also noted that the problem of deciding, given
a graph G, whether the topological bandwidth of G is at most k can be solved in O(IGI k) steps, for all k => 1.

1. Introduction. Let G be a finite undirected graph. A (one-dimensional) layout
or linear layout of G is a function assigning to each node of G a unique integer. The
bandwidth ofG with respect to a layout L, denoted by b(G, L), is max {IL(x) L(y)l{x, y}
is an edge in G}. The bandwidth of G, denoted by b(G), is min {b(G, L)IL is a layout
of G}.

The problem of determining the bandwidth of a graph arises in the manipulation
of sparse matrices. Let A (a) be a square matrix. One can define the graph G(A),
which has one vertex for each row (column) of A and an edge connecting vertex to
vertex j exactly when either the entry a or the entry a is nonzero. The graph G(A)
has bandwidth k if and only if there is a simultaneous row-column permutation of A
such that all nonzero entries appear within k of the main diagonal. That is, the matrix
A has bandwidth k if and only if there is a permutation matrix P such that P. A. Pr
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has this 2k+ diagonal form. Being able to rewrite a sparse matrix so that all of its
nonzero entries are close to the main diagonal is clearly a desirable feature for efficient
storage and processing. See [1], [2], [3], [13] for a discussion of bandwidth and its
applications. More recently, it has been shown that bandwidth provides some very
useful insights into the computational complexity of graph problems and other com-
binatorial problems 17], 18], [26].

It is known that finding the bandwidth of a matrix is an NP-hard problem [21].
In the case of graphs it is known that the problem remains NP-hard even when restricted
to trees with maximum vertex degree three [6].

In this paper we study a natural generalization of bandwidth. We consider the
topological bandwidth of a graph. A graph G’ is said to be a homeomorphic image of
a graph G if G’ can be obtained from G by subdividing edges in G with an arbitrary
number of degree two vertices. The topological bandwidth of G, denoted by tb(G),
is min {b(G’)IG’ is a homeomorphic image of G}. See Fig. 1.1 below for an example.

Topological bandwidth has an interesting sparse matrix interpretation. Let A be
a matrix arising from a linear system Ax b. It is, of course, quite possible that there
exists no permutation matrix P such that P. A. pT- has all of its nonzero entries close
to the main diagonal. In such a case, we may try the following approach. We may
replace a term aox of the system by a new variable y and add a new equation of the
form aijx y. This has the effect of adding a degree 2 vertex into the edge {i, j} of
G(A). So, the topological bandwidth of G(A) is the smallest bandwidth of any system
equivalent to Ax- b that can be obtained by a sequence of such substitutions. If the
number of degree 2 vertices added is not too large, the resulting small bandwidth
system may be more economical to work with.

As another application, one may think of a graph G as representing a data structure
that is to be embedded into a linear list, e.g. sequential storage in a computer. The
topological bandwidth of G can then be interpreted as a bound on the maximum
distance spanned by any pointer. That is, items that are adjacent in the graph G are
connected now by a sequence of pointers. Also, in a VLSI application, the graph G
can be interpreted as a circuit that for reasons of automation is to have all of its gates
laid out along a linear line 19], [28], [29], [30]. The degree 2 vertices that are inserted
into the edges of G can be interpreted as "drivers" or "repeaters," which are used to
propagate the signal along a long interconnection. The goal in this application is to
minimize the length of the longest interconnection.

We prove various graph theoretic and algorithmic properties about topological
bandwidth. In 2 we establish close connections between the topological bandwidth
of a graph and other, seemingly unrelated, parameters of a graph: its cutwidth [4], [5],
[8], [11], 14], its search number [10], [15], 16], its node search number [20], and its
modified cutwidth 12], [22]. We show that, for any graph G, the topological bandwidth

FIG. 1.1. (a) A tree with bandwidth 3 and topological bandwidth 2. (b) A bandwidth 2 layout of a

homeomorphic image of the tree in (a).
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of G is at most its modified cutwidth plus one. This improves the result that, for all
graphs G, tb (G) is at most the cutwidth of G, which has been independently observed
by F. S. Makedon 14] and F. R. K. Chung [4]. We show also that, for all graphs G
with maximum vertex degree three, tb (G) is identical with the modified cutwidth of
G plus one and identical with the node search number of G. In addition, for any
graph G, tb (G) is at least as large as the node search number of G and, consequently,
at least as large as the search number of (3 minus one. The topological bandwidth of
a graph can get arbitrarily far from these other graph parameters when there is no
degree restriction placed on the graphs. However, F. R. K. Chung has shown [4] that,
for all trees T, cw (T) _<- tb (T) + log2 tb (T) + 2, where cw (T) denotes the cutwidth of
T, and also that there are arbitrarily large trees T such that cw(T)=>
tb (T) + log2 tb (T) 1.

In 3 we focus on the topological bandwidth of trees. A forbidden subtree
characterization of binary trees with topological bandwidth k is given for all k >= 1. It
is also shown that the topological bandwidth of a complete binary tree of height h is
[h/2 ]. An O(n log n) algorithm for computing the modified cutwidth of a binary tree
has been described recently by Sudborough and Turner [27]. Since modified cutwidth
plus one and topological bandwidth are identical for all degree 3 graphs, it follows
immediately that this algorithm can be used to compute the topological bandwidth of
any binary tree. This appears to be in sharp contrast with the bandwidth minimization
problem, which is NP-hard even for binary trees [6].

In 4 we give a proof that the problem of deciding, given a graph G and an

integer k, whether tb (G) =< k or not, is NP-complete. In fact, we show that the problem
is NP-complete even when restricted to graphs with maximum vertex degree three.
Thus, it follows that the problems of determining the modified cutwidth and the node
search number of a graph with maximum vertex degree three is NP-hard. This improves
the earlier NP-completeness results 12], [20], which produced graphs with arbitrarily
large vertex degree. Furthermore, the same technique is used to show that the problem,
given a graph G and an integer k, of determining if the cutwidth of (3 is at most k,
called the Min Cut Linear Arrangement problem, is NP-complete even when restricted
to graphs with maximum vertex degree three. It is known that, for graphs with maximum
degree three, search number and cutwidth are the same 15]; consequently, the problem
of determining the search number of a graph is NP-hard even when restricted to graphs
with maximum vertex degree three. This improves the NP-completeness results [8],
16] written earlier, which produced graphs with arbitrarily large vertex degree.

Finally, in 5 we characterize graphs with topological bandwidth two. The charac-
terization given suggests a linear time algorithm to determine if a graph has topological
bandwidth two. In [6] a linear time algorithm for the problem of deciding if a graph
has bandwidth 2 was given; however, no characterization of graphs with bandwidth
two is known. It is also noted that the dynamic programming techniques described in
[9], [24] can be modified to yield an algorithm that runs in time O(n k) and decides
whether a graph (3 with n vertices has topological bandwidth k or not, for each k => 3.

We shall assume throughout that the graphs considered are connected. That is,
since the topological bandwidth of a graph is identical to the largest topological
bandwidth of any of its connected components, this assumption can be made without
any loss of generality.

2. Relating topological bandwidth to search number and width. Let G be a finite
undirected graph and let L be a linear layout of G. The width of (3 at the ith gap (in
L), denoted by wg (i), is the number of edges in the set {{x, y}lL(x) <= and L(y) > i}.
The width of G at the ith vertex (of L), denoted by w(i), is the number of edges in the
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set {{ x, y }lL(x)<i and L(y)> i}. The cutwidth of G under L, denoted by cw (G, L),
is max {wg (i)ll -<- < IGI}. The modified cutwidth ofG under L, denoted by mcw (G, L),
is max {w(i)ll -_< i<-- IG[}. The cutwidth of G, denoted by cw (G), is min {cw (G, L)[L is
a layout of G}. The modified cutwidth of G, denoted by mcw (G), is min {mcw (G, L)IL
is a layout of G}. The problem of determining the cutwidth of a graph has application
in VLSI [15], [19], [28], [29], [30]. It is NP-complete in the general case and can be
done in polynomial time for any fixed degree tree [5], [8], [25]. The problem of
determining the modified cutwidth of a graph has been studied in the field of register
allocation [22] and pebble games [12].

The search number of a graph has also recently been investigated [10], [15], [16].
The search number of an undirected graph is the minimum number of searchers needed
to guarantee finding a fugitive who is lurking about on the vertices and edges of the
graph, where the fugitive is assumed to possess unlimited speed and complete know-
ledge about the movements of his pursuers. The reader should consult [14], [16] for
additional details. Terminology from the literature on search number will be used in
this paper. For example, an edge is said to be clear when the searchers have moved
in such a way that the fugitive cannot possibly be on that edge; otherwise, the edge
is contaminated. An edge is re-contaminated if it is contaminated and at some earlier
step has been clear. It is known that allowing re-contamination does not reduce the
number of searchers [10]. Thus, we may assume, without loss of generality, that once
an edge becomes clear it remains clear during the remainder of the searching sequence.

In this section we show that the topological bandwidth of a graph is not greater
than its modified cutwidth plus one. That is, for any graph G, tb (G)=< mcw (G)+ 1.
Since for any graph (3, mcw (G) + <= cw (G), this shows that tb (G) =< cw (G). We
also show that, for any degree 3 graph G, mcw (G)+ tb (G). Furthermore, for any
graph G, the search number of G is not greater than the topological bandwidth of G
plus one.

Let G (V, E) be a finite undirected graph. A partial layout of G is a function
L that maps a subset V’ of the set of vertices V into the set of natural numbers
{1,2,..., Iv’l}. An edge e= {x, y} is dangling from the partial layout L, or simply
dangling, when the partial layout is understood, if x is in the domain of L and y is
not. A vertex x is active (in a partial layout L) if it is incident to a dangling edge. An
edge in w(i) is said to pass over the ith vertex.

THEOREM 2.1. For any graph G, tb (G) -< mcw (G) + 1.
Proof Let G---(V, E) be a graph and let L be a linear layout of G such that

mcw (G, L)--k. We construct a homeomorphic image G’ of G and simultaneously a
linear layout L’ of G’ such that b(G’, L’)=< k+ 1. This is done by the following
procedure:

1. Let the first vertex of G’ be the first vertex of G under the layout L and set an
auxiliary variable to 2. (All edges of G’ are initially unmarked.)

2. If there are no more dangling edges in the partial layout of G’ constructed so
far, then stop; otherwise, let x be the lowest numbered active vertex of this
partial layout. If all dangling edges incident to x are marked, then go to (4);
otherwise, let e be an arbitrary unmarked edge incident to x and go to (3).

3. If e is incident to the ith vertex of G, then go to (4); otherwise, go to (5).
4. Make the next vertex of G’ the ith vertex of G, add one to i, unmark all edges

of G’, and go to (2).
5. Make the next vertex of G’ a new degree 2 vertex incident to e and a new edge

e’. The edge e’ is also made incident to the as yet unnumbered vertex that e

used to be incident to. (That is, the new degree 2 vertex is inserted into the
old edge e.) Mark the new edge e’ and go to (2).
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It is straightforward to verify that the above procedure produces a homeomorphic
image G’ of G and a layout L’ of G’ such that: (a) for all vertices x and y in G, if
L(x) < L(y), then L’(x) < L’(y), and (b) for all vertices x in G, the edges passing over
x in the layout L are the same as the edges passing over x in the layout L’, with degree
2 vertices possibly having been added to these edges in G’. We need to show that the
algorithm terminates with a layout L’ such that b(G’, L’)-<_ k+ 1. For this purpose,
consider any partial layout I obtained by restricting the layout L’ to the first p vertices
of G’, for some p >_- 1. Let D(I)= {e, e2, e,} be the set of dangling edges in this
partial layout. By showing that every one of the edges in D(I) is made incident to
one of the next k + vertices, we show that G’ has bandwidth at most k + under L’.

Let Yl, Ya," ", Y be the vertices of G’ incident to the edges in D(I). If none of
these are vertices in the original graph G, then there can be at most k dangling edges,
because all of these vertices would be added degree 2 vertices having a new dangling
edge not incident to the next vertex in the original graph G. So there would be more
than k edges passing over this vertex. It should be noted that, because of the marking
of edges and the fact that the procedure does not assign new degree 2 vertices to
marked dangling edges, the algorithm eventually assigns the next vertex of G an integer.
So there cannot be more than k dangling edges not incident to the next vertex of G.
Again after degree 2 vertices are assigned to each dangling edge the next vertex of G
would be assigned an integer and there would be more than k edges passing over it.

Assume now that y is a vertex in G and that y,. , y_ are added degree two
vertices. Consider the partial layout I’ obtained by extending the partial layout I to
the vertices Yl, Y2, ",Y. There must be a dangling edge incident to each of the vertices
"y,..., y_, since these are added degree two vertices. Furthermore, each of these
dangling edges passes over the vertex y. Thus, there can be at most k- + additional
edges passing over y, since at most k edges pass over every vertex in the original graph
G in the layout L’. This means that at most k-i+ edges in the set D(I) remain
dangling in the partial layout I’. Since the procedure assigns vertices for dangling
edges incident upon the lowest numbered vertices of G’ first, all of the remaining
dangling edges in D(I) are made incident to one of the next k-i+ vertices. Thus,
we see that all edges in D(I) are made incident to one of the next k + vertices in G’
under L’. Since this is true for every partial layout I of L’, it follows immediately that
b(G’, L’)-< k + 1. Therefore, since G has a homeomorphic image G’ with bandwidth
k + 1, the topological bandwidth of G is at most k + 1.

COROLLARY 2.1. For any graph G, tb (G) <- cw (G).
The corollary follows from the straightforward observation that, for any graph G,

mcw(G)=<cw(G) 1. Theorem 2.1 is an improvement of the result indicated in
Corollary 2.1, which has been independently described by F. R. K. Chung [4] and the
first author 14].

We are interested now in the converse of Theorem 2.1. That is, for which graphs
G is it true that mcw (G)+ tb (G). We show that this is true for all degree 3 graphs.
It is not true for all degree 4 graphs. For example, the complete graph of five vertices,
C5, has topological bandwidth 4 and modified cutwidth 4.

As a tool for showing that, for all degree 3 graphs G, mcw (G)+ -< tb (G), we
consider the following modified searching problem on an undirected graph, called
node searching. The rules for node searching a graph G are:

1. No vertex of G has a searcher placed on it more than once.
2. A searcher can be added to an unvisited vertex at any time.
3. A searcher can be deleted from a vertex x provided that all neighbors of x

have been visited by searchers.
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4. A searcher can be deleted from a vertex x and placed on a neighboring un-
visited vertex y provided that all other neighbors of x have been visited by
searchers.

In [23] this game was called "breadth first pebbling" and it was shown that the length
of time searchers need to stay on vertices of the graph is identical to the bandwidth
of the graph. Node searching has also recently been investigated in [20], where the
number of searchers, or node search number, was considered. The goal of node
searching is the same as the usual game of searching a graph (which can be referred
to as edge searching): to guarantee finding a fugitive who is hiding somewhere on the
edges of the graph. In node searching the fugitive is caught if he is on an edge with
searchers on both ends, while in edge searching a searcher must actually be moved
through the edge. We use the same terminology as in the edge searching game. An
edge {x, y} is clear if either two searchers have been placed on opposite ends of the
edge or a searcher has been placed on one end and shifted, as in rule (4) above, to
the other end. An uncleared edge is contaminated. It is straightforward to observe that
after a play of the node searching game in which every vertex is visited and all searchers
are removed that all edges are clear. This follows simply from the fact that a searcher
cannot be removed until all edges incident to the vertex where it sits are clear. The
node search number of G, denoted by ns (G), is the minimum number of searchers
needed in the node searching game to clear all of the edges of G, i.e. to guarantee
capturing the fugitive. It is straightforward to verify that, for every graph G, s(G)-<
ns (G)+ 1, since if an edge is cleared in the node searching game by placing two
searchers at either end, then it can be cleared in the edge searching game with the
same two searchers on the endpoints and an extra searcher that moves through the
edge. Furthermore, any edge searching sequence without re-contamination is also a
node searching sequence, so ns (G) <- s(G) =< ns (G) + 1, for any graph G. We note
that, for any graph G, any homeomorphic image of G has node search number at least
as large as the node search number of G.

LEMMA 2.1. For any graphs G, ns (G)-< tb (G).
Proof. Let G be a graph. Let G’ be a homeomorphic image of G and let L be a

layout of G’ such that b(G’, L)= k. We show that ns (G’)-<_ k and, since ns (G)<-
ns (G’), this means that ns (G)=< k. The node searching sequence is the following:

(a) Place a searcher on the first k vertices of G’.
(b) While there is still a vertex to be visited do the following:

if there is an edge connecting the lowest numbered vertex containing a searcher
to an unvisited vertex, then shift the searcher from this vertex to its unvisited
neighbor; otherwise, remove the searcher from this vertex and install it on
the lowest numbered unvisited vertex of G’.

It is straightforward to verify that the sequence of steps described above is a valid
node searching sequence and clears all the edges of G’. Furthermore, the number of
searchers is never greater than k. When the process above is finished, all of the searchers
are removed. Thus, we have shown G’ can be searched in the node search game with
k searchers.

COROLLARY 2.2. For any graph G, s( G) <= tb (G)+ 1.
The corollary follows immediately from the earlier observed fact that s(G)<-

ns (G)+ 1.
LEMMA 2.2. For any graph G with maximum vertex degree 3, mcw (G) <- ns (G) 1.
Proof. Let G be a graph such that every vertex has degree at most 3. Let S be a

node searching sequence that clears all of the edges of G and uses k searchers. We
describe a layout Ls such that mcw (G, Ls) <- k-1.
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First, define a function fs, which maps vertices of G to natural numbers, by:

fs(x)- if and only if is the smallest integer such that after step of S the
vertex x has been visited by a searcher and at most one edge incident
to it is contaminated.

Observe that more than one vertex can reach the condition stated above at the same
time. For example, consider the graph shown in Fig. 2.1. Suppose searchers have been
placed on vertices A, B, E, F, G, and H. So edges {A, B}, (E, F}, and {G, H} are clear.
By placing a searcher on vertex D one clears edges {B, D}, (D, E}, and {H, D}.
Consequently, all four vertices B, D, E, and H satisfy the indicated condition simul-
taneously.

FIG. 2. I. Adding a searcher to vertex D causes vertices B, D, E, and H to have a majority of their incident
edges cleared, when vertices A, B, E, F, G, and H have searchers.

So the function fs is not, in general, a layout. It can map more than one vertex
to the same integer. Note that in any single step all edges cleared are incident to the
same vertex. Let v be a vertex of G such that fs(v)- i. If w, w2, and w3 are neighbors
of v and fs(w)--fs(w2)=fs(w3) i, then create a layout Ls by assigning v, w, w2,

and w3 to consecutive integers. In particular, let one neighbor of v be assigned an
integer larger than that assigned to v and one neighbor of v be assigned an integer
smaller than that assigned to v. Thus, in Ls the vertices are laid out in the manner
shown in Fig. 2.2. If there is only one neighbor of v that satisfies the indicated property
simultaneously with v, then in the layout Ls the relative position of v and its neighbor
are chosen arbitrarily.

In this way we arrive at a layout Ls of G such that: (1) if fs(x)<fs(y), then
Ls(x) Ls(y) and (2) iffs(x)-fs(Y), then the relative order of x and y is chosen in
a manner consistent with that indicated above. We show that mcw (G, Ls) k- 1. That
is, we show that, for all (1 _-< i_-<lGI), the set of edges E(i) {{x, y}lLs(x) and
Ls(y) > i} has at most k- elements. This is accomplished by demonstrating a unique
searcher, say s(e), for each edge e in E(i) that is positioned at time ti on a vertex
incident to e, where ti is the step in the sequence S when the ith vertex of G under
the layout Ls first satisfies the indicated property.

Let e- (x, y} be an edge in E(i) that is contaminated after step ti. Since e is in
E (i), Ls(x) i. Since Ls(X) < i, x has been visited by a searcher and at most one edge
incident to x is contaminated after step ti. Consequently, there is a searcher on vertex
x after step t. This searcher is needed to separate cleared edges from contaminated
ones or, if x has degree one, the searcher can only be removed when x’s contaminated

FIG. 2.2. An arrangement provided by the layout Ls for a vertex v and its neighbors that are mapped to

the same integer by fs.
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edge is cleared. Let the searcher on x be s(e). Vertex x cannot be incident to any other
edge that is contaminated at time ti, since x satisfies the indicated condition by step
ti. So, the searcher s(e) is not located at the end of any other contaminated edge; it
is unique for edge e.

Now, let e {x, y} be an edge in E (i) that is clear after step ti. Since e is in E (i),
Ls(y) > i. Since Ls(y) > i, it follows that at least two edges incident to y were contami-
nated before step ti. There are two cases: (1) at least two edges incident to y are still
contaminated after step t or (2) one edge incident to y is contaminated after step t.

Case 1. In this case vertex y has two contaminated edges after step t. Con-
sequently, there must be a searcher on vertex y after step t in order to separate the
contaminated edges from the cleared edge e. Let this searcher be s(e). Vertex y cannot
be incident to any edge other than e that is clear after step t, since y has degree at
most three. Furthermore, s(e) is located after step t on a vertex to the right of vertex
i, so it cannot be the same as any searcher assigned to contaminated edges in E(i)
which are located to the left of vertex at this time. So s(e) is unique for edge e.

Case 2. In this case one edge incident to y is contaminated after step t. So the
indicated property must be true for vertex y after step ti. However, since Ls(y)> i, it
follows that more than one vertex satisfies the property simultaneously. If e is the only
edge in E(i) incident to y that is clear after step t, then we can assign the searcher
on vertex y uniquely to edge e. However, it is possible that there is another edge, say
e’, that is incident to y and is clear after step t. One of these edges, say e’, must
connect y to the vertex, say z, that has a searcher placed on it during step t and which
satisfies the indicated property for the first time. It is only possible for e’ to be in E(i)
if is the position of a vertex, say w, positioned between y and z such that w also
satisfies the indicated property for the first time at step ti. For example, let z, w, and
y be the last three vertices pictured in Fig. 2.2. Because of the requirements of our
layout Ls there must be another neighbor of vertex z assigned a position to its left
which also satisfies the indicated property for the first time at step t. It follows that
all three edges incident to z are cleared during step t. Let the searcher on z be
designated as s(e’) and the searcher on y be designated as s(e). We then have unique
searchers for both edges e and e’. Furthermore, even though Ls(z)<i there are no
contaminated edges incident to z after step t and, consequently, the searcher s(e’) on
z is not one of those assigned earlier for contaminated edges.

We have described, for all i, a unique searcher s(e) for each edge e in E(i). Each
searcher s(e) sits at time t on a vertex incident to edge e. No edge in E (i), by definition,
is incident to the ith vertex of G under Ls. As the ith vertex satisfies the indicated
property for the first time at step t it must contain a searcher after step ti. Note that
if a searcher is moved from this vertex through an edge at step t there must be another
searcher that remains. Because searchers can only be shifted through an edge when
all other incident edges are clear, this vertex must have two contaminated edges before
step t. So, one of the k searchers used in the search sequence S must be on the ith
vertex after step ti. Consequently, there are at most k-1 searchers to be associated
with edges in E(i), for all i, and, as each edge gets a unique searcher, there are at
most k-1 edges in E(i).

Lemma 2.2 can be extended to show that, for any graph G, mcw(G) -<

[deg (G)/2J ns (G) 1. We will not give the details here. A similar statement is known
for the relationship between the (edge) search number of a graph and its cutwidth 15].

THEOREM 2.2. For any degree 3 graph G, mcw (G) + tb (G).
The theorem follows immediately from Lemmas 2.1-2.2 and Theorem 2.1. The

next theorem follows in a similar way from the same lemmas and theorem.
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THEOREM 2.3. For any degree 3 graph G, tb (G) ns (G).
We note that the topological bandwidth of a graph G and its node search number

and its modified cutwidth can get arbitrarily far apart without any degree restriction.
For example, the topological bandwidth of the complete graph with n vertices is n- l,
while its modified cutwidth is [(n- 1)/21 [(n- 1)/2]. The topological bandwidth of
the "k-star," the tree with k+ vertices and k leaves, is [k/2], while its node search
number is 2. It should also be noted that the trees constructed by F. R. K. Chung [4]
to exhibit, for each n-> l, trees with topological bandwidth n and cutwidth at least
n / log2 n are sufficient to exhibit that topological bandwidth and modified cutwidth
can get arbitrarily far apart even in trees.

By Corollary 2.1 we have that, for any graph G, tb (G)-<_cw (G). By Corollary
2.2 we have that, for all graphs G, s(G)-1 _-< tb (G). Consequently, the topological
bandwidth of a graph is always between these two quantities: search number minus
one and cutwidth. In [15] it was show that search number and cutwidth are identical
for degree 3 graphs. Thus, for any degree 3 graph G, cw (G) _-< tb (G) _-< cw (G).

3. The topological bandwidth of a tree. In this section we describe a forbidden
subtree characterization for degree three trees with topological bandwidth k, for each
k => 1. Although we do not explicitly give it here, there is an O(n log n) algorithm to
compute the topological bandwidth of an arbitrary binary tree. This follows from the
description of such an algorithm for the modified cutwidth of trees [27], since we have
shown that, for all degree 3 graphs G, mcw (G)+ =tb (G). This stands in sharp
contrast with the bandwidth minimization problem which is NP-hard even for binary
trees [6].

Let T be a tree and let x and Yl, Y2,"" ", Y,, be arbitrary vertices in T. The tree
T[x, y, y2, , y,,] is the largest subtree of T containing the vertex x but not containing
any of the vertices y, Y2,""", Y,.

THEOREM 3.1. Let T be a tree with maximum vertex degree three. Then tb (T) =< k
if and only iffor every vertex x of degree three in T one can choose two neighbors y and
Y2, leaving the neighboring vertex Y3, such that:

(a) tb (T[x, Y2, Y3]) =< k,
(b) tb (T[x, Yl, Y3]) <-- k, and
(c) tb (T[y, x]) -<_ k- 1.

Proof Let T be a degree three tree such that tb (T)<-k. By definition there is a
tree T’ which is a homeomorphic image of T such that b(T’)_-< k. Let x be a degree
3 vertex in T’. Since x has degree 3 it must be a vertex also in the original tree T. Let
A and B be the vertices in T’ that are assigned to the first and last integers under a
layout L such that b(T’, L) _-< k. Let z, z2, and z3 be the neighbors of x. The vertex A
must be in at least one of the subtrees T’[x, z, z2], T’[x, zl, z3], and T’[x, z2, z3]. Also,
the vertex B must be in at least one of these three subtrees. It follows that in deleting
two of these subtrees and the vertex x one deletes a path that connects the leftmost
vertex A with the rightmost vertex B. Since one deletes all the nodes of a path connecting
the leftmost vertex A with the rightmost vertex B, the remaining subtree of T’ must
have bandwidth at most k-1. That is, in general, if one deletes at least one vertex
from every block of k consecutive vertices in a layout with bandwidth k, then one
obtains a graph with bandwidth at most k-1.

The vertices z, z2, and Z3, which are adjacent to x in T’, need not be vertices in
the original tree T. Let y, Y2, and Y3 be vertices in the original tree T such that z, z2,

and z3, respectively, are added to the edges {x, y}, {x, Y2}, and {x, Y3}. Let Yl and Y2
be the two of these three vertices contained in the two subtrees deleted in deleting a
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path from A to B. It follows that T[y3, x] has topological bandwidth at most k-1
since the remaining subtree T’[z3, x] of T’, obtained by deleting the subtrees T’[x, zl, z3]
and T’[x, z2, z3] and the vertex x, which we have seen has bandwidth at most k- l, is
a homeomorphic image of T[ya, x]. Furthermore, the subtrees T[x,y,y3] and
T[x, Y2, Y3] have topological bandwidth at most k, since they are subtrees of T. So, we
have shown that the stated properties are true for vertex x. Since the vertex x was
chosen arbitrarily, the required properties are, in fact, true for every degree 3 vertex
in T.

Conversely, let T be a tree with maximum vertex degree 3 such that, for every
vertex x having degree 3, one can choose two neighbors, y and y2, leaving a remaining
neighbor Y3, such that: (a) tb (T[x, y, Y3]) -<- k, (b) tb (T[x, Yl, Y3]) <- k, and (c)
tb T[y3, x]) k- 1. It will be shown that T has topological bandwidth at most k. The
basic idea in the proof is to show that there exists a chain C of vertices x, x, , Xk
(for some k _-> l) such that, for all (1 _-< -< k), if Yi is a neighbor of xi and yi C, then
tb T[yl, x,]) -< k- 1.

We show now that such a chain C exists. Color a vertex x in T red if, for every
neighbor y of x, tb (T[x, y])>= k. We observe first that no vertex of T can have three
red neighbors. That is, the hypothesis, condition (c), asserts that, for every vertex x
of T, there exists a neighbor y, such that tb (T[y, x])-< k-1. So, the vertex y cannot
be colored red and, therefore, every vertex in T has at least one neighbor that is not
colored red. We observe next that, if x has two neighbors, y and y, colored red, then
x must itself be colored red. That is, if x were not colored red, then there would exist
a neighbor, say y, of x such that tb T[x, y]) <_- k- I. However, either T[yl, x] or T[y, x]
is a subtree of T[x, y] and, consequently, at least one of these trees would then have
topological bandwidth at most k-1. This contradicts the fact that both y and y2 are
colored red.

It follows that the red vertices of T form a chain. This chain satisfies the required
condition. That is, let y be a nonred neighbor of a red vertex x. Since y is not colored
red, there exists a neighbor z of y such that tb (T[y, z])-<_ k-1. In fact, the vertex z
must be x, since otherwise the tree T[x, y] would be a subtree of the tree T[y, z],
implying that T[x, y] has topological bandwidth at most k-1. This contradicts the
fact that x is colored red. Thus, if y is a neighbor of a red vertex and y is not red,
then tb T[y, x]) <_- k- 1.

Let C be the chain of red vertices. Extend the chain C so that the beginning and
end of the new chain are leaves of T. In general there is more than one way to extend
the chain C; however, one can choose the extension in an arbitrary manner. Let the
new chain be C’= Xl, X2, rn (for some rn >_- 1). Each vertex x (1 <- i-< m) has at
most one neighbor y. Furthermore, as we have shown, if x has a neighbor yi, then
tb (T[y, xi])-<_ k-1. For all i(l<-_i<= rn) such that x has a neighbor y, let L be a
linear layout of a homeomorphic image T of T[y, x] such b(T, L) <= k- 1. Consider
a layout L of the tree T such that:

(1) for all i, j <_- <j <_- rn), if x is in T and y is in T, then L(x) < L(y),
(2) for all (1 _<- _-< rn), if L(x) < Li(y), then L(x) < L(y),
(3) for all (1 <_- i_-< rn), if x has a neighbor y, then IL(x)- L(y)I--< 1, and,
(4) for all (1 <= < m), L(xi) < L(x+,).

The only edges in T which can have length greater than k-1 under the layout L are
the edges {xi, x+}, which connect successive vertices of the chain. However, by adding
degree 2 vertices to these edges and assigning these degree 2 vertices to positions that
are k apart in an expanded layout, one arrives at a layout of a homeomorphic image
of T which has bandwidth k. Therefore, the tree T has topological bandwith at most
k. [3
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Example 3.1. The tree shown in Fig. 3.1(a) has topological bandwidth 2. Clearly
it cannot have topological bandwidth one, since it contains a degree 3 vertex. It has
topological bandwidth at most 2, by Theorem 3.1, since every degree three vertex x
in this tree has neighbors Yl, YE, Y3 such that: (a) tb(T[x, yl, y3])<-_2, (b)
tb T[x, Y2, Y3]) <-- 2, and (c) tb T[y3, x]) <= 1. For example, consider the vertex x shown
in Fig. 3.1(a). Choose y, Y2, and Y3 to be the neighbors of x in the manner shown.
Then, tb T[x, y, Y3]) 2, tb T[x, Y2, Y3]) 2, and tb T[y3, x]) 1.

The tree shown in Fig. 3.1(b) has topological bandwidth 3. That is, it cannot have
topological bandwidth 2, by Theorem 3.1, since there exists a vertex x, shown in the
figure, such that for any neighbor y of x, tb T[y, x]) 2.

(a) (b)

FIG. 3.1. (a) A tree with topological bandwidth 2. (b) A tree with topological bandwidth 3.

Let Ta(k) denote the set of smallest trees having maximum vertex degree 3 and
topological bandwidth k. The sets T3(1), T3(2), and T3(3) have only one element. These
sets are described in Fig. 3.2(a), (b), and (c), respectively. In general, the set T3(k + l)
is formed by taking three (not necessarily distinct) trees from Ta(k), creating a new
vertex, say x, and joining x by an edge to a degree one or a degree two vertex in each
of the three trees. To illustrate this process and to show that, in general, the sets T3(i)
contain more than one tree, we describe two of the trees in T3(4) in Fig. 3.3.

(a) (b) (c)

FIG. 3.2. The smallest degree 3 trees with: (a) topological bandwidth l, (b) topological bandwidth 2, and
(c) topological bandwidth 3.

We need to show the correctness of our construction of the sets Ta(k), for k->_ 2.
This can be done by induction on k. For the basis step we observe that the tree shown
in Fig. 3.2(b) is the unique tree having topological bandwidth 2 and having the smallest
number of vertices. Assume that the set Ta(k) constructed is correct. That is, the set
T3(k) contains exactly those trees which have the minimum number of vertices, have
maximum vertex degree three, and have topological bandwidth k. Let T be a tree that
is placed in Ta(k / 1). That is, T is a tree that is formed by taking a new vertex x and
three trees (not necessarily distinct) from Ta(k) and joining x by an edge to a degree
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FIG. 3.3. Two trees in the set T3(4).

one or a degree two vertex in each of the three trees. It follows from Theorem 3.1 that
the constructed tree T has topological bandwidth at least k + 1, since for every one of
the neighbors y of the new vertex x, the tree T[y, x] is in Ta(k) and, therefore, has
topological bandwidth k. In fact, T has topological bandwidth exactly k + 1. That T
has topological bandwidth no greater than k + can be shown as follows. Each of the
trees in Ta(k) has topological bandwidth k, so there is a homeomorphic image of each
of these trees which has bandwidth k. One can lay out these homeomorphic images
so that their vertices are completely separated. That is, all vertices of one tree are
placed either before or after all the vertices of any other tree. Make the layout so the
bandwidth is still k. Now one adds the vertex x to a position adjacent to the vertex it
is joined to in the middle tree of this layout. The vertex x is then joined to the
appropriate vertices in the other two trees by adding into these edges vertices that are
placed into positions k + apart in the global layout. It follows that the result is a
homeomorphic image of the tree T with bandwidth k4-1. So, T has topological
bandwidth at most k + 1. Furthermore, any tree T’ with topological bandwidth greater
than k, by Theorem 3.1, must have at least one vertex x with three neighbors Yl, Y2,
and Y3 such that, for all i(1 <_- i<_-3), tb (T’[yi, x])_-< k. Since each of the three trees
T’[yt, x], T’[y2, x], and T’[y3, x] have topological bandwidth at least k, they must have
at least as many vertices as the trees in Ta(k). Therefore, the tree T’ has at least as
many vertices as the tree T we constructed.

On the other hand, let T be a tree which has the minimal number of vertices of
any tree having topological bandwidth k 4- and maximum vertex degree 3. By Theorem
3.1, since T does not have topological bandwidth k, there is a vertex x with three
neighbors yt, Y2, and Y3 such that tb T[yi, x]) _-> k, for all (1 _-< <- 3). Since T has the
smallest number of vertices, it follows that each of the trees T[y, x], T[y2, x], and
T[ya, x] are in Ta(k). For otherwise, we could form a smaller tree that still had
topological bandwidth k + by replacing whichever tree is not in Ta(k) by one that is
in Ta(k). So, it follows that the tree T is one of the trees we construct in the process
described. Thus, Ta(k), for all k, is the correct set.

Let na(k denote the number of vertices in the smallest degree 3 tree with
topological bandwidth k. It follows from the construction of the sets Ta(k), for k_-> l,
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that n3(1) 2, n3(2 4, and, for k => 2, n3(k-I- 1) 3 n3(k) q- 1. Solving this recurrence
we see that, for k >= 2, n3(k)--1/2(3k- 1). Therefore, a tree with n-> 4 vertices can have
topological bandwidth at most [log3 (2n + 1)J.

Let ff be a set of trees, each tree in the set having maximum vertex degree 3. The
set () denotes the set consisting of all the trees in together with all trees that
can be obtained by inserting a single degree 2 vertex into an edge connecting two
degree 3 vertices in a tree from . Define the set of trees i, for i>= 1, by: T3(1),
2 T3(2), and, for all k => 2, ffk/ is the set of all trees that can be formed by taking
three trees from (k), creating a new vertex x, and joining x by an edge to a degree
one or a degree 2 vertex in each of the three trees. It should be noted that 3 T3(3),
4 T3(4), but 5 T3(5). That is, there are trees in if5 that are not in T3(5). This can
be seen by observing that there are edges in one of the trees shown in Fig. 3.3 that
connect degree 3 vertices. Hence, there are trees in (T3(4)) that are not in T3(4) and,
consequently, trees in if5 that are not in T3(5).

THEOREM 3.2. Let T be a tree with maximum vertex degree 3. tb T)>-k if and
only if T contains a subtree that is a homeomorphic image of a tree in k.

Proof. It is straightforward to show that all trees in k have topological bandwidth
at least k. That is, it follows from the construction of these sets and an argument similar
to that used in proving the correctness of the construction of the sets T3(k), for all
k-> 1. Therefore, if T contains a subtree that is a homeomorphic image of a tree in
k, then T must have topological bandwidth at least k.

We show now by induction on k that, if tb (T) >- k, then T contains a subtree that
is a homeomorphic image of a tree in k. Clearly, the statement is true for the basis
step. That is, any tree with bandwidth one must contain two vertices connected by an
edge and any tree with bandwidth two must contain a vertex of degree three. Assume
now for the induction hypothesis that, if tb (T) >= k, then T contains a subtree that is
a homeomorphic image of a tree in k. We show that the statement is true for k + 1.
Let T be a degree three tree such that tb (T)->_ k+ 1. By Theorem 3.1 it follows that
there exists a vertex x with three neighbors Yl, Y2, and Y3 such that, for all (1 _-< i_-< 3),
tb (T[yi, x]) >_- k. By the inductive hypothesis, each of the three trees T[y, x], T[y2, x],
and T[y3, x] contains a subtree that is a homeomorphic image of a tree in k. There
must be a path from x to a degree one or a degree two vertex in each of the three
homeomorphic images of these trees. Let T[yl, x], T[y2, x], and T[y3, x] contain
homeomorphic images, say T1h, T2h, and T3h, ofthe trees TI, T2, and T3 in k, respectively.
Let z, z2, Z be the first vertices in Th, T2h, and T3h, respectively, that lie in the path
from the vertex x. We construct a tree U in k+ and demonstrate that a subtree of T
is a homeomorphic image of U. For each (1 _-< i-3), if z is a degree two vertex that
has been inserted into an edge e connecting two degree 3 vertices of T, then let the
tree T’ be that tree in (..k) that is obtained by adding a degree two vertex, say z
to the edge e; otherwise, if z is a vertex in the original tree T, then let T T and
z z and, if zi is a degree two vertex that has been inserted into an edge incident to
a degree two vertex, say vi, then let T’i T and zi= v. We note that, for all (1 < < 3),
T is a tree in (k) and z’ has degree at most two. Construct the tree U by creating
a new vertex w and connecting w by an edge to each of the three vertices z, z, and

z. Clearly, U is in ffk+l by construction. We show that T contains a subtree that is
a homeomorphic image of U. Consider the subtree obtained by deleting all of the
nodes from T except those in Th, T2h, and T3h and those on the paths connecting x
with z, z2, and z3 (including the vertex x). This subtree is a homeomorphic image of
U. Note that Th, T2h, and T3h are homeomorphic images of T, T, and T, respectively,
and all of the vertices in the paths connecting x with z, z2, and z3 are degree two
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vertices that can be added into the edges {x, z}, {x, z}, {x, z} of U. Therefore, T has
a subtree that is a homeomorphic image of a tree in k/. I-1

COROLLARY 3.1. Let T be a tree with maximum vertex degree 3. tb T)= k if and
only if T contains a subtree that is a homeomorphic image of a tree in k and does not
contain a subtree that is a homeomorphic image of a tree in k+.

The corollary follows imediately from Theorem 3.2 and the definition oftopological
bandwidth. It should perhaps also be explicitly remarked that Corollary 3.1 is still
valid when "mcw (T) + 1" replaces "tb T)," since we have shown in Theorem 2.2 that
these two quantities are the same for all degree 3 graphs. Furthermore, in [27] an
O(n log n) algorithm has been given for determining the modified cutwidth of a degree
3 tree and, consequently, it follows that the topological bandwidth of a degree 3 tree
can be found in O(n log n) steps.

Determining the topological bandwidth of trees with degree greater than three
would seem to be a more difficult problem. We note that the recursive statement made
in Theorem 3.1 is not valid for trees with degree greater than 3. Basically the problem
in making a similar statement for trees with degree greater than 3 is that, if x is a
vertex with neighbors y, y2," Yd (d >-_ 4), then when x is deleted one is left with a
forest and when two of the trees in this forest are thrown away (as we can consider
happening in the statement of Theorem 3.1 for the degree 3 case) one still has a forest
of at least two trees. The resulting disconnection of the tree is the basic problem in
trying to formulate a similar statement for general trees.

On the other hand, one can make a somewhat similar statement for general trees.
Let G be a graph and L a linear layout of G. Suppose there is a function f that assigns
each vertex of G to an integer. We denote the graph G together with this function f
by G(f). Define the bandwidth of G(f) under the layout L, denoted by b(G(f), L), by:

b(G(f), L)=max + f(i) {L-’(j), L-(k)} is an edge in G
i=j+l

It is straightforward to observe that the bandwidth of a graph G, as we have defined
earlier, is the bandwidth of G(f), where f is the function that maps each vertex to
one. A statement similar to that made in Theorem 3.1 which is valid for all trees is the
following. A tree T has topological bandwidth k if and only if for every vertex x in
T with degree d => 3 one can choose two neighbors Yl and Y2, leaving the neighbors
Y3, ", Yd, such that: (a) tb (T[x, Y2, Y3, ", Yd]) <- k, (b) tb (T[x, y, Y3, ", Yd]) <- k,
and (c) tb (T(f)[x, Yl, Y2]) --< k- 1, where f is the function that assigns each vertex the
integer one except for x, which is assigned to zero. We shall not give the proof of this
statement, but simply observe that the proof follows basically the same pattern as
shown in the proof of Theorem 3.1. The problem with this statement, at least from an
algorithmic point of view, is that it defines the topological bandwidth of a tree in terms
of the topological bandwidth of a vertex labeled tree and we do not have an algorithm
to determine the topological bandwidth of labeled trees. However, we can use this
statement to obtain the smallest trees with topological bandwidth 3 and 4 when the
maximum degree of a vertex is restricted to 4 and 5. These are shown in Fig. 3.4.

In I11] Lengauer showed that the cutwidth of complete m-ary trees with height
h is [h. (m-1)/2]+ 1, for all h->_2. We observe here that the topological bandwidth
of a complete binary tree of height h is [h/2]. This follows from the characterization
that we have given, since it can be shown by induction on h that a copy of a tree in
ffk, where k [h/2 ], is in the complete binary tree of height h and the complete binary
tree of height h is the smallest complete binary tree that contains a subtree that is a
homeomorphic image of a tree in k, where k [h/2]. That is, assume that a homeo-
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(a) (b) (c) (d)

FIG 3.4. A smallest degree 4 tree with topological bandwidth (a) 3 and (b) 4, and a smallest degree 5
tree with topological bandwidth (c) 3 and (d) 4.

morphic image of a tree in k, where k-[h/2], is in the complete binary tree of
height h. Consider the complete binary tree of height h+ 1. If [(h+ 1)/2] [h/2],
then clearly the binary tree of height h / has a subtree that is a homeomorphic image
of a tree in k, since k- [(h+ 1)/2]- [h/2] and, consequently, such a tree is known
to be in the smaller tree of height h. On the other hand, if k= [(h+ 1)/2]-- [h/2] + l,
then there is a subtree of the complete binary tree of height h which is a homeomor-
phic image of a tree in k-, since [h/2] [(h- 1)/2]. Consequently, there are three
copies of such a tree in the complete binary tree of height h / and, thus, by the
construction of the trees in k, a subtree that is a homeomorphic image of a tree in k.

4. NP-completeness. In this section we establish the NP-completeness of the
problem of determining for an arbitrary graph G and integer k whether G has
topological bandwidth at most k. Moreover, we show that the problem of determining,
for an arbitrary degree 3 graph G and integer k, whether G has modified cutwidth at
most k is NP-complete. The same technique is used to show that the Min Cut Linear
Arrangement problem [5], [8], [11] and the Search Number problem [10], [15], [16]
remain NP-complete even for graphs with maximum vertex degree three.

Consider the so-called rectangle graph with m "rows" and n "columns," denoted
by R(m, n), defined by: (1) the vertices of R(m, n) are all pairs (i,j) such that _-< i<_- m
and l<_-j_<-n, and (2) the edges of R(m, n) are the following:

(a) {(i,j), (i,j+ l)}, for all i,j(l<-_i<-m and l_-<j<n),
(b) {(i, 1),(i+1, 1)}, for all i(l<=i<m),
(c) {(i, n), (i + 1, n)}, for all (1 _-< < m),
(d) {(2i-1, 2j), (2i, 2j)}, for all i,j (1_-<i -< [m/2J, 1-<j< [n/2J), and
(e) {(2i, 2j+ l), (2i+ l,2j+ l)}, for all i,j (l <-i< [m/2J, <-_j< [n/2J).

The rectangle R(4, 8) with four rows and 8 columns is shown below in Fig. 4.1.
We will show that, for all m >-3 and all n->_ 4m + 8, R(m, n) has cutwidth m +

and modified cutwidth m- 1. This is equivalent to showing that R(m, n) has search

FIG. 4.1. The rectangle R(4, 8).
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number m + and topological bandwidth m, since R(m, n) is a graph with maximum
vertex degree three.

First, observe that the following layout L gives R(m, n) cutwidth m+ and
modified cutwidth m-1. L is the layout that maps the vertex (i, j) to the integer
i.(m-l)+j, for all i,j(l<-i<-m and l<-j<-n). For example, the layout L for the
rectangle R(4, 8) is shown in Fig. 4.2. It is straightforward to show, in general, that
R(m, n) has cutwidth m + and modified cutwidth rn- under the layout L.

Next, observe that if we partition the vertices of R(m, n), where n->_4m+8, into
two disjoint subsets V and V2 such that both V and V2 either contain one vertex
from each of the m rows of R(m, n) or one vertex from 2m distinct columns of R(m, n),
then there are vertex disjoint paths connecting m vertices in V to m vertices in V.
This can be established by induction on m and n. For example, if V and V both have
one vertex from each of the m rows of R(m, n), then m vertex disjoint paths can be
formed along each of the rows to connect the rn pairs of vertices.

1st 2nd 3rd 4th 5th 6th 7th 8th
column column column column column column column column

FIG. 4.2. A layout of R(4, 8) with cutwidth 5 and modified cutwidth 3.

Note that any partition of the vertices of R(m, n) into two disjoint sets Vl and
V2 such that both V and V have at least 2rn vertices must be such that both VI and
V2 have either one vertex from each of the m rows of R(m, n) or one vertex from 2m
distinct columns of R(m, n). It follows that R(m, n) has modified cutwidth at least
m- under any linear layout, when n >-4m+ 8, since any linear layout partitions the
set of vertices in R(m, n) into the set V, consisting of the first 2m2 vertices in the
layout, and V, consisting of all the remaining vertices. That is, since there are m vertex
disjoint paths connecting V and V2, there must be at least m-1 edges passing over
the (2m2 + 1)st vertex under this layout. Furthermore, we observe by the same argument
that there are at least m-1 edges passing over every vertex in any linear layout of
R(m, n) which is assigned to a position between the (2m2+ 1)st and the position
2m2+ from the right end of the layout. Thus, if n is large, the number of edges
passing over the vertices in the middle of R(m, n) under any linear layout is at least
m-1.

Observe that next to any degree 3 vertex in R(m, n) which has at least rn- edges
passing over it there must be a cut with at least m + edges. That is, if x is a degree
3 vertex, is the ith vertex in the linear layout, and has at least m-1 edges passing
over it, then either passing between the ith vertex and the (i-1)st vertex or between
the ith vertex and the (i + 1)st vertex there must be at least m + edges. This follows
simply from the fact that at least two of the edges incident to the vertex x must
contribute to one of these two cuts. We note that R(m, n) has at most n degree 2
vertices, so if n is large there will be at least one vertex in the middle of any linear
layout which has degree 3. R(m, n) has m. n vertices. At most 4m2 vertices of R(m, n)
need to be used at the beginning and end of any linear layout to guarantee having at
least one vertex from each row or at least one vertex from each of 2m distinct columns
in the set of starting vertices and the set of terminating vertices. Also, we have seen
that at most n vertices in R(m, m) have degree 2. Therefore, there must be at least
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m. n-4m2- n vertices with degree 3 in R(m, n) that are in the "middle" of any linear
layout and, consequently, have at least m edges passing over them. Since n >_- 4m + 8,
m.n-4m2-n=(m-1) .n-4m2>-_(m-1) .(4m+8)-4m2=4m-8 and, since m_->

3, this is a positive integer. Therefore, there is at least one degree 3 vertex with m-
edges passing over it in any linear layout of R(m, n), when m _>- 3 and n >- 4m / 8. This
implies that R(m, n) has cutwidth at least m / 1. Since we have already seen a layout
that gave R(m, n) cutwidth m + l, it follows that R(m, n) has cutwidth exactly tn / 1.
We note also that in any linear layout of R(m, n) every cut from the (2m/ 1)st to the
(n. m 2m + 1)st has at least m edges.

The problem Modified Cutwidth is the following: Given a graph G and an integer
k, one asks if there is a linear layout L such that mcw (G, L)_-< k. It is known that
Modified Cutwidth is NP-complete 12]; however, the graph constructed in this reduc-
tion has very large degree. In the following we show that Modified Cutwidth remains
NP-complete when restricted to graphs with maximum vertex degree three. It follows
from Theorem 2.2 that the Topological Bandwidth problem is also NP-complete for
degree three graphs.

THEOREM 4.1. Modified Cutwidth is NP-complete for graphs with maximum vertex
degree three.

Proof. We reduce the NP-complete problem Min Cut into Equal Size Subsets [7]
to the Modified Cutwidth problem. Min Cut into Equal Size Subsets denotes the
problem in which, given a graph G and an integer k, one asks whether there is a
partition of the vertices of G into two equal size subsets, say VI and V2, such that the
number of edges with one endpoint in V and one endpoint in V2 is not greater than k.

Let G (V, E) be a graph with N vertices and let k be an arbitrary positive
integer. We construct a graph G’ with maximum vertex degree three and an integer
k’ such that (G, k) is a positive instance of Min Cut into Equal Size Subsets if and
only if (G’, k’) is a positive instance of the Modified Cutwidth problem.

G’ consists of several rectangle components. In fact, G’ has one copy of the
rectangle graph R(m, n), where m 2. N4 and n- 8. (N4+ l), for each of the N
vertices in G. G’ also has a component, called an H-shaped graph, which is shown in
Fig. 4.3. The H-shaped graph is formed by combining a rectangle R(m, n), where
m 2. N4 and n 36 (N4 + l), with four rectangles R(m, n), where m N4/2 and
n 12. (N4+ 1), in the manner shown in the figure. (We assume, without loss of
generality, that N is even.)

From each of the N rectangle components we add a sheaf of2N2 edges connecting
distinct degree 2 vertices in the rectangle to 2N2 distinct degree 2 vertices in the middle

3N

middle vertices

-- 12.(N4+1) 12.N4+9 -!- 12"(N4+1)’
FIG. 4.3. The H-shaped graph used in the proof of NP-completeness.

N4/2

2N
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of the H-shaped graph. In addition, for each edge {u, v} of the original graph G we
add an edge connecting a degree 2 vertex in the rectangle component corresponding
to the vertex u with a degree 2 vertex in the rectangle component corresponding to
the vertex v. These are all the edges in the graph G’ that connect the components. It
should be noted that, since the edges added to connect the components are only
incident to vertices that formerly had degree two, the resulting graph has degree three.

Choose the integer k’ to be 3Nnq N3q k- 1. We show that (G, k) is a positive
instance of the problem Min Cut into Equal Size Subsets if and only if (G’, k’) is a

positive instance of Modified Cutwidth.
First, let (G’, k’) be a positive instance of Modified Cutwidth. Then, there is a

linear layout L’ of G’ such that mcw (G’, L’)<-k’. As we have shown previously any
linear layout of a rectangle R(m, n), where m -> 3 and n -> 4m + 8, must have modified
cutwidth at least rn- 1. It follows that the separate components of G’ cannot overlap
heavily under the layout L’. That is, each 2N4 by 8. (N4+ 1) rectangle has modified
cutwidth 2N4- and, in fact, has 2N4- edges passing over every vertex in its
"middle" under any linear layout. Thus, if the middle vertices of two such rectangles
overlapped in the layout L’, then L’ would have modified cutwidth at least 4N4-2.
Since 4N4-2 is greater than k’ (we are assuming that N is large, without loss of
generality), this is a contradiction. So, separate components cannot overlap heavily.
In fact, one can identify a layout of the original graph G from the layout of G’ by
assigning each vertex v to the position occupied by the corresponding rectangle
component.

Notice that the H-shaped component contains a copy of the rectangle R(m, n)
at both ends, where m 3N4 and n 12(N4-1 1). Therefore, these rectangles at each
end of the H-shaped graph have modified cutwidth at least 3N4- under the linear
layout L’. Since G’ has modified cutwidth k’= 3 N4q N3d k- under the layout L, at
most N3q k additional edges can pass over either of these rectangles at the ends of
the H-shaped graph. It follows that half of the rectangles components corresponding
to vertices in the original graph G are positioned to the right of the H-shaped graph
and the other half are positioned to the left. That is, if N/2+ of the rectangle
components are placed on one side of the H-shaped graph, then there would be
(N/2+ 1). 2N2= N3+2N2 edges passing over one of the rectangles at the end of the
H-shaped graph. Since at most N3-t k edges can pass over, as we have seen, and k is
less than 2N, without loss of generality, this is a contradiction. So, half of the rectangle
components must be placed to the left of the H-shaped graph by the layout L’ and
the other half must be placed to the right of the H-shaped graph.

So, the vertices of G are also partitioned into two equal size subsets, say V/ and
VR, consisting of those vertices whose corresponding rectangle component lies to the
left or to the right of the H-shaped graph, respectively. There can be at most k edges
connecting vertices in VL with vertices in VR. That is, in the graph G’, when the layout
L’ assigns half of the rectangle components to positions to the left of the H-shaped
graph and the other half to positions to the right of the H-shaped graph, there are
3N4- +(N/2)2N2= 3N4+ N3- edges passing over vertices in the ends of the
H-shaped graph. Thus, since k’ 3Na-k- N q- k 1, it follows that at most k more edges
can pass over these vertices. So, at most k edges connect vertices in the rectangle
components to the left of the H-shaped graph with vertices in the rectangle components
to the right of the H-shaped graph. This is equivalent to saying that there are k edges
connecting vertices in V with vertices in VR in the graph G.

Conversely, let (G, k) be a positive instance of the Min Cut into Equal Sized
Subsets problem. Let V and V2 be the sets in a partition of the vertices of G so that
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[v,I v=[ and at most k edges have one endpoint in Vl and one endpoint in V2. Lay
out the graph G’ so that all the rectangle components that correspond to vertices in
V1 are to the left of the H-shaped graph and all the rectangle components that
correspond to vertices in V2 are to the right of the H-shaped graph. Furthermore, these
rectangle components are laid out in such a way that they do not overlap. With such
a layout it is straightforward to show that G’ has modified cutwidth k’=
3N4/ N3/ k-1. The basic structure of this layout is shown in Fig. 4.4. So, (G’, k’)
is a positive instance of Modified Cutwidth.

FIG. 4.4. An illustration of the basic structure in a layout of the graph G’ constructed in the proof of
Theorem 4.1.

COROLLARY 4.1. The Topological Bandwidth problem is NP-complete even when
restricted to graphs with maximum vertex degree three.

The corollary follows immediately from Theorem 2.2. The following result can be
shown by the same construction as described in the proof of Theorem 4.1, except the
value of k’ needs to be changed to 3N4/ N / k + 1.

COROLLARY 4.2. The Min Cut Linear Arrangement problem is NP-complete even
when restricted to graphs with maximum vertex degree three.

COROLLARY 4.3. The Search Number problem is NP-complete even when restricted
to graphs with maximum vertex degree three.

Corollary 4.3 follows from the fact that cutwidth and search number are identical
for graphs with maximum vertex degree three [ 15]. Similarly, it follows from Theorem
2.3 that the problem of determining, given a graph G and an integer k, whether the
node search number of G is at most k is NP-complete, even when the graph G has
maximum vertex degree three.

5. Characterization of graphs with topological bandwidth 2. Clearly a graph has
topological bandwidth one if and only if it is a simple chain. What kind of graphs
have topological bandwidth two? We shall now provide an answer to this question. It
should perhaps be noted that no characterization is yet known for graphs having
bandwidth two, although a linear time algorithm to decide if a graph has bandwidth
2 has been described [6]. First, we shall give a characterization of trees with topological
bandwidth two.

LEMMA 3.1. Let T be a tree. The following statements are equivalent:
1. tb (T)_-<2,
2. T does not contain a subtree that is a homeomorphic image of one of the trees

shown in Fig. 5.1, and
3. T has maximum vertex degree four and there is a path P in T which contains all

degree four vertices and is such that all degree 3 vertices in T are either on the
path P or are adjacent to a degree 3 vertex on P.

Proof. (1- 2) It is easily seen that none of the trees described in Fig. 5.1 have
topological bandwidth two. So, if T is a tree with topological bandwidth 2, then T
cannot have a subtree that is a homeomorphic image of any one of these trees.
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(2- 3) Suppose that T did not contain a path that contained all degree 4 nodes.
It would then follow that T contains a subtree that is a homeomorphic image of the
tree (c) in Fig. 5.1. If no path P exists which contains all degree 4 vertices and is such
that every degree 3 vertex is either on the path P or adjacent to a degree 3 vertex on
the path, then T would contain a subtree that is a homeomorphic image of one of the
trees (b), (d), (e), or (f). Finally, if T contains a vertex with degree 5 or larger, then
it contains a copy of tree (a) in Fig. 5.1.

(a) (b) (c)

(d) (e) (f)

FIG. 5.1. Forbidden subtrees for any tree with topological bandwidth two.

(3- 1) Let T have maximum vertex degree 4 and have a path P containing all
degree 4 vertices and such that all degree 3 vertices are either on the path P or are
adjacent to a degree 3 vertex in P. Let the sequence of vertices in the path P be
a, a2," , a, (m _-> l) so that, for all (1 _-< i_-< m), {ai, ai+} is an edge in T. We describe
a homeomorphic image of T and a bandwidth 2 layout of this tree informally. If a is
a degree 4 vertex, then it must necessarily be attached to two simple chains of vertices
that are not part of P. These simple chains can be laid out to fit into consecutive empty
spaces between a sufficiently large number of degree 2 vertices added into the edges
{a_, a} and {a, a+}. If a is a degree 3 vertex, then either it is attached to a single
vertex at the end of a simple chain or it is joined by an edge to a vertex in a simple
chain. The first case is handled in the same way as specified for degree 4 vertices. In
the latter case, the degree 3 vertex adjacent to ai is laid out next to a and the ends
of the chain are inserted into consecutive open spaces made available by inserting a
sufficiently large number of degree 2 vertices into {a_, a} and {a, ai+}. In this way
we see that the tree T has topological bandwidth two.

Let us now turn to biconnected graphs. In the following we see that there is a
close relationship between topological bandwidth 2 and cutwidth 3 in biconnected
graphs. Let reduce (G) be the reduction of a graph G. Then, for any biconnected graph
G, cw (G) 3 if and only if tb (reduce (G)) 2. That is, let cw (G) 3. Since G’=
reduce (G) has no vertices with degree less than 3, mcw (G’) <_- cw (G) 2. By Theorem
2.1, it follows that tb (G’)-< cw (G’)- 1. Consequently, since cw (G) cw (G’),
tb (G’)_-< 2. Conversely, let tb (reduce (G))-<_ 2. So, there is a homeomorphic image G’
of reduce (G) such that b(G’)-< 2. It is easily seen that any graph with bandwidth at
most 2 has cutwidth at most 3, so cw (G’)_-<3. Since cw (G)=cw (G’), we have
cw (G)-<3.

A biconnected graph G is outerplanar if it has a planar embedding in which a
single face includes all of its vertices. The edges of the face are called sides; the
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remaining edges are called chords. A chord {x, y) in a biconnected outerplanar graph
is a depth one chord if there is a path from x to y through sides and vertices that are
incident to no other chords.

LEMMA 5.2. Let G be a biconnected graph, tb (G) -< 2 ifand only ifG is outerplanar,
has at most 2 chords ofdepth one, and, if (x, y and (x, z are distinct chords in G, then
y and z are connected by a side.

Proof. Let tb (G) 2. Then there is a homeomorphic image G’ of G and a linear
layout L of G’ such that b(G’, L) 2. Let A, B be the first and last vertices of G’ under
the layout L, respectively. There must be two vertex disjoint paths connecting A and
B, since G is biconnected. Since G’ has bandwith 2 under the layout L, the vertices
in these two paths must alternate: one occupying the odd numbered positions and the
other occupying the even numbered positions. All additional edges in G’ must connect
consecutive odd and even numbered vertices. Consequently, G’ is outer planar. That
is, place all the vertices along a line in the order of their appearance in the linear
layout L, draw the edges in one path above this line, draw the edges in the other path
below this line, and draw all additional edges on the line. It follows that this is an
outerplanar representation of G’. All the vertices are on the external face. Furthermore,
all of the chords connect consecutive vertices along the line, so they do not cross and
there can be at most two of depth one. Furthermore, if {x, y} and {x, z} are chords in
G’, then y and z must be successive vertices of one or the other of these two paths
and, consequently, y and z are connected by a side.

Conversely, let (3 be a biconnected outer planar graph with at most two depth one
chords and satisfying the property that, if {x, y} and {x, z} are chords in G, then y and
z are connected by a side. Consider an arbitrary outerplanar representation of G. If
(3 has no chords, then clearly G has bandwidth 2. Similarly, if (3 has only one chord,
then it is easy to see that it has bandwidth 2. So, assume that G has at least two chords.
Consequently, there are two distinct depth one chords in G. Let A and B be vertices
that are spanned by these different depth one chords. (A vertex x is spanned by a
depth one chord, if x is one of the vertices encountered in a path along the sides from
one end of the chord to the other that does not enter any vertex incident to another
chord.) We construct a linear layout of a homeomorphic image of G in which vertex
A is the leftmost vertex and vertex B is the rightmost vertex. Let P and P2 be the two
paths along the sides from A to B. We add degree 2 vertices to these sides so that (1)
the path PI involves vertices in the even numbered positions, (2) the path P2 involves
vertices in the odd numbered positions, and (3) all of the chords connect consecu-
tive even and odd numbered positions. This is always possible, since all chords
connect vertices in P1 with vertices in P2 and we can fill in as many degree 2 vertices
as required to make the chords connect consecutive numbered vertices. Furthermore,
there can be no conflicting demands made by the chords, since, if {x, y} and {x, z}
are distinct chords, then y and z are joined by a side. That is, y and z must be consecu-
tive vertices in the path P or the path P2. So, we see that there is a homeomorphic
image of the graph G with bandwidth 2 and, consequently, G has topological
bandwidth 2. [3

In [15] biconnected graphs with cutwidth 3 were characterized as outerplanar
graphs satisfying the "collinear chord" property. Although all topological bandwidth
2 graphs satisfy this collinear chord property, biconnected outerplanar graphs with
the collinear chord property do not necessarily have topological bandwidth 2. They
do, as we have seen, when the graph is reduced.

We have characterized biconnected graphs and trees having topological bandwidth
2; now we turn to a general characterization of graphs with topological bandwidth 2.
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Let us say that a biconnected component of a graph G is simple, if it consists of a
single edge; otherwise, it is nonsimple.

Let G be a connected graph with topological bandwidth 2. So, there is a homeomor-
phic image G’ of G and a linear layout L of G’ such that b(G’, L)= 2. Let A, B be
the first and last vertices of G’ under the layout L, respectively. Since G, and hence
G’, is connected, there is a path P connecting A and B. Let C’= C’, C, , C’ (m =>
l) be the sequence of biconnected components in G’ such that (1) C contains the
first vertex ao A, (2) C’,, contains the last vertex a,,= B, (3) for all i(1-<_i< m), C
and CI+ share an articulation point ai, and (4) for all (1 <_- i_-< m) C shares at least
two vertices with the path P. Oberve that from the leftmost vertex of a nonsimple
biconnected component C to the rightmost vertex of C there can only be vertices
from C. That is, since L is a bandwidth 2 layout and there are two vertex disjoint
paths connecting any distinct pair of vertices in C, there are no available spaces for
vertices not in C’, between its leftmost and rightmost vertices. In fact, the vertices in
the sequence C’ can be assumed, without any loss of generality, to be laid out in the
order of their appearance in the sequence C’.

In what way can these biconnected components be joined ? For each (1 -<_ -<_ m),
let ai_ and ai be the connection points of the component C’. What conditions must
these connection points satisfy? Let us call a sequence v, v2," "’, vr (r >_-2) of vertices
in a biconnected outer planar graph an end-region if, for all (1 <_- i_-< r), {vi, v+} is a
side and {Vl, vr} is a depth one chord. Every outerplanar biconnected graph with at
least one chord has at least two distinct end-regions. As we have seen in Lemma 5.2,
if a biconnected outerplanar graph has topological bandwidth 2, then there can be at
most two end-regions.

First, observe that if C has a chord, then the connection points a_l and a must
be in distinct end-regions. That is, there are two vertex disjoint paths, say Pl and P2,
connecting a_l and a which traverse the sides of C. We have seen, in the proof of
Lemma 5.2, that chords must connect vertices in path P to vertices in the path P2. If
ai_ and a are not in distinct end-regions, then there is a chord connecting vertices
in the same path. This is impossible. So, connection points must be in distinct
end-regions.

Furthermore, if C is a nonsimple component and a,_ or a is incident to a chord
of C’,, then the end-regions defined by this chord must contain at most three vertices.
(In fact, it contains exactly three vertices.) Without loss of generality, assume a,_ is
incident to a chord. In this case, a_ cannot be the first vertex in the layout (which
must have degree two), as it has degree at least 4. That is, it is incident to two sides
of C’ Clearly, in anya chord of C’ and an edge in the preceding component C’i, i--l"

bandwidth 2 layout, two of the adjacent vertices must bc placed before ai_ and the
other two after it. The chord incident to a_ must, in fact, connect a_l with the vertex
to its right and there must bc sides of C that connect (1) a_ with the vertex on its
left and (2) the vertex on the left of a_ with the vertex on the right of ai_. Consequently,
the end-region defined by the chord incident to a_ contains a_l, the vertex to its left,
and the vertex to its right. So, the end-region has three vertices. See Fig. 5.2 for an
example.

Observe that the nonsimplc components of G’ correspond to nonsimplc com-
ponents of G and the articulation points in these nonsimple components are also
articulation points in the original graph G. That is, corresponding to the sequence C’
of biconnected components in the graph G’ there is a sequence C of biconncctcd
components in the graph G. The rules for connection points that we have just stated
for G’ must also hold in G. That is, (1) connection points must bc in distinct end-regions,
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(a) (b)

FIG. 5.2. (a) Three biconnected componentsjoined by the articulation points ai_ and ai. (b) A bandwidth

2 layout of these components.

and (2) if a connection point is incident to a chord, then this chord defines an end-region
with at most three vertices. Connection points that satisfy these two properties are
called valid connection points.

Let G be a graph formed by taking a sequence of biconnected graphs
C, C2," ", Cm, such that Ci has topological bandwidth 2, for all i(1-_<i-<_ m), and
coalescing a vertex ai in C with a vertex in Ci+. It follows that G has topological
bandwidth 2 if and only if there exists a choice of vertices a0 from C1 and am from
Cm such that, for all (1 _-<i_-< m), a_ and a are valid connection points for C.

A graph G with topological bandwidth 2 may be, however, more than a chain of
biconnected graphs. It may be a chain C- C1, C2,"" ", Cm (m--> l) of biconnected
graphs together with various attached graphs. Let us call a vertex in a graph simple if
it is not part of any nonsimple biconnected component and semisimple if it is part of
a simple component and a nonsimple component.

What kind of graphs can be attached to the vertices of a chain of biconnected
components? To which vertices can such graphs be attached?

Let G be a connected graph with topological bandwidth 2. There is a homeomor-
phic image G’ of G and a linear layout L of G’ such that b(G’, L)= 2. Let A and B
be the first and last vertices in the layout L. There must be a path P connecting A and
B. When all of the vertices along the path P and all of the edges incident to these
vertices are deleted from G, the resulting graph must have bandwith one, although it
need not be connected. That is, in deleting the vertices in P from G we delete at least
one vertex from every two successive vertices. So, the remainder must have bandwidth
one. Consequently, the remainder must be at most a collection of simple chains.

As we have seen earlier, there must be a chain C’ of biconnected components in
G’ and, therefore, a chain C C, C2, , Cm (m _--> l) of biconnected components in
G such that, for all (1-<i< m), Ci and C+ share an articulation point a and, for
some choice of vertices ao in C and am in Cm, and for all (1 -_< _-< m), a_ and a
are valid connection points for Ci. (If C is a simple component, we shall agree that
its two vertices always form a valid pair of connection points.)

If a is a simple articulation point, so C and C+ are single edges, then any one
of the following types of attachment can be made to ai:

Type (1). A single edge e is attached by joining the ends of the edge by new edges
to a. (Thus a cycle of three vertices is attached by coalescing one of its vertices with

Type (2). A simple chain is attached by joining one of its vertices with a new
edge to a.

Type (3). A simple chain is attached by coalescing one of its vertices with a.
It is easy to see that these are the only possible types of attachments, since if ai

and its incident edges are deleted, then the result must have topological bandwidth
one. Furthermore, any graph attachment to ai cannot be attached to any other vertex
of the chain C or it would not be an attachment, but would be part of a biconnected
component in the chain. Also, note that it is not possible to have a chain, instead of
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just a single edge, attached as described in Type (1). If a chain of more than one edge
were attached by joining its endpoints by new edges to ai, then the result cannot have
topological bandwidth 2. So, the only permissible attachments are of Types (1)-(3).

There may also be attachments to vertices in the nonsimple biconnected com-
ponents of the chain C, but these are even more restricted, as we shall see. As we
know, in any bandwidth 2 layout, from the leftmost vertex of a nonsimple biconnected
component to its rightmost vertex there can only be vertices that are part of this
component. Consequently, the only possible attachments to a nonsimple component
are simple chains attached by coalescing one of the ends of the chain to one of the
two leftmost vertices in this component or to one of the two rightmost vertices i this
component. That is, one chain may be attached to one of the two leftmost vertices and
one chain may be attached to one of the two rightmost vertices. Furthermore, if the
connection point on the right (left) end of the component is not the rightmost (leftmost)
vertex in the component, then the chain can only be attached to the rightmost (leftmost)
vertex. This follows from the fact that the connection points must already have an
edge connecting to vertices in another component.

Thus, the problem of identifying where chains can be attached to nonsimple
components becomes that of identifying which vertices can be the two leftmost and
which vertices can be the two rightmost vertices in a layout of this component. Clearly,
the connection points of a component need to be one of these extreme vertices, since
they need to be connected by an edge to vertices in components before or after the
current component. Furthermore, the other vertices at the left or right end of the layout
must be vertices joined to these connection points by a side of the outerplanar
component. Note that a connection point can always be chosen to be the leftmost
(rightmost) vertex of the component, except when it is incident to a chord, as we have
seen. In this case the leftmost (rightmost) vertex of the layout of this component must
be the vertex in the end-region defined by this chord and it must not be incident to
any chord.

So, we have seen that (1) only simple chains can be attached to vertices in
nonsimple components of a topological bandwidth 2 graph, (2) these chains must be
attached to either the connection points or vertices connected to these connection
points by a side and which are in the end-region containing the corresponding connec-
tion point, and (3) there can be at most one chain attached per end-region. It should
be noted that no chain can be attached to a connection point incident to chord in a
nonsimple biconnected component, since then this vertex would have degree at least
five, which is impossible for a bandwidth 2 graph. Also, note that a simple chain
attachment is possible to the leftmost (rightmost) two vertices only when Ci_ (Ci+I)
is a simple component. That is, only then can the vertices in the chain be inserted into
spaces made available by the insertion of an arbitrary large number of degree two
vertices into the edge of this component. Finally, note that if a nonsimple component
has four or more vertices, then the simple chains attached to this component must be
attached to distinct vertices. That is, a single vertex in such a case cannot be both one
of the leftmost two vertices and one of the rightmost two vertices of this component.

Thus, we have shown the following characterization of graphs with topological
bandwidth 2:

THEOREM 5.1. Let G be a graph. The topological bandwidth of G is at most 2 if
and only if:

(1) all nodes in G have degree at most 4;
(2) there is a chain of biconnected components C- C, C2, Cm (m _->l) in G

such that, for all (1 <- < m), Ci and Ci+ share an articulation point a,, and one can
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choose vertices ao and am in Cl and Cm, respectively, such that, for all (1-<i_-< m), Ci
has topological bandwidth 2 and the vertices ai_l and a are valid connection points for
C and

(3) G can .be obtained from C by attaching various graphs such that all of the
following conditions are satisfied:

(a) for all i(1-< i<=m), if a is simple, then attachments of Types (1)-(3) may be
attached to ai,

(b) for all <-_ <-_ m), if a is semisimple, then simple chains may be attached to

either ai or to a vertex connected to a by a side of the nonsimple outerplanar
component provided that this vertex is in the end-region containing a, and

(c) at most two simple chains can be attached to a nonsimple component: one to

each end-region. If the component has at least four vertices, then chains must
be attached to distinct vertices. All attachments are of the kind indicated in (a)
or (b).

To illustrate the theorem we describe some graphs with topological bandwidth
two in Fig. 5.3 and some graphs with topological bandwidth greater than two in Fig. 5.4.

FIG. 5.3. Some graphs with topological bandwidth two.

Theorem 5.1 suggests a linear time algorithm to decide if a graph has topological
bandwidth two. Basically, the algorithm would follow the following steps:

1. Find the biconnected components of G,
2. See if a chain of these biconnected components can be formed that satisfies

all of the properties indicated in Theorem 5.1. If it is not possible to construct such a
chain of components, then stop and answer "no"; otherwise, if there is such a chain
of components such that G is obtained from the chain by adding the indicated types
of attachments, then stop and answer "yes."

FIG. 5.4. Some graphs with topological bandwidth greater than two.
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This algorithm works in linear time, since the biconnected components can be found
in an amount of time bounded by some constant times the number of edges in G and
the number of edges in any graph with topological bandwidth two must be at most
two times the number of vertices, i.e. each vertex must have degree at most four.
Furthermore, the location of the chain of components and the verification of the
indicated properties, including the test for each nonsimple component satisfying the
outerplanar property, can be done in linear time. We shall not give the details of such
an algorithm here; however, the central idea should already be clear.

Topological bandwidth three seems to be much more difficult to characterize.
However, it should be noted that a modification ofthe dynamic programming algorithms
described in [91, [24], which show that the problem of deciding if a graph G with n
vertices has bandwidth k can be decided in O(n k) steps, will suffice to show that the
problem of deciding if a graph G with n vertices has topological bandwidth k can be
decided in O(n k) steps. That is, the improved dynamic programming algorithm given
in [9] can be modified to incorporate the possibility of degree two vertices being inserted
into the edges of G without an order of magnitude increase in the running time of the
algorithm. Thus, for all k>_-3, it is possible to recognize graphs with topological
bandwidth k in O(n k) steps.
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CODING STRINGS BY PAIRS OF STRINGS*

F. R. K. CHUNGf, R. E. TARJAN’:, W. J. PAUL," AND R. REISCHUK

Abstract. Let X, Yc {0, 1}*. We say Y codes X if every x X can be obtained by applying a short
program to some y e Y. We are interested in sets Y that code X robustly in the sense that even if we delete
an arbitrary subset Y’ c y of size k, say, the remaining set of strings Y\ Y’ still codes X. In general, this
can be achieved only by making in some sense more than k copies of each x X and distributing these
copies on different strings Y. Thus if the strings in X and Y have the same length, then 4# Y->_ (k + 1)4# X.

If we allow coding of X by Y in a way that every x X is obtained from strings x, z e Y by application
of a short program, then we can do better.

Let Y {),,s x[S c X} where) denotes bitwise sum mod 2. Then 4# Y 2* x. Yet Y codes X robustly
for k 2*x-l- 1. This paper explores the limitations of coding schemes of this nature.

1. Robust coding of strings by strings. For strings x, y {0, 1}*, we denote by
K(xly) the Kolmogorov complexity of x given y [P], [ZL]. We say y codes x if
K(x[y)= O(loglxl). we deliberately leave the implicit constant in the O-notation
undefined. Let X, Yc {0, }*. We say Y -codes X if for all x X there is y Y such
that y codes x. We say Y codes X k-robustly if for all Y’c Y with Y’-<_ k the set of
strings Y\ Y’ still 1-codes X.

Assume that the strings x s X are of the same length and sufficiently irregular,
that the strings in Y are longer than the strings in X by a factor t, and that there are
fl times more strings in Y than in X. Then one would intuitively expect every y Y
to code at most a strings x X, and most strings x X are coded by at most aft strings
y Y. This is more or less confirmed by Lemma 1.

LEMMA 1. Let p >> a log np. Let X {x,. ., x,} c {0, 1}p, Y {y,. ., Yen} c
{0, 1}p and K(Xl xn)>= np (i.e. Xl x, is a random string). Then

(a) Each ofy Y codes at most c strings x X.
(b) Each of at least n/2 strings x X is coded by at most 2aft strings y Y.
Proof Let {i,. ., is} {1,..., n}. Then
(1) sp-O(s log n)<=K(xi, xi) because Xl’" x, is random [P, fact 5].
Suppose y s Y codes xi,’’’, x. Then
(2) K(x, x,) <=, (K(xly)+ O(log g(xly))+ K(y) <= O(s log p)+ cp.
For s=a+ 1, (1) and (2) imply (a+ 1)p-O(a log n)<-ap+O(a logp). Hence

p-O(a log np)<=O. This proves (a).
Suppose (b) is false. Then

E * {xly codes x} by (a)
J

Y * {YIY codes x,}

> (n/2)2afl an by assumption, l-i

Clearly, it makes sense to say that, for every x X, certain strings y Y carry
specific information about xmnamely those strings y that code x. By Lemma 1, if the
strings in X are messy, then every string y carries specific information about a small
number of strings in X. Moreover, if one deletes from Y all strings carrying specific

* Received by the editors September 22, 1983 and in final form April 4, 1984.
f AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
Part of this research was done while the second author was visiting the University of Bielefeld.
IBM Research Laboratory San Jose, California 95193.
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information about a particular string x e X, then the resulting set of strings does not
l-code {x} any more. Thus we have:

COROLLARY 1. If under the hypotheses of Lemma l, Y 1-codes X k-robustly, then
2a > k.

2. Simple coding of strings by pairs of strings. For y, z e {0, l}p, let y0)z {0, 1}p

be the string whose ith bit is the mod 2 sum of the ith bits of y and z for _-< i_-<p.
For <-_i<=p, let ei e {0, l}p be the string which has in the ith position and O’s in all
other positions. Let Ep--{e,. ., ep}. Let 0 {0, l}p be the string consisting of p O’s.

Let X, Yc {0, }P. We say Y simply 2-codes X if for all x e X there are two strings
y, z e Y such that x z@y. We say Y simply 2-codes X k-robustly if for all Y’c Y
with # Y’_-< k the set of strings Y\ Y’ simply 2-codes X.

Example 1. X Ep, Y= {Yl,’’’, Yp+l}, with yi= e for i<=p and Yp+I--0.
Intuition suggests that in this example for i<=p, the string Yi carries specific

information about ei and about no other strings in X.
Example 2. X=Ep, Y={Yl,’",Yp+}, with y=@jexj for i<=p and yp+l

Is there still a reasonable way to attribute to every string y e Y specific information
about a small number of strings x e X? Motivated by this question, we consider for
arbitrary X, Yc {0, 1}p the following edge-labelled graph G(X, Y)= (V, E, L)" V- Y
is the vertex set. For all y, z Y, there is an edge {y, z} E iff y q) z x for some x e X.
L" E X is a mapping that labels every edge e {y, z} with L(e) y( z. For X, Y, as
in Examples and 2, we get the graph of Fig. 1.

Yl

XlOOOyP
YP+I
FIG.

Transform the edge labelling L: E - X into a node labelling by the following rule:
(.) For every edge e= {y, z}, put label L(e) on node y or on node z.

There are many ways to do this, and in general, nodes may get more than one label.
Thus the resulting node labelling is a mapping from Y to the power set of X. We will
use the letter L both for edge and node labellings.

If an edge labelling L has been transformed by Rule (,) into a node labelling L’,
then for every x X, the set of strings Y’= {yJx L(y)} has the property of a set of
strings each of which carries specific information about x" Y\ Y’ does not simply
2-code {x}. In analogy with the case of 1-coding, we want each y e Y to carry specific
information about only a small number of strings x e X. Thus we are interested in
node labellings L that minimize

max # L(y).
yY

For edge-labelled graphs, G (V, E, L), let

I(G) min max # L’(v),
L’ veV

where the minimum is taken over all node labellings L’ that can be obtained from L
by Rule (,). For the graph G of Fig. 1, we have l(G)= 1, which is obtained by the
node labelling L’(y)= {xi} for i<=p and L’(yp+)=.
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3. Transformation of labellings for simple 2-coding. We define the labelled p-
dimensional cube Cp := G(Ep, {0, 1}P). If Yc {0, 1}p, then G(Ep, Y) is a subgraph of Cp.

Any node labelling of Cp has to distribute p2p- occurrences of labels among 2p

nodes. As for every node v in Cp, different edges incident with v have different labels,
we find l(Cp)>= p/2. This shows that the function l(. is unbounded. As pointed out
in the abstract, coding X={x,...,xn} by Y={)iixillc{1, ...,n}} works for
arbitrary X {0, 1}P. Thus in the case of simple 2-coding, Lemma and Corollary
do not hold, and one has better robust coding schemes than in the case of 1-coding.
However, we have

LEMMA 2. For all p and m, ifyc {0, 1}p and y=<m, then l(G(Ep, Y))=<log m.

Proof. The proof is by induction on p. For p 1, this is easily verified. Suppose
the lemma holds for p. Let Yc {0, 1}p+. For i=0, 1, let Y={y Ylyp+=i} and
mi Y. Then l(G(Ep+, Y))=<log m for i=0, bythe induction hypothesis. Assume
m0=< m. For any edge {y, z} with y Yo, z Y, put the edge label ep/l of edge {y, z}
on y. This gives

l(G(Ep+l, y))-< max {1 + I(G(Ep+, Yo)), I(G(Ep+, Yl))}

=< max {1 +log, log m}. [3

COROLLARY 2. Let Y {0, l}p, Y--- m. For at least p/2 strings ei Ep, there is a
set Y Y such that # Yi <-- (2m log m)/p and Y\ Y does not simply 2-code {e}.

Proof. Assume the corollary is false. Let L be the node labelling of G(Ep, Y)
constructed in the proof of Lemma 2. Then

mlogm>- # L(y) # {yle, L(y)}
yY

> (p/2)(2m log m)/p.

COROLLARY 3. Let Y {0, }P, Y m, and let Y simply 2-code Ep k-robustly.
Then (2m log m)/p > k.

4. General 2-coding and the associated graphs. Let x, y, z {0, 1}*. We say y and
z 2-code x if K(xlyz)= O(log Ixl). Let X, Yc {0, 1}*. We say Y 2-codes X if for all
x X, there are y, z Y such that y and z 2-code x. We say Y 2-codes X k-robustly if
for all Y’ Y with Y’-< k, the set of strings Y\ Y’ 2-codes X.

With X, Yc {0, 1}*, we associate again an edge-labelled graph G(X, Y)=
(Y, E, L): for each y, z Y there is an edge {y, z} E ift y and z 2-code some x X.
For each edge e {y, z} E, we set L(e) {x Xly and z 2-code x}. Thus L is now a
mapping from E into the power set of X. For E’c E, let

L(E’)= CI L(e).
eE’

The following lemma exhibits a graph theoretic property of the graphs G(x, y)
and their subgraphs,

LEMMA 3. Let X={x,...,x,}{0,1}P, Y={Y,’",Yb,} {0,1}ap and
G(X, Y) (Y, E, L). Let K(x,... ,x,)>=np. Then

a
# L(E) =< Y

O(log (p# Y))/p"

Proof. Let d # L(E) and let L(E)= {x,,..., xd}. Then
(3) dp-O(d log n)=<K(x,, x,d).
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The string xi,’"xi,, can be specified in the following way:
The binary representations of n and b.
For each j {1,..., d} the binary representation of two indices k and such
that K(xijlYkYt)= O(log p) and a program that produces xi from YkYt.
The bits of Y’’’Yb,,.

Thus
(4) K(x,, x,) <= O(d log bn)+ O(d log p)+ abnp.

(3) and (4) imply the lemma.
Two cases are particularly simple:
(i) O(log bnp)/p<c< for some fixed c. Then 4L(E)=O( Y).
(ii) a= and 4 Y/(1-O(logp Y)/p)< 4 Y+ 1. Then L(E) <- 4 Y.
We now give an example of an edge-labelled graph G such that 4 L(E)<-4 Y

holds for all subgraphs Y, E, L) of G, yet G G(X, Y) for any X, Y, to which case
(ii) applies (if p is large enough).

Let G be a single edge with label xl. For i>= 1, let G, G be two copies of Gi.
Connect every vertex of G with every vertex of G,z. with an edge labelled x/. Call
the resulting graph G/t. By induction on i, one easily verifies that 4 L(E)<-4 V-1
for any subgraph (V, E, L) of G.

Suppose G8 is a subgraph of G(X, Y). Consider any node y in G8. Then K(xily) >
2p/3-O(log p) for some i {5,..., 8}. Otherwise one gets the contradiction

4p- O(log p) <- K(x5 x8)_-< (K(x,ly)+ O(log p))+ K(Y)
i=5

lip<-+ O(log p).
3

Consider in G8 the subgraph drawn in Fig. 2. For all j { 1, , 5}, we have

K (z.lyx,) <-_ K (yx,zj) K (yx,) + O(log p)

<= K (yz) + K (x,lyz) K (yx,) + O(log p)

<-_ K (y) + K(zly) K (y) K (x,ly) + O(log p)

-<_p-+ O(log p). [ZL]

This gives the contradiction

4p O(log p) _-< K (x x4)
4

<- K(yx,)+ E K(zlyx,)+ E K(xlzz+)+ O(log p)
j=l j=l

x2 x3 x4z2___-._.z3 z4 z5

x

FIG. 2
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5. Transforming edge labellings into node labellings. For sets V, V’, let V(R) V’=
{{v, v’}lv v, v’ v’}.

THEOREM 1. Let G V, E, L) be an edge-labelled graph, let 4# V n and for all
V’ c V, let 4# L(( V’(R) V’) E) <- 4# V’. Then 1(G) <-_ ax/-d where a 2/-.

Proof. The proof is by induction on n. The theorem is true for n-<_ a. Let n > a.
Find a node u V such that 4# L(({u}(R) V)f’)E)_> ax/ (if no such node exists, the
nodes of G can be trivially labelled in the desired way). Let E be a smallest set of
edges adjacent to u such that 4# L(E) ->_ ax/. By hypothesis we have ax/- -< 4# E _<-

ax/. Let Vl be the set of end points of edges in E other than u.
Let V2 V\ V [3 { u }). Let E2 V (R) V2) E and E3 (u (R) V2) E (see Fig. 3).

Ignoring labels on edges in E! and E2, we can label the nodes in Vt with

labels per node. By hypothesis, every edge in E has at most 2 labels. Thus putting
labels on edges in E on the endpoint of these edges in V gives at most 2 extra labels
per node in V.

FIG. 3

Ignoring labels on edges in E2 and E3, we can label the nodes of V2 with

if2
.<- n---+ __< an- 11

2

labels per node. Putting labels on edges in E to the endpoints of these edges in
gives at most 2 extra labels per node in

Now for every label x on an edge e in V (R) g that has already been put by the
above operations on the endpoint of e in V, delete label x from edge e. We continue
to use the letter L for the modified edge labelling.

The theorem follows if we establish
LEMMA 4. For evey node V, we have

4# L((w(R) Vl) N E) 9.

Proof. Assume the lemma is false for node w. Let V3 c V be a smallest set of
nodes such that 4# L((w(R) V3) ( E)=> 10 (Fig. 4). We make three observations:

(i) 4# V3_->9.
(ii) Let Va C V3 and z V3\ V4. Then

L({z, u})\L({V4(R)u}) # ,
L({z, w})\L({ V4(R) w}) #

by the minimality of V and V3.
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LI

FIG. 4

(iii) Let V4 C V3, # V4<=2. Then #L(u(R) V4)-<3 and #L(w(R) V4)=<3. By (ii) we
have

(5) L({w, z})c L({w, u}(R) V4) for at most 3 nodes z V3\V4. Similarly
(6) L({u, z})c L({w, u}(R) V4) for at most 3 nodes z V3\ V4.

By (i) there is z V3\ V4 such that (5) and (6) both do not hold for z.
But L({u, z})f’l L({w, z})=, because labels from this intersection have already

been deleted from the edge {w, z}. Thus

6 L(({z} U V4) (R){u, w}) -> L( V4(R){u, w}) + 2.

Starting with V4 and carrying out this construction 3 times gives a set of 3
nodes z, z2, z3 such that

6<= #L({z, z2, z3}(R){u, w}) <-- 5.

COROLLARY 4. Let X {x,- ., x,}c {0, 1}p, Y {y," ", yb,}C {0, 1}p, let
K(Xl x,)>=np, let (1-O(logp# Y)/p)<-_l + l/# Y, and suppose Y 2-codes X k-
robustly. Then 4x/6# Y> k.

THEOREM 2. Let G V, E, L) be an edge-labelled graph, # V n >> 1, and for all
V’c V, let #L((V’(R) V’)fqE)<-c# V’. Then/(G)-<_4 cn- where e<l/(12c).

Proof By hypothesis, every edge has at most 2c labels. We show l(G)=< 2n l- if
every edge has at most label.

For every node v V and any edge label that occurs on at least n+ of the
edges adjacent to v, put label on v and delete it from the edges adjacent to v. By
this at most n 1- labels are put on every node.

Next, for each v V, partition the edges adjacent to v into z= n classes
E v," ", E such that in every class E io, every label occurs on at most one edge of Eio.
Partition E into classes E ’j, <i<j<n,= by {u, v}E’ if[u, v]E fqE. For all i,
j, let Gi’ (V, E ’, L’) where L’ is L restricted to E i’j. Then in G’ for every node
v, all edges adjacent to v have different labels. We will show l(G’) <= n -3e.

For every vertex v that is adjacent to at most n 1-3 edges, put all labels occurring
on these edges on v. Delete v and its adjacent edges from G’. Continue this process
as long as possible. If finally all of Gi’j is deleted, we are done. Otherwise we are left
with an edge-labelled graph G’= (V’, E’, L’) with at most n nodes. Every node v has
at least nl-3 neighbors and the edges joining v with its neighbors have all different
labels. We will derive a contradiction from this.

We consider the adjacency matrix A’ of G’ and use the following fact [HI.
For natural numbers m, n, j, k, let z(m, n, j, k) be the smallest number z’ such

that every m n matrix with z’ ones contains a j x k minor/z that consists of ones
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only. Then z(m, n, j, k)<= +km+(j-1)l/krn-l/kn. In particular,

z(n, n, 9c3, 2c) <-- + 2cn + (9c3) 1/(2c) n2-1/(2c) <= n2-6

if 6e < 1/(2c) and n is large enough.
Let /x’ be a 9c3 (2c) minor of A’ that consists only of ones. Every one in

corresponds to an edge e E i’j. Replace each one in /x’ by the label Li’J(e) of the
corresponding edge. Call the resulting matrix/x. Every label occurs in each row and
column of/x at most once. We make the following observation.

If R is a set of at most 2c rows of/z, then at most 4c2 different labels occur in R.
Each label occurs in at most 2c more rows of/x. Thus there is a row r of R consisting
only of labels that are not yet in R. Starting with R an arbitrary row of M and
repeating this process 2c times gives a (2c+ 1)(2c) minor M" of tz that contains
4c2+ 2c different labels. The rows and columns of/z’ correspond to a set V’ of 4c +
vertices of/x. Thus

2c(2c + 1) _-< 4 L(( V’(R) V’) CI E) -<_ c(4c+ 1).

COROLLARY 5. Let X={xl,...,x,}c{0,1}P, Y= { YI, Yb,} C {O, 1}’P and
p >> log bnp. Suppose K(xl x,) >= pn and Y 2-codes X k-robustly. Then 16a(bn)- > k
for e < 1/(24a) and n large enough.

6. A lower bound. We want to establish lower bounds for l(G) where G satisfies
the property in Theorem 2.

THEOREM 3. For c >= 2, there exists G V, E, L), # V n, having an edge labelling
satisfying

and

#L((V’(R)V’)f’IE)<-c#V forallV’c V

l( G) >-_ c’na where a <
2 4c-2"

Proof Let 6=(1/2- 1/(4c-2)-a)/2. Let a =1/2- 1/(4c-2)-6=(c- 1)/(2c-1)-6
and let G (V, E) be a random graph with n nodes and n l+a edges, where all such
graphs are equally likely. We first show that with high probability,

(V’(R)V’)fqE<_-c#V’ for all V’cV with

most
The probability that for any set V’ of cardinality j <- n", (**) does not hold, is at
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For 2c + 2 -<_j -<_ log n, we estimate

Wj =< (log2 rl" n-1/2-1/(4c-2)-’+1/c) cj <- (n-1/2-1/6+1/2)2"6-- t1-2.

For log n <j -< n, we have

W <- c2n"( l-llc)-l++llc) Cj

(2l(a(2c-l)-c+l)/c)cj

(c2n-2-)/) <_ (n-)o- n-.
Hence the probability that (**) does not hold is at most

Z W <-n’n’-2<=n-.
j=2c+2

Next we make use of the fact that with probability o(n-), the degree of every
node in G is bounded by 3n [ER]. Therefore there exists a graph G with n nodes,
n+ edges, such that the degree of every node in G is bounded by 3n and (**) holds
for G.

Let L be any edge labelling of G, which labels every edge with exactly label
/{1,...,n}. Let V’=V. Then 4L((V’(R)V’)fqE)<-min{n,4((V’(R)V’)f’IE})<=
c4t: V’.

Suppose we choose L randomly in such a way that edges are labelled indepen-
dently, and such that for each edge, each label is equally likely. Let v be any node of
G, let d be the degree of v and let be any label. Then the probability that j or more
edges adjacent to v have label is at most

de 3;. \J/=\ J / -n---g --<_ O(n -3)

if j >_-log n. Therefore the probability that log n or more edges adjacent to the same
node as G have the same label is at most n. n. O(n -3) O(n-l). Hence there is a
labelling L such that for every and V label, occurs on at most log n edges adjacent
to node V. No matter how we transform L into a node labelling L’, we have Y’,v L’(v) >-
n+/log n. This proves the theorem.

7. Simple 2-coding revisited. If Y is a subset of {0, 1}p of size m, then G(Ep, Y)
may have up to m log m labels. This means the number of pairs in Y that code some
ei grows faster than the size of Y. But at least for the obvious example to demonstrate
this, the (log m)-dimensional subcube, one notices that for log m<< p, only a small
subset of the ei can be coded by many pairs. Thus there is hope that, disregarding a
small subset of {e,..., ep}, the remaining e have a much smaller number of pairs
which simply 2-code them.

For Xc {0, 1}p and l<=i<=p, define r(X, i) as the number of edges in G(Ep, X)
with label i.

For <= k <_- p define

and

rk(X)= min 2 r(X, i)
Dc{I,...,p} i.D

IDl>=k

ok(X) min max r(X, i),
Dcll,...,p} iD

IDl>=k
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and for m IN,

and

rk(m)= max rk(X)
IXl<=m

pk(m)= max pk(X).
IXl<-m

One checks easily that for m <=2p, pp(m)= [m/2J, whereas from Lemma 2 it
follows that rp (m) O(m log m).

Let In (x) denote the natural logarithm of x and Ink (x)=[In (x)]k.
THEOREM 4. There are constants a > 0 and C, h >- such that for all <- k < p and

ml(p-k)>-Cl,

Ok(m)<-- a In a +h
p-k p-k

COROLLARY 6. For any e > 0 and m O(p),

P(l-)p(m)--O(1).

Theorem 4 follows from the following:
LEMMA . There are constants fl > O, h >-_ such that for any X {0, },

P r(X, i)
,E, <-  lxl.In (r(X, i)+h)-

Proof of Theorem 4. Assume

pk(m > r:= ap_k In3 ap_ + h

Then there exists X {0, l}p of size m such that r(X, i):=r > r holds for more than
p- k labels { 1,. , p}. Define

x
F(x) =In (x + h)"

Later it will be shown that for appropriate h _-> e2, F(x) is monotonically increasing
for x _>- 0. Hence,

p, F(r) >- F(r) > (p- k)F(r)
i=1 ri>r

In3 (a(m/(p- k))+ h)
amln3 (a(m/(p- k)) In (a(m/(p- k))+ h)+ h)"

For an appropriate C => 1,

x+h=>ln (x+h)

holds for all x => C. Thus if am/(p- k)>= C, then

(;m(am)) (am(am))In3
-k

In3 +h +h -<_ln +h +h
p-k \P-k\p-k

_< in
am

+ h 8 In + h
p-k p-k

Therefore, P= F(ri) > am8. But this contradicts Lemma 5 if a / 8 ->/3.
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Proof of Lemma 5. Define h e 7.389 and y 0.16.
X

g(x)=Yln3(x+h ),
forx-->0

and

if(n)= 1+
,,;2 m In2 (m)’

We will show in the Appendix"

(gl) O-< g(x)<=O.16x

(g2) g’(x)>=O

(g3) g"(x) =< O

(fl) -<f(n)-<f(n+ 1)=<5

Now let X c {0, 1}p. Lemma 5 follows from the following:
PROPOSrrION. If n I{ilri > 0}1 then

P

2 g(r,)<=f(n)lXl.
i=1

for n N, n>=l.

for all x _-> 0,

for all x _-> 0,

for all x => 0,

for all n >_- 1.

Proof The proof is by induction on n. Define r max__<i__<p r. For each i, the edges
with label are a matching. Hence, IXI >-2r. For all <-h =< no 98, we get

P r 49y[XI 49Y’X’IY g(r’)=<ng(r)=<98Yln3 (+h)-ln (r+h)=- --Ixl<=f(n)lXl"
i=I

Thus, the claim holds for all n =< no. Now assume

(7.1) n+ > no 98,

and the claim is true for all n’ =< no. We may assume that rt --> r2->" => r,+t > rn+2--
rp 0. Define for {0, },

X {x e Xlx,+ l},

and for 1-<iN n r as the number of edges in G(Ep, Xr) with label i, this means we
cut X in dimension n + 1. Obviously,

0(7.2) X=XUX,
ri ri+ri forl=<i=<n.

D= DG D and dr= [Drl. One can check easily

(7.3) IXl->max{r,+, +1} forl=0, 1.

Define Ag(x, y) g(x) + g(y) g(x + y). Now

2 g(ri) 2 g(ri) g(r)+ g(rl)- 2 Ag(r,r,)+g(r.+,)
i=1 i=1 i=l i=1 iD

Applying the induction hypothesis to X and X gives

P
(7.4) E g(r,)=<lXlf(d)+[X’lf(d’) E Ag(r, r,)+g(r,,+)

i=1 iD

The idea of the proof is as follows" if D is large, theno Ag(r, r) is large enough
to compensate the term g(r,/); otherwise one of the d must be relatively small, such
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that the difference between Ix’If(n+ 1) and IX’lf(d’) is bigger than g(rn+l). We have
to distinguish several cases. First, we state some more properties off and g which will
be proved in the appendix.

(g4) Ag(x, y) >= 0 for all x, y >_- 0,

(g5) Ag(x, y) <= Ag(x, z) for all 0 =< x and 0 <= y <= z,

(g6) Ag(1, l) >_-- 0.0298y,

g(x)
(g7) Ag(x, y)>= 1.4 for all O=<x=<y and y>=3h.

In (x+h)

Define 6f(n, m) f(n) -f(m) for =< m =< n. Then

2
(f2) 6f(n, m) >-=4In2(re+h) for all 16_<-m-<n.

Case 1. :ll with d =<2/3n. Assume l= 1. Then (7.4) yields
p

E g(r,)<-lXlf(d)+lXllf(d’)+ g(r,,+,)
i=1

<=(IXl+lX’l)f(n+ 1)+g(r.+,)-IX’l 6f(n+ 1, d’).

If d_-> 16 and d_-> r.+, we get

g(r.+,)-lX’l tSf(n+ 1, d,)<=g(r.+,)_d _1
4 In2 (d+ h)

d
=< g(r"+)- V ln3 (d+h)

since ->

If 15=> d-> r.+, we get

:g(r.+,)-g(d’)<=O

g(r.+,)-IX’l 6f(n+ l. d’)-<g(15)- d

If 16=< d =< r.+, we have

by (7.3) and (f2)

by (g2).

"+

ln2---=< g(15)-j=dl+l

In (dl+ h)

rn+g(r,+,)-lXlJ 6f(n+ 1, d’)=< g(r.+l)- in (dl+ h)

rn+
In (r.+ + h)

15

If =< d -<_ 15 and d =< rn+l, we have

16 In 16

g(r.+,)-IX’ f(n+ l, d’) <- y

rn+
gr"+’- Yln3 (r.+l + h)

-r.+l (d,+ 1) ln2 (d2+ 1)

< rn+ ( J=ln2-i+l) In( +1) <0.dl+l

because In (dl+ 1)/(d+ 1)> y for all d 6{1,. ., 15}. Finally, if d=0, then

rn+g(r.,+l)-[X’ 6f(n+ 1. d’) =< Yln3 (r.+, + h) r.+ 2 In2 2

Y=< r.+ 8 2 In2 2
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Thus, E,P.= g(ri)<-_lXlf(n+ 1). We now assume

(7.5) d >-n for l= 0, 1.

-/3
Case 2. r,+t<-ctn In (n-t-h), where cl =0.0099. By (7.1), n>-98>-ec, -h. Thus

In n + h) >- c-( /3 and

(7.6) cn In (n + h) _>- n.

This implies

cn In (n+h)
<_g(r,+) <-g(cn In (n+ h))= Y ln (cn In (n+ h)+ h)-
ycn.

From (7.5) follows IDI > n/3. Thus

P
g(r,)<-_]Xlf(d)+lXlf(d) , Ag(r, r,)+g(r,+)

i=i iD

<-_[X[f(n+l)- Y Ag(1,1)+g(r+) by(g5)
iD

Let us now assume

n
IX[f(n + 1) 0.0298y + yc n by (g6)

0.0298<= IXIf(n + 1) since >= c.3

(7.7) r,,+ >- cln In (n + h).

From (7.1) it follows that

(7.8) rn+ _--> n _--> no--> 98_--> 6h.

For <- -<_ h, define zi min {ri, ri} and vi max {r, ri}. We have

(7.9)
Fi Fn+>->->- 3h.=2-2-

Case 3.

rn+E g(z,) >--
iO =8 In2 (r.+ + h)"

Then

2 g(r, ri)= Ag(zi, vi)
iD

1.4
g(z,)

ln(zi+h)
by (7.9) and (g7)

Z g( zi)
ln(Y.g(z,)+h)

(1/8) In2 (f’n+ll(’n+l + h))
In ((l/8)(r,,+l/lnz (r,+, + h))+ h)

_->0.175
In (r,+ + h)

--> g(r,+t), since 0.175 >_- 3’.
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Hence in (7.4),
P

E g(r)<-(IX[+lxl[)f(n+ 1)+g(rn+l)- E Ag(r,. r,)<=[Xlf(n+ 1).
i=1 i0

It remains the case that

r.+lE g(z,) <-
iD 8 In2 (r.+ 1-" h)"

-!}Define for 1=0, 1, B={i[ri> ri and b =IBI. Since b+b_<- n, we may assume
bl<=n/2.

If we remove from G(Ev, X 1) edges with labels not in B l, the remaining graph
consists of some connected components G(Ev, Y),. ., G(E,, Y") where Ul=S_ YS
X. Let us denote by the number of edges in G(Ep, yS) with label i. Each such
graph contains only labels from B. Hence by the induction hypothesis,

and

Y g(r)= Y. g() since r,
iB iB j=l j=l

j=l

Thus we can conclude

P

g(ri)<= g(ri)+ g(ri)+ Y g(ri)+g(r,+)
j=l i=1 iB iB

+ g(z,)+g(r.+,)
i=1

r.+ r.+1)--ln2(n/2+h)+-ln2(r.+,+h)

since r z for B

r.+ by (f2)+ Tin (r.++h)

r.___+! [1 T ]=lXIf(n+l)-ln2(r.++h) --- ln(r.+-h)

<--IXlf(n + ).

This completes the proof of the Proposition and Theorem 4. [J
For Yc {0, l}p and Qc {l,...,p}, let GQ(Ep, Y) denote the subgraph of

G(Ev, Y) that has the same set of nodes, but only edges with labels in Q.
The previous result can then be stated as follows. For any e,/z > 0, there is a

constant A(e,/z) such that for any Y {0, }P of size at most/zp, one can find a set
Qc {I,..., p} of size at least (1- e)p such that in GQ(Ep, Y) the occurrence of each
label is bounded by A(e, I), and hence G(Ep, Y) has less than A(e, I)p edges.
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This does not necessarily imply that in G (Ep, Y) the labelled edges are distributed
in a nice uniform manner such that every node gets about the same number of labels.
There might exist a neighborhood of nodes in G(Ep, y) where each node has a high
degree (increasing with p), and some of them might have to accept many labels. It
will be shown that the structure of the cube excludes such cases. Define

and

Ik (Y) min min max # L(v)
Qc ,"’,p} transformation L G Q( Ep, Y)

IQI >--k for GQ( Ep, Y)

lk(m) max lk(Y).
IYl<-m

Obviously, for n -(log p)/2<= k<= n, it holds that lk(p) 0(log p).
THEOREM 5. For any e, ix > 0 there exists a constant R(e, ix) such that

l(l_)p(ixp)<=R(e, ix), foranyp.

Proof. From Corollary 6, we know that there is a constant A A(e/2, lz) such
that l(_p (/xp), (ixp) _-< A for all p.

Let R R(e, ix)> IOA/eg(1). If the theorem is false, then there exists p t and
Yc {0, 1}p, [YI --< ixP such that for any Q c { 1,..., p} of size at least (1-e)p and any
transformation L of labels to nodes for G(Ep, Y), we find a node v with # L(v)> R.

By Corollary 6, for the given Y there exists a set U c { l, , p} of size (1 e/2)p
such that GU(EP, Y) has less than Ap edges. Among all transformations of labels in

GU(Ep, Y), choose L that minimizes the function

F(L) := E max {0, # L(v)- R}.

By assumption, for L and also any restriction/ of L to a graph G(Ep, Y) where Q
is a subset of U of size (1 e)p, F(L) and F() are positive. L defines an orientation
of the edges in Gu(Ep, Y)" edge {v, v’} is changed into the directed edge (v, v’)iff L
assigns the label of {v, v’} to v’. Let us call this directed graph H.

Let Z c Y be the set of all nodes from which there is a path of length ->0 in H
to a node v with 4L(v)> R, and let H be the subgraph of H induced by Z. By
assumption, Z is nonempty, since there is at least one node that gets more than R
labels. Notice that for z Z, 4 L(z) equals the indegree of z in H.

CLAIM 1. Each node ofZ has indegree at least R in H.
Proof. Assume z Z has indegree less than R, and let z Zo, Zl, , Zl be a path

in H from z to a node Zl with indegree bigger than R. By definition of Z, such a path
must exist.

Change L into / by assigning for 0-<i< the label on edge {zi, Zi/l} to node z
instead of zi/. Since in a cube all edges adjacent to a node have different labels, we
have L(zo) <- R, L(zI) L(z)- >= R and # L(z) : L(z) for all remaining z Y.
Hence

F(L) > F(L),

which contradicts the minimality of L. [3

Therefore, we now conclude that/- has. at least RIZI edges.
Since is a subgraph of H, and H has the same number of edges as GU(Ep, Y),

we know that RIZ] <= Ap. Hence
A

Izl
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On the other hand, G(Ep, Z) must have at least ep/2 different labels; otherwise, deleting
this set of labels from U would yield a subset Q of { 1, , p} of size at least (1 e)p
such that L restricted to G(Ep, Y) does not assign more than R labels to any node.
From the Proposition in the proof of Lemma 5, it follows that

>
P

IZI =f-- ,=,E g(r,),

where ri number of edges in G(Ep, Z) with label and n number of ri > 0.
Since g is monotonic and f is bounded by five, we get

Izl >=- -p g(1) -g(1)p.

Combining the two inequalities for IZI gives

e A
-g(1) --<---.

Hence

R_<_
IOA
eg(1)"

This contradicts the definition of R.
COROLLARY 7. If Yc {0, 1}p, # Y O(p) and Ysimply 2-codes Ep, then Y 2-codes

Ep O( 1)-robustly.

$. Problems. (i) How good are the bounds of Theorems and 29.
(ii) Consider 3-coding or more general r-coding for r_-> 3. Now G(x, y) becomes

a hypergraph, and a result analogous to Lemma 3 holds. Are there, even in the case
of simple 3-coding, any nontrivial bounds on l(G(x, y))9.

9. Appendix. Proof of Properties (gl)-(g7) and (fl)-(f2). Let h e2, let ),=0.16
and for x >= 0 let

x
g(x) y

in (x / h)"

(gl) is obvious. To prove (g2) we get

In (x+ h)-x3 In2 (x+ h)/(x+ h)
g’(x) y

In6 (x + h)

Let (x) := (x + h) In (x + h) 3x.

[=Yln3(x+h) 1-
3x

(x+h) In (x+h)

g"(x)=),
In4(x+h) x+h

1-
3x ](x + h) In (x + h)

[3(x+h) ln(x+h)-3x(ln(x+h)+l)])-In (x + h) (x + h iSi:/--/
3

=-Yln (x+h)(x+h)2[(x+h)
In (x+h)-3x+h In (x+h)-x]

3

-Y’n5 (x + h)(x + h)2[(x
/ 2h) In (x + h)-4x].

Then for x>=O, g’(x)>=OCC, q(x)>-O. We have q’(x)=ln(x+h)-2 and
limx_oo o(x) oo, and hence x 0 is the only minimum of q for x => 0. Since o(0) 2e2,
we get q(x) >- 0 for all x >- 0, and g’(x) >- 0 for all x >= 0.
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Let q(x):=(x+2h) In (x+h)-4x. Then for x>=O, g"(x)<=Ocq(x)>=O,

x+2h
q’(x)=ln (x+ h)+-4,

x+h

(x+h)-(x+2h) x
"(x) + ) =-----.x+h (x+h (x+h)

Since q’(0) 0, q"(x) >= 0 for x >- 0 and lim,,_ q(x) c, x 0 is the only minimum
of q(x). From o(0)= 4h >-0 it follows that

(g3) g"(x)<=O forall x>-0.

Define Ag(x, y) g(x) + g(y) g(x + y). Calculation proves (g6):

> 0.02983’.Ag(1,1)=23’ ln3(l+h) ln3(2+h)

Assume 0<-x and O<-y<=z. Since for all t[y,z], g’(x+t)<=g’(t) by (g3), we can
conclude that g(x + z) g(x + y) <= g(z) g(y). This yields g(x) + g(y) g(x + y) <=
g(x)+g(z)-g(x+z), or

(g5) Ag(x, y) <= Ag(x, z) for all 0 -< x and 0 <- y =< z.

For Ag we can show the bound for 0<_-x_<-y:

Ag(x, y) g(x) + g(y) g(x + y) >-- g(x) x

This yields

Ag(x, y) >-- g(x) x3‘ in (y + h)

[ ln3 (x+ h) (l=g(x) l-in3(y+h)

sup g’(z) g(x) xg’(y).
z[y,x+y]

3y )(y+h) ln(y+h)

3y t](y+h) ln(y+h)

Since ln (x + h) <=ln (y+ h) and O<=3y<=(y+h) ln(y+h) (see proof of (g2)),
Ag(x, y)>= 0 follows from g(x)>=0. The case x > y follows from Ag(x, y)= Ag(y, x).
This proves (g4). If x+h>=(y+h)z/3, we get In (x + h) >= (2/3) In (y+h) and

3y 3y 2/3 2 3y g(x)
Ag(x,y)>_g(x) >_ln(y+h)-g(x)y+h y+h ln(x+h) 3y+hln(x+h)

If y>-3h then Ag(x,y)>--g(x)/ln (x+ h). If on the other hand x+ h<=(y+ h)2/3,
we can bound Ag(x, y) by

Ag(x, y)>--g(x)[1 -In3 (x+ h)]In (y+ h)

-> 0.Tg(x)

g(x)
_--> 1.4 since In (x + h) _>- 2.

In (x+h)
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Therefore we have shown (g7):

Ag(x,y)>--_l.4
g(x)

In (x+h)’

For n I1, n _>-1, define

for all 0 _-< x _<- y and y _-> 3 h.

f(n) +
m=2 m In2 m

Then

f(n) <-1+ _1-l+(log2e)2

,,=2 m In2 m ,,=2 re(log2 m)2

+ (log2 e) E <,__< 2 re(log2 m)2
i=12"

)2 "rr2
_--__l+(log2e)2 2i2i i2

=l+(log2e ----<5.i=l

Thus (fl), _-<f(n)-<_ 5, holds for all n _-> 1. Define 6f(n, m)=f(n)-f(m) for <_- m _-< n.
For 16_-< m <-2/3n,

6f(n, m)
13m/21

--> g
j=,.+ j In= j j=,.+ j In- j

>--[m/21 >-
[3m/2] In2 [3m/2]=3 In2 [3m/2]"

Since m -> 16,

[3m/2]N(+0)mN 1.6mN(16+h)Ism-(m+h)llS<-(m+h)"/T.

Hence

This proves

ln2 [-] <- ln2 m + h)4 41n2 m + h

2
(f2) 6f(n, m)>= for all 16<-m<--n.4 In2 (m+ h)
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CONVERGENCE OF A NONLINEAR SHARPENING TRANSFORMATION
FOR DIGITAL IMAGES*

CAROLYN R. JOHNSON,"

Abstract. Various transformations, including Fourier and Laplacian, have been used for enhancement
and restoration of digitized grey level images. A simple nonlinear transformation for sharpening digital
images, which depends on local operations, was introduced by Kramer and Bruckner (Pattern Recognition,
7 (1975, pp. 53-58)). A simplified proof of the Kramer-Bruckner pointwise convergence theorem for iterates
of the sharpening transformation is given.

AMS(MOS) subject classifications: Primary, 68G10, 68E99" secondary, 65K05, 54C30

1. Introduction. Graded patterns are matrices with integer entries. Such patterns
are produced by high speed scanning devices such as densitometers. These digitized
images arise in areas such as land use study, planetary observations, fingerprint analysis,
X-ray diagnosis, and optical character recognition.

DEFINITION. Let N1, N2, and N be positive integers. A gradedpattern (or digitized
grey level image) is an NI N2 matrix with entries from {0, 1, 2,. ., ND}.

Graded patterns often become distorted or "fuzzy" due to noise or electronic
interference during data collection and transmission. Generally, graded patterns are
subjected to an image enhancement procedure before being interpreted. These pro-
cedures attempt to restore the pattern to its original state. A simple nonlinear transfor-
mation for sharpening graded patterns which depends on local operations was intro-
duced by Kramer and Bruckner (1975). Basically the transformation replaces the value
of each entry of a graded pattern by the largest or smallest value in its neighborhood.

2. Definition of transformation. Rather than describe the transformation in terms
of graded patterns, it is best described in terms of real valued functions F on finite
sets X. Of particular interest is the case where X is the ordered pairs of an N1 N2
matrix, that is

X {(i,j): <-_ <= NI, -<_j-<_ N2},

and F is the function on X which assigns to the ijth pair the value aij, F((i,j))= aij,
where A [a] is the graded pattern.

The definition of the sharpening transformation requires the notion of a neighbor-
hood system for X, N={N(x): xX}. Associate with every point xX a unique
nonempty subset N(x) of X such that x N(x). We require that the neighborhoods
satisfy the symmetry condition that if x N(y), then y N(x) for all elements x and
y of X. Associate with every real valued function F on X two other functions F* and
F., the local maximum and local minimum functions respectively; that is,

F*(x) max {F(y): y e N(x)} and F.(x) miD {F(y)" y e N(x)}

for all elements x of X.
If X is a finite set with a neighborhood system and F is a real valued function

on X, then the sharpening transformation S is defined by

F*(x)
S(F)(x) (SF)(x)

F.(x)

if F*(x)- F(x) <-_ F(x) F.(x),
otherwise.
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Define SF F, and for all positive integers n, S"+IF S(S"F) is given by

Sn+’F(x) ((S"F)*(x)(S"F),(x)

if (SF)*- S"F(x) <- S"F(x)-(S"F).(x),
otherwise.

Kramer and Bruckner proved the pointwise convergence of the sequence {SF}. We
provide a simplified proof based on the cardinality of the range.

Remark. A point x X is called a local maximum of F if F(x)- F*(x). Dually,
if F(x)- F.(x) we say that x is a local minimum of F.

It is immediate that the pointwise convergence of the sequence {SF} is equivalent
to the assertion that there exists a positive integer N such that for each x X, x is
either a local minimum or a local maximum of SNF.

3. Convergence.
THEOREM (Kramer-Bruckner). IfX is a finite set with a neighborhood system and

F is a real valued function on X, then for every element x of X, there exists an integer
N such that for all n >- N, SF(x) SNF(x).

Proof. If F is constant on X then F*(x)- F.(x)- F(x) for all x in X, and the
result is immediate. If the cardinality of F(X), IF(X)I, equals two, then every point
of X is a local maximum or local minimum of F, and again the result follows. The
proof proceeds by induction on the cardinality of F(X). Assume that IF(X) => 3, and
that the result is true for all functions F and finite sets X such that IF(X)I <-n. Let
IF(X)l n +

Let u max {F(x): x X} and g= min {F(x): x 6 X}. Define U(F)
{x X: F(x) u} and L(F) {x X: F(x) g}. Note that if F(x) u F*(x), then
SkF(x) (sk-F)*(x) u for all positive integers k; and similarly, if F(x) g= F,(x),
then SkF(x)= (sk-F),(x)= g for all positive integers k. This implies that

U(F)c U(SF)c U(SF)c . U(S"F)c... X, and

L(F) c L(SF) c L(S2F) C... = L(S"F)=... X.

Because X is finite there exists an integer N such that

u(SNF)-U(sN/kF) and L(SNF)=L(sN+kF)
for all nonnegative integers k. Let U u(SNF), L--L(SNF), and let x be an element
of X- (UU L).

CLAIM. Either N(x)
Suppose that N(x) U and N(x) L are nonempty. Then there are points Yl and

y2 such that Yl N(x) and SF(y) u, and Y2 N(x) and SNF(y2) g. But then

sN+IF(x){(SNF)*(X)--u, or

(SNF),(x)={,
which implies that x 6 U U L, a contradiction.

We now consider three cases.
Case 1. Suppose N(x) U # . Then there is a y N(x) such that SF(y)= u,

and SNF(x)#u, so SNF(x)=(SN-1F),(x)<u. Because (s+kF)*(x)=u for all k=
0, l, 2,... and x not in U, this means that sN+kF(x)= (sN+k-IF).(X) for all nonnega-
tive integer k. Then

SrVF(x) (SN-1 F),(x) >- (SNF),(x) >= (SN+l F),(x)>=. > g.

So there is an integer N such that SN, F(x) SU,+kF(x) for all nonnegative integers k.
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Case 2. If N(x)f3 L is nonempty then an argument symmetric to Case shows
that there is an integer N2 such that SN2F(x)= SN2/kF(x) for all nonnegative integers
k.

Case 3..Suppose that both N(x) fqU and N(x) fqL are empty. Let Y=
X (U kJ L), F F y, the restriction of F to Y, and for all y Y, let Ny(y) N(y) f3 Y
be the neighborhood system for Y. Then ]/(Y)I < n, so by the inductive hypothesis
there is an integer N3 such that

sf(x)= S’/P(x)
for all nonnegative integers k. But N(x) fq U f N(x) f3 L implies that N(x) fq Y
N(x) so S(x)=SF(x) Moreover, sk(x)=SkF(x) since (sk),(x)=(SkF),(x)
and (sk)*(x) (SkF)*(’x) for all integers k. Thus, Sn3F(x) Sn3(x)= Sn3/k(x)
sl/kF(x) for all nonnegative integers k, and the result is true for all x in X.

Remark. The Kramer-Bruckner claim of pointwise convergence of {S"F} to the
function P is then established by letting P SN,F, where N, is the maximum of the
integers given by the Theorem for the individual elements of X.

4. Example. We now provide an illustration of how the sharpening transformation
S can be applied to character recognition. Let X be an 8 8 matrix and let F be the
function from X into {0, 1, 2, , 7} which represents the graded pattern B with eight
grey levels shown in Fig. 1. We distorted the pattern by introducing noise, n(x), as
follows. The noise was determined by first generating a random number r from
{0, 1,..., 9} and then using the following rule:

ifr=0or9thenn(x)=0

if r= or 5 then n(x)=

if r= 2 or 6 then n(x)=-I

if r= 3 or T then n(x)=2

if r=4 or 8 then n(x)=-2.

0 7 7 7 7 0 0 0 7 6 7 7 0 0
0 7 0 0 7 0 0 0 2 6 2 7 0 0
0 7 0 0 7 0 0 0 0 6 2 0 5 0 2
0 7 7 7 7 7 0 0 6 6 7 7 7 2
0 7 0 0 0 7 0 0 2 7 0 0 7 0 0
0 7 0 0 0 7 0 0 0 7 0 0 0 6 2 0
0 7 0 0 0 7 0 0 0 7 0 2 6 0
0 7 7 7 7 7 0 0 0 7 7 7 5 7 2 2

B T

7 7 7 7 0 0 0 0 7 7 7 7 0 0 0
0 7 0 7 0 0 0 0 7 0 0 7 0 0 0
0 6 0 0 7 0 2 2 0 7 0 0 7 0 2 2
0 7 7 7 7 7 0 2 0 7 7 7 7 7 0 2
0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0
0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0
0 7 0 0 0 7 0 2 0 7 0 0 0 7 0 2
0 7 7 7 7 7 0 2 0 7 7 7 7 7 0 2

ST SaT

FIG.
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The distorted pattern is represented by T in Fig. 1, where T: X {0, 1, 2,..., 7} is
given by

T(x)={F(x)+n(x)F(x)

ifO<-_F(x)+n(x)<=7,

otherwise.

Crucifix neighborhoods were used; that is, the neighborhood of the ijth entry consisted
of the ijth entry and those entries immediately above, below, right, and left of the
entry. After two applications of the sharpening transformation S, the limit $2T was
reached and found to be very close to the original pattern, as shown in the figure.
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DISJUNCTIVE PROGRAMMING AND A HIERARCHY OF
RELAXATIONS FOR DISCRETE OPTIMIZATION PROBLEMS*

EGON BALAS"

Abstract. We discuss a new conceptual framework for the convexification of discrete optimization
problems, and a general technique for obtaining approximations to the convex hull of the feasible set. The
concepts come from disjunctive programming and the key tool is a description of the convex hull of a union
of polyhedra in terms of a higher dimensional polyhedron. Although this description was known for several
years, only recently was it shown by Jeroslow and Lowe to yield improved representations of discrete
optimization problems. We express the feasible set of a discrete optimization problem as the intersection
(conjunction) of unions of polyhedra, and define an operation that takes one such expression into another,
equivalent one, with fewer conjuncts. We then introduce a class of relaxations based on replacing each
conjunct (union of polyhedra) by its convex hull. The strength of the relaxations increases as the number
of conjuncts decreases, and the class of relaxations forms a hierarchy that spans the spectrum between the
common linear programming relaxation, and the convex hull of the feasible set itself. Instances where this
approach has advantages include critical path problems in disjunctive graphs, network synthesis problems,
certain fixed charge network flow problems, etc. We illustrate the approach on the first of these problems,
which is a model for machine sequencing.

AMS(MOS) subject classification. 90C 10

1. Introduction. Most discrete optimization problems are solved by some kind of
enumerative procedure. These procedures use relaxations of the feasible set, and of
the subsets into which the latter is broken up, in order to derive bounds on the objective
function value on these subsets. Their efficiency depends crucially on the strength of
these bounds, which in turn hinges on the strength of the relaxation used. The most
commonly used relaxation is the linear program obtained by removing the integrality
conditions, sometimes amended with cutting planes. However, some integer program-
ming problems have more than one formulation, and the various formulations may
give rise to linear programming relaxations of varying strengths. This has been known
for a long time about the simple plant location problem, for which the disaggregation
of the capacity constraints involving the 0-1 variables produces a considerably stronger
linear program than the aggregated one. To the disaggregation of the capacity con-
straints, Rardin and Choe 16] have recently added a disaggregation ofthe flow variables
of fixed charge network flow problems, either from arc into path flows, or from single
commodity into multicommodity flows, which often yields a stronger linear program
than the one in the original variables.

Approaching the problem from another standpoint, that of mixed integer rep-
resentability of various functions and sets, Jeroslow and Lowe 13] have recently shown
how certain mixed integer formulations using a larger number of variables than the
common formulation, give rise to stronger linear programming relaxations. Their
approach essentially uses disjunctive programming, and our work is closely related to
theirs.

* Received by the editors August 3, 1983, and in final revised form May 21, 1984. The research underlying
this report was supported by the National Science Foundation under grants ECS-8205425 and ECS-8218181
and the U.S. Office of Naval Research under contract N00014-82-K-0329 NR047-607. This work was presented
at the SIAM Second Conference on the Applications of Discrete Mathematics, held at Massachusetts
Institute of Technology, Cambridge, Massachusetts, June 27-29, 1983.

f Graduate School of Industrial Administration, Carnegie-Mellon University, Schenley Park, Pittsburgh,
Pennsylvania 15213.
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Disjunctive programming is optimization over disjunctive sets. A disjunctive set

is a set defined by inequalities connected to each other by the operations of conjunction
(^, juxtaposition, "and") or disjunction (v, "or"). Since inequalities define halfspaces,
a disjunctive set can also be viewed as a collection of halfspaces joined together by
the operations of intersection (f’)) or union (t.J). A disjunctive program is than a

problem of the form min {cxlx F}, where F is a disjunctive set.
Any integer or mixed integer program can be stated as a disjunctive program,

usually in more than one way. Conversely, any bounded disjunctive program can be
stated as a pure or mixed integer 0-1 program. This is not always true, though, of an
unbounded disjunctive program" the set xj <= 0 v xj >= 1, for instance, cannot be represen-
ted by the use of integer variables unless x is bounded.

Besides this--not too importantmditterence in the domain of applicability of the
two problem classes, it is often convenient to view integer programming problems as

disjunctive programs. Apart from the fact that this is the most natural and straightfor-
ward way of stating many problems involving logical conditions (dichotomies, implica-
tions, etc.), the disjunctive programming approach seems to be fruitful both theoretically
and practically. On the theoretical side, it provides some neat structural characteriz-
ations which offer new insights. On the practical side, it produces a variety of cutting
planes, including facets of the convex hull of feasible points, which are hard to obtain
by other means. In some cases, like set covering and partitioning, these cutting planes
have been shown to be considerably stronger than those derived by other means, and
have been successfully used in algorithms. In this paper we show that disjunctive
programming also provides strong relaxations of an integer program. For background
on disjunctive programming, see the surveys [4], [12], [17].

In this paper we introduce a general framework in which various linear program-
ming relaxations can be classified, ranked, strengthened at a given computational cost,
and viewed from a unifying perspective. In fact, we provide a family of relaxations of
a (pure or mixed) integer 0-1 program (P) whose members form a hierarchy in terms

of their strength, or tightness. The members of this hierarchy span the whole spectrum
between the usual linear programming relaxation and the convex hull of the feasible
set of (P). This is obtained by viewing (P) as a disjunctive program and making use

of the rich variety of representations available for the latter. Our main tool is the
operation of taking the convex hull of various disjunctive sets.

The paper is organized as follows. Section 2 discusses some basic properties of
disjunctive sets and their equivalent forms, and describes a procedure for systematically
generating these forms from each other. Section 3 deals with characterizations of the
convex hull of a disjunctive set, and their relationship to mixed integer representations
of such a set. Section 4 introduces the hull relaxation of a disjunctive set, which gives
rise to the hierarchy of relaxations mentioned earlier. Section 5 illustrates these concepts
and procedures on the disjunctive graph formulation of the machine sequencing
problem.

2. Disjunctive sets and their equivalent forms. We denote a halfspace by

H+={xR"lax>=ao},

where a Rn, a0 . While the intersection of a finite collection of halfspaces, i.e., a
set of the form

P= H={x"[ax>=ao,iM}
iM

is known as a polyhedron, we call the union of a finite collection of halfspaces, i.e.,
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a set of the form

D
i

H- {x R" V (a ix >-_ aio) },ieM

an elementary disjunctive set.
A disjunctive set F can be expressed in many different forms, that are logically

equivalent and can be obtained from each other by considering F as a logical expression
whose statement forms are inequalities, and applying the rules ofpropositional calculus.
Among these equivalent forms, the two extreme ones are the conjunctive normalform
(CNF)

F=f’) Di,
iT

where each Di is an elementary disjunctive set, and the disjunctive normalform (DNF)

F=UP,,

where each P is a polyhedron.
The usual statement of most discrete optimization problems is in the form of an

intersection of elementary disjunctions, that is in CNF. We give a few examples.
The feasible set of a mixed integer 0-1 program given by the constraints

ax>-_b,iM, O<-xj<-_l,jN, xj<-Ovxj>-l,jIcN,

is in CNF, and can be written as F= fqiar D, with T= M t.I NI LJ NELJ I (where
N N2 N), and D defined as {xlaix >-_ bi} for M; {xlx >-_ 0} for N {xl-x >-

-1} for iN2; and {xl-xi>-Ovx>-l} for iI.
The DNF of the same set is F LJ s_1 Ps, where Ps is the set of those x satisfying

ax>-bi, iM; O<-_xj<-l,jN; x>-l,jS; and -x>=O,jI\S.
Similarly, the feasible set of a linear complementarity problem given by

a’x+by=c’,iM, x>-_O,y>-O,jN, xj<-_Ovy<-_O,jN,

is in CNF, and so is the feasible set of the machine sequencing problem [1]

t t, >- d,, i, j Z,

t>--O, i V,

t t, >- d, v t, t >- dj, i, j ), (j, W,

where each inequality of Z defines a precedence relation between two jobs, and each
disjunctive pair (i,j), (j, i) W states the condition that jobs and j cannot overlap.

On the other hand, the feasible set of the set covering problem defined by the
m xn matrix A (a), a {0, 1}, Vi, j, can be stated in CNF either in the same way
as shown for the general mixed integer program, or else by letting T M(={ 1, , m})
and F f’l r D, with Di {xJ Vv, (x _-> 1) }, T, where N {j N[a }. The
DNF of the same problem, on the other hand, is F LJc {xlx >- 1,j C}, where c
is the set of all covers.

Although the CNF and the DNF are the two extremes ofthe spectrum of equivalent
forms of a disjunctive set, they share a property not common to all forms: each of
them is an intersection of unions of polyhedra. We will say that a disjunctive set that
has this property is in regular form (RF). Thus the RF is

(2.1) F n s,
jeT
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where for j T,

(2.2) Sj 13 Pi, Pi a polyhedron, e Qj.
iQj

The CNF is the RF in which every S is elementary, i.e., every polyhedron P is
a halfspace. The DNF, on the other hand, is the RF in which ITI 1. Notice that if F
is in the RF given by (2.1), (2.2), each S is in DNF. A disjunctive set S in the DNF
(2.2) will be called improper if S P for some Qj, proper otherwise. Any disjunctive
set S such that IQI is improper. If S is improper then it is convex (and polyhedral).

Next we define an operation which, when applied to a disjunctive set in RF,
results in another RF with one less conjuncts, i.e., an operation which brings the
disjunctive set closer to the DNF. There are several advantages to having a disjunctive
set in DNF, i.e., expressed as a union of polyhedra; beyond this, the motivation for
the basic step introduced here will become clearer below when we discuss relaxations
of disjunctive sets.

THEOREM 2.1. Let F be the disjunctive set in RF given by (2.1), (2.2). Then F can
be brought to DNF by TI- applications of the following basic step, which preserves
regularity:

For some k, T, k l, bring Sk FI St to DNF, by replacing it with

(2.3) s, u (P, f P).
i Qk
J QI

Proof. Ski is the DNF of Sk f’l St. Indeed, by the distributivity of U and f’l, we have

je Qk
J QI

The set F given by (2.1), (2.2) is the intersection ofT unions of polyhedra. Every
application of the basic step replaces the intersection of p unions of polyhedra (for
some positive integer p) by the intersection of p-1 unions of polyhedra. Regularity
is thus preserved, and after T- basic steps F becomes a single union of polyhedra,
i.e., is in DNF.

Remark 2.1.1. Deleting repetitions, (2.3) can be written as

ieQkQ ieQkXQ
JQIQk

Remark 2.1.2. If Sk P for some io Qk, i.e., Sk is improper, then

if io Or,
(2.4) Ski

(P ) otherwise.
JQ

Every basic step reduces by one the number of conjuncts S in the RF to which
it is applied. On the other hand, it is also of interest to know the effect of a basic step
on the number of polyhedra whose unions are the conjuncts of the RF. When the basic
step is applied to a pair of conjuncts Sk, S that are both proper disjunctive sets, namely
unions of polyhedra indexed by Qk and Qt, respectively, then the set Sk resulting from
the basic step is the union of p polyhedra, where

p Qk\ Qtl x Q,\ Qk + Qk f’l Qtl.
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This is to be compared with the number of polyhedra in the unions defining Sk and
St, which is Qk] + Qtl. Obviously, more often than not a basic step applied to a pair
of proper disjunctive sets results in an increase in the number ofpolyhedra whose union
is taken. On the other hand, when one of the two disjunctive sets, say Sk, is improper,
then Skt is the union of at most as many polyhedra as St.

Given a disjunctive set in CNF with conjuncts, where the ith conjunct is the
union of qi halfspaces, and given the same disjunctive set in DNF, as the union of q
polyhedra, we have the bounding inequality

q<-q x. xqt.

Because performing a basic step on a pair Sk, St such that Sk is improper, results
in a set Skt that is the union of no more polyhedra than is S, it is often useful to carry
out a parallel basic step, defined as follows:

For F given by (2.1), (2.2), and Sk P for some io Qk (i.e., Sk improper), replace
f’ljT Sj by f-17-\k Sk, where each S is defined by (2.4).

Note that if some of the basic steps of Theorem 2.1 are replaced by parallel basic
steps, the total number of steps required to bring F to DNF remains the same.

Next we turn to the operation of taking the convex hull of a disjunctive set, which
plays a central role in the construction of the family of relaxations that we are about
to introduce.

3. The convex hull of a disjunctive set. We have two characterizations of the convex
hull of a disjunctive set, each of which requires the set to be in DNF. The first one is
described by the following two theorems.

THEOREM 3.1 [3], [4], [12]. Let

(3.1) F= Pi, P {x g[A’x >= ao}, Q,
iQ

where each A is an m x n matrix, each ao is an m-vector, and Q is an arbitrary index
set. Let Q* { Q[P }, and let

(Q*)= xe" ax>=afrall (a’ a)e"+ suchthata=u A,
i> Qao< u ao, i Q*, for some u

Then cl conv F= (Q*).
For the next theorem we need a definition. An inequality ax >- ao is said to define

(or induce) a facet of a polyhedron P of dimension n, if ax >= ao for all x P, and
ax ao for n affinely independent points x P.

THZOREM 3.2 [3], [4]. Let the set F defined by (2.1) be full-dimensional, and let Q
be finite. Then the inequality ax >= no, where o # O, defines a facet of cl conv F if and
only if # 0 is a vertex of

Q* for someF# {Y "IY u A u > O such that u >ao= ao, e Q*}

for some fixed no.
Analogous results are known for the cases where F is less than full-dimensional

and/or ao 0 (see [3]).
This characterization can be used to derive strong cutting planes whenever Q is

small or, although Q is large, the special structure of the polyhedra Pi makes it easy
to find vertices of F#. Such cutting planes have been derived in [2], [4], [5], [7], [15]
and have been successfully used to solve, for instance, set covering [6] and set
partitioning [10] problems. For related theoretical developments see also [9], [11].
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The second characterization expresses the convex hull of a disjunctive set as the
projection into R" of a higher dimensional polyhedron. It is this second characterization
that we are going to use extensively in this paper. Since this result is from an unpublished
technical report, we provide a proof here. As before, we denote Q*= {i QIPi }.

THEOREM 3.3 [3]. Let F be given by (3.1), and let (Q*) be the set of all those
x Rn such that there exist vectors (yi, yo) +, Q*, satisfying

x- yi=0,
iQ*

Aiy-aoYo>-O,
(3.2) Q*.

y=> 0,

E y=l.
iQ*

Then cl conv F (Q*).
Proof. If P denotes the set of those xR", (y, y) n+, i Q*, satisfying the

constraints of (3.2), then 6e(Q*) is by definition the projection of P into the subspace
of the x variables. Let w be a vector of variables associated with the constraints (3.2),
and let (a, ao)n+ and u ,, i Q*, be the components of w associated with the
n + equations and the IQ*I systems of inequalities, respectively, of (3.2). Define the
polyhedral cone

i<O, ui>O,iQ,}.W={w-a+uAi=O, ao uao=

Then the projection (Q*) of P (see [8, Thm. 2]) is the set of those x e " that
satisfy the inequality

(3.3) ( I +
iQ* iQ*

for every extreme direction vector w of Here I, is the identity matrix of order n,
and 0, is the m x n zero matrix. Rewriting (3.3) in the simpler form ax ao and
noticing that x satisfies (3.3) for every extreme direction vector w of W if and only if
it satisfies (3.3) for every w
such that ax ao for every (a, o)+ for which there exist vectors u , i Q*, that
together with (a, ao) satisfy the constraints of But this is precisely the set (Q*),
hence from Theorem 3.1,

In order to use this characterization of the convex hull, one needs to know which
P are nonempty. This inconvenience is considerably mitigated by the fact, to be shown
below, that the information in question becomes irrelevant if the systems Ay ao
satisfy a condition that is often easy to check. Let (3.2) be the constraint set obtained
from (3.2) by substituting Q for Q*, and let (Q) be the set obtained from (Q*) by
the same substitution.

For each P {y lA’y a}, define the cone C {y "lA’y 0. If P, 0,
then C is the recession cone of P, i.e.,

C, {ylx + Ay e P, Vx e P, A ->_ 0}.

For arbitrary sets S c N", e M, we denote

MSi={XRn X= YiforsomeyiS,,iM}.
iM
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THEOREM 3.4. St(Q) Se(Q*) if and only if
(3.4) Ck

_
C, Vke Q\Q*.

iQ*

Proof. For k Q\Q*, Aky akoYo >- O, yo >- 0 implies Yo 0. Therefore

and from Theorem 3.3,

9(Q) 9(Q*)+ Ck
keQ\Q*

9(Q) cl conv F+ , Ck.
kQ\Q*

But condition (3.4) holds if and only if

( Ck)_ClconvFkeQ\Q*

hence St(Q)- St(Q*) if and only if (3.4) holds. F!
COROLLARY 3.5. Iffor every Q, some subset of the set of inequalities A’y’>-_ ao

defines a bounded nonempty polyhedron, then 9(Q)= 9( Q*).
Thus the disjunctive program min {cxlx F}, where F is given by (3.1), is

equivalent to the linear program min{cx[x9(Q*)}. Furthermore, there is a 1-1
correspondence between vertices of the polyhedra P,, i Q*, and basic solutions of
the system (3.2). More specifically [3]:

(i) If is a vertex of Pi for some e Q*, then the vector with components
(/pi, 37g)= (, 1), (fig, )= (0, 0), k Q\{i}, together with , is a basic solution of the
system (3.2).

(ii) If together with (/k, ^kY0), k Q, is a basic solution of (3.2), then (35’,/Pg) (,
for some Q*, ()$k,/ok) (0, 0) for k Q\{ i}, and is a vertex of Pi.

Thus all basic solutions of the system (3.2) (or (3.2)o) satisfy the condition
ye {0, 1}, i Q. On the other hand, a solution of (3.2) (or (3.2)0) satisfying this
condition need not be basic. It is then natural to ask the question, what do such
solutions represent? The next theorem addresses this issue.

We denote by 9x(Q) the set of those x e R" for which there exist vectors (y’, yg) e
R"+, Q, satisfying the constraints of (3.2)0 and the condition yg- 0 or l, e Q’, i.e.,

(Q) := {x (Q)[y {0, 1}, i Q}.

THEOREM 3.6. Let F UO Pi, Q* { QIe # }, and Q** { Q*IP P,
’j e Q*\{ i}}. If F satisfies
(3.5)

and

(3.6)

then

x(Q) F.

Proofi With or without (3.5) and (3.6), Sly(Q)
_

F. Indeed, if x e P for some e Q,
then x together with the vectors (yi, y) (x, 1), (yk, yko) (0, 0), k Q\{ i}, satisfies the
constraints defining 5e(Q). It remains to be shown that if (3.5) and (3.6) hold,
9,( Q)

_
F.
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Suppose (3.5) and (3.6) are satisfied and let x 6e(Q). Then there exists k Q**,
Q’_ Q** and Q"_ Q\Q*, such that

x=yk+
ieQ’OQ"

and x together with the vectors (yk, 1), (yi, 0), iQ’UQ", and (yJ, yo)=(O,O),j
Q\Q’U Q"U {k}, satisfies (3.2)0. But then yk Pk and yi Ck for i Q’ (from (3.5))
and for i Q" (from (3.6)). Thus x Pk. !’]

Theorem 3.6 has the following immediate consequence, proved earlier in a different
way by Jeroslow and Lowe [13].

COROLLARY 3.7. If each Pi is nonempty and bounded, then 6t’t(Q)= F.
Thus not only is b(Q) the convex hull of the union of the nonempty, bounded

polyhedra Pi, Q, but (Q) is a valid mixed-integer representation of such a union
of polyhedra. As Jeroslow and Lowe [10] have recently noticed, this representation is
betterthan the usual one, since its linear programming relaxation is 5e(Q), the convex
hull of the union, which is often not true of the usual representation. By the latter we
mean the representation of F U io P as the set AI(Q) of those x R" satisfying

LAix ao i >- L, Q,

E 8=1,
iQ

t {0, 1}, iQ,

where each L is a lower bound (vector) on Ax.
If we denote by A(Q) the set obtained from A(Q) by relaxing the conditions

i {0, } to t >_- 0, Q, A(Q) is not necessarily the convex hull of F. In other words,
while 5e(Q)- conv 6e(Q) whenever all Pi are nonempty and bounded, for A we only
have the relation

A(Q)
_
conv A,(Q)

which often holds as strict inclusion, as will be illustrated later.
We need one more result before introducing the family of relaxations of a

disjunctive set. Namely, we want to use Theorem 3.3 to characterize the convex hull
of an elementary disjunctive set.

THEOREM 3.8. Let D= t.J 0 H-= {x ERnl/io (aix >_ aio)}. Then

ifD is proper,
cl cony D H ifD is improper, with D H-.

Proof If D-H for some k Q, cl conv D H since H is closed and convex.
Suppose now that D is proper, and let g be an arbitrary but fixed point in ". From
Theorem 3.3, g cl conv D if and only if the system

aiy’-a,oy>-O, iQ,

E y=l,
iQ

y’o>=O, iQ,

has a solution. From the theorem of the alternative, this is the case if and only if the
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system

-uoa + v =O, iQ,

(3.7)
uoaio- Vo>= 0,

v- Vo<0,

i>0, iQ,

where Uo R, Q, Vo R, and v has no solution.
Since D is proper, there exists no k Q such that H- H, ’i Q; hence there

i= uako, i Q. Thus (3.7) has no solutioni> 0, i Q, such that Uoaoexist no scalars Uo=
for any 2, and hence cl conv D for all n, i.e., cl conv D n. [-]

The convex hull of a proper elementary disjunctive set is thus , i.e., replacing
such a set with its convex hull is tantamount to throwing away all the constraints that
define it. This of course is not true for more general disjunctive sets, as will become
clear soon.

The system (3.2) which defines the convex hull of a disjunctive set in DNF is easy
to write down, but is unwieldy when the set Q is large; and for a mixed integer program
whose feasible set F is expressed as a disjunctive set in DNF, Q tends to be large.
Thus an attempt to use Theorem 3.3 to generate the convex hull of the feasible set is
in general not too promising.

On the other hand, the feasible set of most discrete optimization problems, when
given as a disjunctive set in CNF, has conjuncts that are the unions of small numbers
of halfspaces, often only two. Performing some basic steps one obtains a set in RF
whose conjuncts are still the unions of small numbers of polyhedra. Note that if a

disjunctive set is in the RF given by (2.1), (2.2), each conjunct S is in DNF; hence
we know how to take its convex hull. Naturally, taking the convex hull of each conjunct
is in general not going to deliver the convex hull of the disjunctive set, but can serve
as a relaxation of the latter. This takes us to the class of relaxations announced at the
beginning of this paper.

4. A hierarchy of relxtioas of a is]uactive set. Given a disjunctive set in regular
form

F=tS
jT

where each S is a union of polyhedra, we define the hull-relaxation of F, denoted
h-rel F, as

h-rel F :- cl cony S.
jT

The hull-relaxation of F is not to be confused with the convex hull of F: its
usefulness comes precisely from the fact that it involves taking the convex hull of each
union of polyhedra before intersecting them.

Next we relate the hull-relaxation of a disjunctive set to the usual linear program-
ming relaxation of the feasible set of a mixed integer program. Obviously, the hull-
relaxation of any disjunctive set is polyhedral, since the intersection of polyhedra is
a polyhedron. Suppose now that we have a disjunctive set in CNF,

Fo= f3 D),
jT

where each D) is the union of halfspaces. Let T* {j e T D) is improper}, T** T\ T*,
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and denote

Po: N Dj,
j T*

with Po R" if T*= Q. By definition, Po is a polyhedron; and it can be viewed as the
"polyhedral part" of Fo, i.e., the intersection of those elementary dijunctive sets that
are halfspaces. Thus a disjunctive set in CNF can be represented as

where Po is a polyhedron and each Dj, j e T**, is a proper elementary disjunctive set.
LEMMa 4.1. h-rel Fo Po.
Proof.

h-relFo=h-rel(Po(r**D))=clconvPol(r**clconvD)
by the definition of the hull-relaxation. But cl conv Po Po and from Theorem 3.6,
cl conv Dj Rn for all j T**. This yields the equality stated in the lemma.

When the feasible set of a (pure or mixed integer) 0-1 program is stated in CNF
(which is the usual way of stating it), T* is the index set of all the conjunctive, i.e.,
ordinary linear constraints, and T** is the index set of the disjunctions x <= 0 v x => 1.
Thus Po is the linear programming feasible set, and the hull-relaxation of a (pure or
mixed-integer) 0-1 program stated in CNF is identical to the usual linear programming
relaxation.

The next question we address is what happens if one applied the hull-relaxation
to a disjunctive set that is not in CNF. Specifically, we look at the effect of a basic
step in the sense of relating the hull-relaxation of the RF before the basic step to that
of the RF after the basic step.

LEMMA 4.2. For j 1, 2, let

Sj:[-JPi,

where each P, Qj, j 1, 2, is a polyhedron. Then

(4.1) cl conv (S S)_ (cl conv S)fq (cl conv S).

Proof. Certainly S S (cl conv S) f’l (cl conv S), and since cl conv (S fq S) is
the smallest closed convex set to contain S CI S, (4.1) follows.

THEOREM 4.3. For i=O, 1,..., t, let

j Ti

be a sequence of regular forms of a disjunctive set, such that
(i) Fo is in CNF, with Po fq]7"*o S];
(ii) Ft is in DNF;
(iii) for i= 1,..., t, Fi is obtained from Fi_I by a basic step.
Then

Po h-rel Fo
_

h-tel F _...___ h-rel F cl cony F.
Proof. The first equality holds by Lemma 4.1, since Fo is in CNF. The last equality

holds by the definition of a hull-relaxation, since F is in DNF, i.e., TI 1. Each
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inclusion holds by Lemma 4.2, since for k 1,..., t, Fk is obtained from Fk-i by a
basic step. i-I

For any Fi in the above sequence, we can obtain from the hull-relaxation a
mixed-integer programming representation of Fi by using Theorem 3.6. However, this
representation requires one 0-1 variable for every polyhedron Ph in the expression

(4.2) Fi: f’l S, Sj= U Ph,
j Ti hQ.i

which is usually much more than the number of 0-1 variables needed to represent the
CNF of the same set.

The next theorem gives a mixed integer representation of Fi which uses the same
number of 0-1 variables as Fo.

Let Fo be the disjunctive set in CNF consisting of those x e R" satisfying

(4.3) V (aSx >= aso), re To
Qr

and let F be the same set in RF obtained from Fo by some sequence of basic steps,
given as the set of x e Rn satisfying

(4.4) V (A’x >= a), j e T.
i Qi

Then every j e T corresponds to some subset Toj of To, with To Ur To, such that
the disjunction in (4.4) indexed by j is the disjunctive normal form of the set of
disjunctions in (4.3) indexed by To. In other words, every system Aix >= ao, e Q,
contains Tol inequalities ax >= ao, one from each disjunction re Toj of (4.3), and
there are as many elements of Q (systems Aix >= ao, e Q) as there are ways of choosing
them.

Let Mi be the index set of the inequalities ax >- ao making up the system Aix => ao.
From the above, IM, Tol for all e Q.

Consider now the mixed integer program with the following constraint set"

(4.5)

x- E y’=0, jeT,
ieQj

iyA i_ aoYo >= 0,
ie Q, je T,

Y. y=l,
iQj

’. y’o- $ O,
iQj[sMi

SeQ, reTo,

(4.6) E 8 1, r e To,
Qr

8e{O, 1}, se Q, re To.
THEOREM 4.4. Assume that F satisfies the conditions of Theorem 3.6. Then the

constraint set (4.4) is equivalent to (4.5), (4.6), in that for every solution x to (4.4) there
exist vectors (yi, y), e Qj, j e T and scalars , s e Q, r e To, that together with x satisfy
(4.5), (4.6); and conversely, the x-component of any solution to (4.5), (4.6) is a solution
to (4.4).

Proof. If we write
F= f’l S, S= U Pi, Pi={xeiRnlA’x>--ao}, ieQ, je T,

j T i Qi
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then for every j c T the system (4.5) represents 5e(Qj), and from Theorems 3.3-3.4,
3e(Qj) cl conv S, j T. Further, from Theorem 3.6, 6e (Q) S, where (Q) is the
set defined by (4.5) and the conditions y {0, 1}, i Q, j T. Since the set of those
xR satisfying (4.4) is

F= fq
jet

it only remains to be shown that the constraints (4.6) enforce the condition yi e {0, 1},
Q, j e T, and do not exclude any solution to (4.5) that satisfies this condition.
Let 2 F, and let (37 -Yo), Q, j T (together with 2) satisfy (4.5) with 37 {0, },

Q, j T. Then )7 for exactly one Q, say i(j), )7 0 for Qj\{ i(j)}, for every
j T. Now for r To, j e T, let

[1 ifs M(),
0 if s c Qr\Mi().

Then clearly , ’o= rs, sc Q,, re To.

Further, by construction, each system Ax >- ao contains exactly one inequality aSx >- ao
of every disjunction r To of (4.3), hence

E 8=1, rcTo.
Qr

Thus for any solution Yo), i Q, j T, to the system (4.5) amended by
y) {0, 1}, V i, there exists which together with satisfies (4.6).

Conversely, let x (, fi), i Q, j T, be a solution to the system (4.5) such that
0 < k < for some k Q, j Z From

yo=l,
iQ

it the follows that < for all i Q; and since there can be no pair i, 2 Qj such
that s M M for all s Q, r To, it follows that

E
iQjtsMi

for some s Q, r To; hence some must be fractional in order for (4.6) to be
satisfied.

Theorem 4.4 provides a way of representing any disjunctive set in regular form
as the feasible set of a mixed-integer program with the same number of 0-1 variables
as would be required to represent the same disjunctive set in CNF.

In order to make best use of the hierarchy of relaxations defined in Theorem 4.3,
one would like to know which basic steps result in a strict inclusion as opposed to an
equality. The next theorem addresses this question.

THEOREM 4.5. For j l, 2, let

where each P, Q, j l, 2, is a polyhedron. en
(4.7) cl conv (S $2) (cl conv SI) (cl conv $2)

if and only if every extreme point (extreme direction) of (cl conv S) (cl conv $2) is an
extreme point (extreme direction) of P Pk fOr some i, k) Q Q2.
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Proofi Let TL and TR denote the left-hand side and right-hand side, respectively,
of (4.7). Then

TL=Clconv( O (Pif’qPk)).
kQ2

Thus x TL if and only if there exist scalars hj >-0, j V and/z >-0, W, such that
Yj v hj and

x E va + E
jV lW

where V and W are the sets of extreme points and extreme direction vectors, respec-
tively, of the union of all Pi fq Pk, (i, k) Qt Q2.

On the other hand, x TR if and only if there exist scalars A => 0, j V’ and/z => 0,
W’, such that j v, h and

x= 2 vjaS+ E w.,
je V’ 1 W’

where V’ and W’ are the sets of extreme points and extreme direction vectors,
respectively, of TR. If the condition of the theorem holds, i.e., if V’ V and W’ W,
then TR

_
T, and since from Lemma 4.2 T TR, we have T TR as claimed. If, on

the other hand, V’\ V or W’\ W , then there exists x TR\ T, hence TL TR. [-1

One immediate consequence of this theorem is
COROLLARY 4.6. Let

and

Then

K {xeN"lO<-x- l,j= l, n},

S {x e KIx <- O v x >- },

convf S=fconvS.
j=l j=l

Thus basic steps that replace a set of disjunctive constraints of the form

x_<-0v x_-> 1, jeT

by a disjunctive constraint of the form

V (x<--O, jeS, x>-l,j e T\S)
S_T

before taking the hull-relaxation, do not produce a stronger relaxation: taking the
convex hull before or after the execution of such basic steps produces the same result.
In order to obtain a stronger hull-relaxation, the basic steps to be performed must
involve some other constraints.

Next we illustrate on some examples various situations where taking the convex
hull before or after a basic step does make a difference.

Example 4.1 (Fig. 4.1). Let PI--{xGR2IxI--O, 0<x2-< 1}, P2-{xG[2IxI 1, 0<-_

x2<=l}, P3={xl2l-Xl+X2>.O.5, Xl ’0, x2--_< 1}, P4={xel2lXl-X2>--0.5, x<--_l, x2>--_
0}, and let F S Cl $2, with S PI [-J P2, $2--P3 I,.J P4. Then

cl conv S {x t 210 x l, 0 x2 },

cl conv $2 {x 1210.5 <- x + x2 <-- 1.5, 0 =< x -<_ 1, 0 -< x2 --< },
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and

(cl conv S1)fq (cl conv $2)=cl conv S2,

On the other hand, S fq $2 (P U P3) fq (P2 t.J P4) (since P fq P4 P2 fq P3 ), and

cl conv (S fq $2) {x 211 _-< x + 2x2 _-< 2, 0 -< x -<_ }.

Here (4.1) holds as strict inclusion, because the vertices (0.5, 0) and (0.5, 1) of
(cl conv Sl) fq (cl conv $2) are not vertices of either Pl P3 or P2 f’) P4, although the first
one is a vertex of P4, and the second one a vertex of P3.

(0,1) (1,)

(o,o) (,o)

P’ (1/2, )

(1/2,0) P4

(1/2,1/2)

(1/2,o)
(el conv S) fq (cl conv S2)

FIG. 4.1

(0,1)

(0, 1/2) (1,1/2)

(,o)
el conv (S f’l $2)

Example 4.2 (Fig. 4.2). Let Pl {x s R21Xl 0, x2 ----> 0}, P2 {x R2lx 1, x2 0},
P3 {x R21Xl 0, x2 0}, P4 {x ff2lx 1, x2 -> 0}, and let F S f’l $2, with S
Pt LI P2, $2 P3 O P4. Then

whereas

cl conv S cl conv S2 {X 210 X 1, X2 0}

(cl conv S) f’) (cl conv $2)

cl conv (St f’) $2)=cl conv ((PI [,.J P3) (] (e2 [.j P4))

{x a 10--< x -<_ 1, x 0}.

Here (4.1) holds as strict inclusion because (0, 1) is an extreme direction vector
of (cl conv St) f’) (cl conv S), but not of P fq P3 or P2 fq P4.

PI

P
(o,o) \ (,o)

(cl conv S) (q (cl conv S)

p: (o,o) I (,o)
/

cl conv (S Iq S)

FIG. 4.2
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It is an important practical problem to identify typical situations when it is useful
to perform some basic step, i.e., to intersect two conjuncts of a RF before taking their
convex hull. The usefulness of such a step can be measured in terms of the gain in
strength of the hull-relaxation versus the price one has to pay in terms of the increase
in size. Since the convex hull of an elementary disjunctive set is R n, i.e., taking the
convex hull of such sets does not constrain the problem at all, one should intersect
each elementary disjunctive set S in the given RF with some other conjunct Sk before
taking the hull-relaxation. This can be done at no cost (in terms of new variables) if
Sk is improper. Often intersecting a single improper conjunct Sk with each proper
disjunctive set Sj appearing in the same RF before taking the hull-relaxation can
substantially strengthen the latter without much increase in problem size. As to which
improper conjunct Sk to select, a general principle that one can formulate is that the
more restrictive is Sk with respect to each Sj, the better suited it is for the purpose.
The next example illustrates this.

Example 4.3. Consider the 0-1 program

(P) min {z -xt + 4xl-x + x2 0; x + 4x2 >_- 2; Xl, X2 E 0, 1}}

illustrated in Fig. 4.3.

-x, + x2 ->- 0
(0,) (,)

"1-" z =-x, +4x2

x +4x2=>2
/(0 0) (l 0)

FIG. 4.3

The usual linear programming relaxation gives the optimal solution 1 2 =-,
with a value of . This of course corresponds to taking the hull-relaxation of the
CNF of the feasible set of (P), which contains as conjuncts the improper disjunctive
sets corresponding to each of the inequalities of (P) (including 0 =< xt -< 1, 0 =< x2 -< 1)
and the two proper disjunctive sets S {x
x2 _-> }. If Po is the intersection of all the improper disjunctive sets, the hull-relaxation
of the CNF of (P) is Fo Pofq conv St

Let us write K ={xR210-<_x<_-l, 0-<_ x2 <_-1}, and Po PofqPo2, with Po
{x KI-Xl + x->_ 0}, Po2 {x
and S with Pot before taking the convex hull, i.e., use the hull relaxation F
POE f’) conv (Pol f-) $1) fq conv (Po $2). We find that conv (Po fq S) =conv (Po fq S)
{x KI-x + x2 >- 0}, and hence F Fo, i.e., these particular basic steps bring no gain
in the strength of the relaxation.

Suppose instead that we intersect St and $2 with Po2 before taking the convex
hull, i.e., use the hull relaxation F2 Pot fq conv (PoE fq S) fq conv (PoE fq $2). Then
conv(PofqSt)={xKIx+4x2>-2}, conv(PoEf’lSE)={xKIx2 1}, and F=
{X KIx2 1}, which is a stronger relaxation than Fo. Using the relaxation F2 instead
of Fo, i.e., solving rain {z=-x+4xlx F_}, yields = l, with = 3, which
happens to be the optimal solution of (P).
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Note that Pol cuts off only one vertex of conv (S fq K)=conv (S21"K) K,
whereas POE cuts Of[ tWO vertices of K. [3

When basic steps are used that intersect proper disjunctive sets before taking their
convex hull, the number of variables in the hull relaxation increases. Especially
attractive are those situations where the increase in problem size is mitigated by the
presence of some structure that makes it possible to solve the increased linear programs
efficiently. This is the case in the machine sequencing problem discussed in the next
section, as well as in ce.,’tain network synthesis and fixed charge network flow problems.

5. An illustration: Machine sequencing via disjunctive graphs. In this section we
illustrate the concepts and methods discussed in 1-4 on the example of the following
well-known job shop scheduling (machine sequencing) problem: n operations are to
be performed on different items using a set of machines, where the duration of operation

is di. The objective is to minmize total completion time, subject to (i) precedence
constraints between the operations, and (ii) the condition that a machine can process
only one item at a time, and operations cannot be interrupted. The problem is usually
stated as

min t.

tj t, >- di, i, j Z,

(P) t,>_-0, i V,

b- t >- d v t- b ->- d, (i,j)e W+,
where t is the starting time of job (with n the dummy job "finish"), V is the set of
operations, Z the set of pairs constrained by precedence relations, and W+ the set of
pairs that use the same machine and therefore cannot overlap in time. It is often useful
to represent the problem by a disjunctive graph G- (V, Z, W), with vertex set V and
two kinds of directed arc sets" conjunctive (or usual) arcs, indexed by Z, and disjunctive
arcs, indexed by W. The set W consists of pairs of disjunctive arcs and is of the form
W W+ I,.J W-, with (i,j) W+ if and only if (j, i) W-. The subset of nodes corre-
sponding to each machine, together with the disjunctive arcs joining them to each
other, forms a disjunctive clique. A selection S c W consists of exactly one member of
each pair of W: i.e., there are 2q possible selections, where q 1/21W[" G is illustrated
in Fig. 5.1, where the disjunctive arcs are shown by dotted lines. If S’ denotes the set
of selections, for every S S, Gs (V, Z t.J S) is an ordinary directed graph; and the
problem (P(S)) obtained from (P) by replacing the set of disjunctive constraints indexed
by W/ with the set of conjunctive constraints indexed by $ is the dual of a longest
path (critical path) problem in Gs. Thus solving (P) amounts to finding a selection
S e 5e that minimizes the length of a critical path in Gs.
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The usual mixed integer programming formulation of (P) represents each
disjunction

(5.1)

by the constraint set

tj t d, Lj yj >-_ Lj,

tj + t, + dj Lj, y,j >= dj,

y,je{O, 1},

where Lij is a lower bound on tj- ti. Unless one wants to use a very crude lower bound

Lo, one has to derive lower and upper bounds, Lk and Uk, respectively, on each t,
V, and set Lj Lj- U. Lj can be taken to be the length of a longest path from node

(the source) to node j in the (conjunctive) graph G V, Z), and U the difference

between the length of a critical path in Gs for some arbitrary selection S 6e, and the
length of a longest path from node j to node n (the sink) in G.

The constraint set (5.2) accurately represents (5.1) (amended with the bounds

Lk <----tk <= Uk, k= 1,2), but its linear programming relaxation (5.2)L, obtained by
replacing y 6 {0, l} by 0_-< yi_-< l, has no constraining power, as shown by the next

theorem.
THEOREM 5.1. If the disjunction (5.1) is proper, then every t, b that satisfies

(5.3) L, <- t, <= U, Lj <- tj <- U
also satisfies (5.2) L.

Proof. It suffices to show that the four extreme points (L, Lj), (Li, U), U, Lj),
(U, U) of the two-dimensional box defined by (5.3) satisfy (5.2)L for some yj. We
first write (5.2) in the form

Lj U)(1- yo) + d,yo <- tj t, <-_ -dj(1- yj) + U L,)yo

O<- yo<-_

and note that (L, U) and (Lj, Ui) satisfy (5.2) for yj and y,j 0, respectively. To
show that (L, Lj) satisfies (5.2) for some Yij, we substitute (Li, Lj) into (5.2)/ and obtain

(5.4) dj L + L <_ Yij <- U Li
dj L, + Uj U, Lj +

To see that (5.4) is feasible, note that the right-hand side increases with U; so
(5.4) is feasible if it is for the smallest admissible value of U, which is Lj + dj (for
smaller U, (5.1) becomes improper). Substituting Lj + dj for U we obtain that (5.4) is
feasible whenever L + d <- U, which is a condition for (5.1) to be proper.

An analogous argument shows that (Ui, U) satisfies (5.2)L for some yij. [3
Consider now the mixed integer representation of (5.1) associated with the hull-

relaxation of the feasible set of (P). If the latter is given in CNF, as is usually the case,
applying the hull-relaxation to this form yields nothing, since the convex hull of the
disjunctive set defined by (5.1) is R2, the space of (t, tj). If we perform a sequence of
basic steps of the type defined in 3 and introduce into each disjunct of (5.1) the
lower and upper bounds on t and t, this replaces every elementary disjunctive set Dj
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defined by a pair of constraints (5.1), by a disjunctive set

Sij ti, t) L, <-_ ti <-- Ui v L
<- t <- <- t <-_

The feasible set of (P) is then of the form

(5.5) F Po fq ( f’) Sij)i,j) W

where Po is the polyhedron defined by the inequalities (5.3) and tj-ti >= di, (i,j) Z.
Further, we have (since all Sij are bounded, cl conv Sj =conv S)

h-rel F= Pofq( convSij),
i,j) W

and from Theorem 3.3, the convex hull of Sj is the set of those (ti, tj) satisfying the
constraints

tk-- tk-- t2k=O, k= i,j,

1> diYijtj
2

(5.6)
-tj -l- ti dj(1- yij),

Lyij <= <=
k=i,j,

Lk(1--Yij) <- t2 <- Uk(1--Yij),

0=<y,j_<- 1.

Also, from Corollary 3.7, the set of those (t,, tj) satisfying (5.6) and y,j {0, 1} is
Sij, since both disjuncts of S,j are bounded polyhedra; and thus using (5.6) with

Yo {0, } for all (i, j) W/ is a valid mixed integer formulation of (P). This representa-
tion uses the same number of 0-1 variables as the usual one, but introduces two new
continuous variables, t,, t,, for every original variable tk, with associated bounding
inequalities LkYij tk <-- UkYij Lk(1-- Yij) <= tEk <- Uk(1-- Yij). At the price of this increase
in the number of variables and constraints, one obtains as the hull-relaxation a linear
program whose feasible set is considerably tighter than in the usual formulation, since
each constraint set (5.6) defines the convex hull of S,j. It is not hard to see that each
of the two points (L, Lj) and (Ui, U) violates (5.6) unless it is contained in one of
the two halfspaces defined by b t _>- d and t-

Let us now perform some further basic steps on the regular form (5.5) before
taking the hull-relaxation. In particular, let us intersect all Sj such that and j belong
to the same disjunctive clique K. If we denote T(K):= f)(So: i,j K, ij), and if
[K[ p, then

T(K) {t RP[t,- tj >- dj v tj- t, >= d,, i,j K, j, L, <-_ t, <= U, K}.

Taking the basic steps in question consists of putting T(K) in disjunctive normal
form. Let (K) denote the subgraph of G induced by K, i.e., the disjunctive clique with
node set K. A selection in (K), as defined at the beginning of this section, is a set of
arcs containing one member of each disjunctive pair. Thus if (K) is viewed simply as
the complete digraph on K, then a selection is the same thing as a tournament in (K).
If Sk denotes the kth selection in (K) and Q indexes the selections of (K), then the
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DNF of T(K) is T(K)= U ko Tk(K), where

Tk(K) {t eRP[tj 6 >- d,, (i,j) Sk, L, <- 6 <- Ui, e K}.

It is easy to see that if Sk contains a cycle, then Tk(K)=f. Let Q*= {k QISk
is acyclic}. Every selection is known to contain a directed Hamilton path, and for
acyclic selections this path is unique. Furthermore, every acyclic selection is the
transitive closure of its Hamilton path.

Let Pk denote the directed Hamilton path of the acyclic selection Sk; then Sk is
the transitive closure of Pk, and the inequalities b- 6 >- d, (i, j) Pk, obviously imply
the remaining inequalities of Tk(K), corresponding to arcs (i,j) Sk\Pk. Thus a more
economical expression for the DNF of T is T(K)= U kO* Tk(K), with

Tk(K) {t RPltj 6 >- d,, (i,j) e Pk, L, <= 6 <- Ui, e K}.

Now let M be the index set of the disjunctive cliques in G, and Km the node set
of the ruth such clique. Then the RF obtained from (5.5) by performing the basic steps
described above is

(5.7) F= PoN(N T(K,)),
and the hull-relaxation of this form is

(5.8) h-rel F= PoN(N,,, conv T(Km)).
For rn M, let Q*m index the acyclic selections in (Kin); and for k Q’m, let S

and P’ denote the kth acyclic selection in (Ks), and its directed Hamilton path,
respectively. Then introducing a continuous variable A for every acyclic selection
and a 0-1 variable yij for every disjunctive pair of arcs {(i,j), (j, i)}, and using Theorem
4.4, we obtain the following mixed integer formulation of problem (P) based on the
hull-relaxation (5.8):

min t.
tj

tj(l, k) -t- tj(2,k)

t(pk_l,k) q- tj(pk,

tj(pk,

>-d,, (i,j)eZ,

=0, j.Km, meM,

x " yij =0,
kl(j,i)Sk

tj, t>--O,lj, k, A’>-O, Vk, m, yqe{O, 1},(i,j)e W+.

keQ*m, meM,

mM,

(i,j) W

THEOREM 5.2. Problem () is equivalent to (P)" if is a feasible solution to (P),
there exist vectors k and scalars h, ink, k Q’m, m M, and a vector y, satisfying the
constraints of (); and conversely, ift, k, A ’ k Q’m, m M, andy satisfy the constraints

of (), then is a feasible solution to (P).
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Proof. () is the representation of (P) given in Theorem 4.4, with the set F as
defined in (5.9), and with the upper bounding inequalities -t+ UAk-->0, j K,.,

kreplaced by the single inequality tjk, k)- tjpk,k) + Upk,k)- L,k))Xk >= O, for each rn M.
The role of the upper bounding inequalities is to force each t to 0 when A ’ 0, and
the inequality that replaces them in () does precisely that: together with the
inequalities associated with the arcs of P’, it defines a directed cycle in (K.,) and thus
h ’ 0 forces to 0 all t, j K,,. 1-]

The linear programming relaxation of () is stronger than the linear programming
relaxation of the common mixed integer formulation of (P). Preliminary computational
experience on a few small problems indicates that the value of this stronger linear
programming relaxation tends to be considerably higher than that of the usual linear
programming relaxation. This is illustrated in Table on a small sample oftest problems.
Problems l, 2 and 3 are from 1], 15], and 14, p. 138] respectively. Problems 4,. , 7
were randomly generated with di [1, 5].

TABLE

Value of

No. of No. of Strong LP
Problem operations machines Usual LP (rounded) IP

7 2 18 26 31
2 14 4 8 11 13
3 14 4 20 26 35
4 17 4 8 10 12
5 17 4 7 8 10
6 17 4 7 10 12
7 17 4 8 9 12

On the other hand the linear programming relaxation of (), unlike that of the
usual mixed integer formulation of (P), is not a longest path problem. This disadvantage
has to be overcome by finding a solution method that takes advantage of the structure
of (). While this is in general still an unsolved problem, an important aspect of it
has been successfully solved. Namely, if () is to be solved by projection on the space
of the y-variables, i.e., by Benders’ partitioning method, then in order to generate the
inequalities of the Benders master problem one has to solve the dual of the linear
program obtained from () for various 0-1 values of y. We have recently found a way
of deriving a solution to this problem from a solution to the longest path problem that
corresponds to it in the usual formulation of (). But the discussion of this algorithm
is left to another paper.

Acknowledgments. I had useful conversations with Bob Jeroslow and Charlie Blair
on the subject matter of this paper.
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ON TRANSPORTATION PROBLEMS WITH UPPER
BOUNDS ON LEADING RECTANGLES*
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Abstract. For this class of problems, if the given bounds and cost coefficients satisfy certain conditions,
an optimal solution can be found by a greedy algorithm. This work was stimulated by an application of
linear programming to graph partitioning.
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1. Introduction. Consider the following transportation problem.

(1.1 a) maximize coxi
i=lj=l

subject to

(1.1b) x0=ai, i=l,...,m,
j=l

(1.1c) E xo= bg, j= l, n,
i=1

(1.1d) x0_->0 forall iandj.

As usual, there are m origins 1,..., m, and n destinations 1,. ., n. a is the amount
of a product available at origin and b is the amount required at destination j. We
assume the total availabilities to be equal to the total requirements so that

i=1 j=l

c is the negative cost of shipping a unit from origin to destination j, and xj is the
number of units shipped from to j. An optimal shipping plan is one which maximizes
1.1 a) subject to 1.1 b-d).

In addition to these standard conditions, the problems that concern us here satisfy
two special conditions. In the first place, the matrix C =(c) satisfies a "Monge"
condition

(1.2) Cij "]- Ci+ i,j+ Ci,j+ "- Ci+ l,j

for <=i<m and <-_j<n.
This attribution to Monge, referring back to 1], is argued in [2]. The principal

theorems of [2] show that transportation problems satisfying generalizations of (1.2)
can be solved by a greedy algorithm, and that several linear programming problems
can be reformulated so that they are "Mongean" transportation problems.

* Received by the editors October 4, 1983, and in revised form June 28, 1984. This work was presented
at the SIAM Second Conference on the Applications of Discrete Mathematics, held at Massachusetts
Institute of Technology, Cambridge, Massachusetts, June 27-29, 1983.

" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
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Recently we encountered a similar class of transportation problems with additional
contraints of the form

(1.3) . x<-/o i=l,...,m-1, j=l,...,n-1
r=l s=l

on the shipments. These can be thought of as capacity constraints restricting the amount
that can be shipped from the first origins to the first j destinations. Problems involving
such constraints arose in our work on graph partitioning [3]. We were given a graph
G containing n nodes N- {1,..., n}, with edges connecting certain pairs of nodes.
The problem was to partition the nodes into a given number, say k, of disjoint subsets
Sl, , Sk, of sizes m >--. >-- ink, respectively, in such a way that the number of edges
connecting nodes in distinct subsets was minimized. Such problems arise in laying out
logic networks on chips. The logic gaies assigned to one chip must be weakly connected
to those assigned to other chips because each chip has a limited number of pins for
making connections to other chips.

A mathematical formulation of the graph partitioning problem is as follows. Let

YlJ 1

be an indicator vector for the set Ss, j 1,..., k. Thus

if iSj,
Y’J= 0 if iSs.

It follows thatE" Yo ]Sjl=ms, j= l," k, and E k
i-- s-- Yis 1, i= 1,..., n.

Let aii denote the number of edges connecting nodes and j, and let A denote
the n n adjacency matrix (a0). The number of edges of G having both endpoints in
S is given by

1/2 a,. 1/2 arY,.sY.i 1/2yAy.i.
rSj sSj r=l s=l

It follows that the number of edges not cut by a partition N Sl U LJ Sk is

k

E, 1/2 yAy.
j=l

Let E denote the number of edges cut by the partition. Since the total number of
edges in G is fixed, minimizing E is equivalent to maximizing E,. Thus our graph
partitioning problem is equivalent to solving

k

maximize yfAy
j=l

subject to Ys ms, j= 1,..., k,
i=1

(1.4)
k

yo=l, i=l,...,n,
j=l

Yo=Orl for alliandj.
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There are no practical schemes for solving this problem for large values of n.
However, there are heuristic schemes for obtaining approximate solutions and it is
often useful to be able to determine how close to optimality a solution obtained in
this way is. For this we need a tight upper bound on the maximum in (1.4). This
amounts to finding a lower bound on Ec. For this purpose let

vj myj,. j=l,...,k.

These vectors form an orthonormal set. Let A >----’’" >----A, denote the eigenvectors of
A and let ut," ", u, be a corresponding set of orthonormal eigenvectors. Then

A=
i=l

Substituting this into (1.4) gives
k k k

)2_.Y. yfAyj= mvfAv= ,
j=l j=l i=lj=l i=lj=l

where xo= (UTVj)2. Note that

=- 1, j 1,’.., k,
i=l

and

k

u, 1, 1,
j=l

x0->0 for alliandj.

Thus an upper bound on the maximum in (1.4) can be obtained by solving the linear
programming problem

maximize himxo
i=lj=l

subject to xj l, j 1,..., k,
i=1

k

xo<--I i=l,...,n,
j=l

xj ->_ 0 for all and j.

The matrix (co)= (Aimj) satisfies the Monge condition (1.2). For this matrix this
condition is equivalent to the condition

(A,- A,+,)(mj- mj+,) _-> 0

which holds since At>= ->_ A, and rnt >=. >- mk.
The greedy algorithm described in [2] shows that the feasible solution of (1.5)

given by the northwest corner rule is optimal. This solution is xt x22 Xkk
and xij 0 otherwise. Thus the value of the maximum in (1.5) is y.jk= Ajmj. Thus

k

(1.6) E,,c=<1/2 X Aims.
j=l
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An important point to note here is that we are able to solve (1.5) with knowledge
of only the k largest eigenvalues of A. This is a fortunate situation since in most
applications k is very small compared to n and computing the k largest eigenvalues
of A is a reasonable task.

We have found that in most cases it is possible to improve the bound (1.6) by
discovering other linear conditions that can be imposed on the x’s in (1.5). In using
this approach, it is important to discover conditions which are such that the resulting
linear programming problem is solvable in greedy fashion since we do not want to
compute much more that the first k eigenvalues and eigenvectors of A. A set of such
conditions can be derived as follows.

By Schwarz’s inequality we have

UtrYts
gglr t=

where lltr denotes the tth component of Ur. It follows that

(1.7) xrs--< ut yts= Utr
r-----I s=l s=l 1=1 r----1 t=l r=l

Let tl, t2,’’ ", t, be a permutation of the numbers 1, 2,..., n such that

E U,, E 2 2
I’l t2r

r=l r=l r=l

It then follows from (1.7), together with the conditions

that

yt=0or 1, t= 1,
s=l

r/,

t=l s=l s=l

ml+...+m
U tl

r=l s=l /=1 r=l

These conditions, together with (1.5), give a problem of the form (1.1), (1.3). The
purpose of this paper is to show that under appropriate conditions on the (m- 1)
(n- 1) matrix (yij), we can solve (1.1), subject to (1.3), by a greedy algorithm similar
to the one described in [2].

In 2 we state conditions on {y0} necessary and sufficient for feasibility. In 3,
we prescribe our algorithm. It produces an X (xij) which satisfies all conditions for
feasibility except possibly the nonnegativity requirement. If X is feasible, then
(Theorem 3.1 it is optimal. So we furnish sufficient conditions on { 7o} for our algorithm
to produce a feasible X. The matrix (%) given by (1.8) is easily shown to satisfy these
conditions. Some remarks on extensions are contained in 4.

2. Feasibility conditions.
LEMMA 2.1. A necessary and sufficient condition for there to exist a solution of the

system 1.1 b-d), (1.3) is that

(2.1) yo-> max O,
s=j+l

for i-1, m-1 and j= l, n-1.
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Proof. In [4] M. Fr6chet shows that (1.1b-d) always has a solution (xr) satisfying

I /Y xr max a- bs
r=l s=l r=l s=j+l

for 1, , m 1, j 1, , n 1, and that any other solution (Xrs) satisfies

r=l sl rl sl

This is clearly equivalent to our claim. But we wish to give an independent proof of
this result.

First consider necessity of (2.1). If (x,) is any solution of (1.1b-d), (1.3), we have

ij m m mZ Xr -- Z Xr --Z Xr + Z
r=l sl rl sl ri+l s=l r=l sj+l r=i+l sj+l

=Za- Z a- b+ Z Xrs
r=l r=i+l s=j+l r=i+l s=j+l

>=Ear- b.
s=j+l

This last inequality follows since each xr => 0. This implies also that yij >= 0, which
proves (2.1).

Suppose now that (2.1) holds. Let (X0r) be the solution of (1.1b-d) determined
by the northeast corner rule. That is, let

(2.2a) x, min {al, bn}.

If x has been determined for r<=i and s>=j, (r, s) (i,j), Let

o min a, x, bj xo(2.2b) x,2
s=j+l

This is the so-called minimal solution computed by Fr6chet in [4]. It is easy to prove
by induction that

x=min{ ar,bs}r=l s=j r=l s=j

for all and j. Since Y --1 Y,"=l x Y=, a we have, for j 2,

Z X r% ar min Z a,, b max 0, ar b y._.
r=l s=l r=l r=l s=j r=l s=j

This shows that (x) is a feasible solution of (1.1b-d), (1.3).

3. A greedy algorithm. The algorithm we propose for solving (1.1), (1.3) is the
following.

Let

(3.1a) Xll =min {al, hi, ")/1 !}"

If Xrs has been defined for r<=i<m and s<-j<n, (r,s)#(i,j), define

{ -’ ’-’ }(3.1 b) x min a E x,,, b Y Xr, Y0 Y, E Xr,
s=l r=l

(r,s)g(i,j)
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If i= m or j= n, xo is defined by (3.1b) with the third term in the bracket missing.
Note that we do not require here that xo be nonnegative.

LEMMA 3.1. Let (Yrs) be any solution of (1.1b-d), (1.3) and let (xrs) be given by
(3.1). Then for i= l, m andj= l, n,

(3.2) E E Xrs >= E E Yrs.
r=l s=l r=l s=l

Proof. Since the y’s are nonnegative and x min {a, b, 3’) the lemma clearly
j-t j-holds for (i, j) 1, 1). Assume we know that= x, ->,= ys for some <j < n. Then

j--I j--I j--I

Y xs Y x,+min a-Y Xl,, yj- Xl =min a, + Y x,, ylj
s=l s=l s=l s=l s=l

j-I

=>min a, + Yls, Y ys+min al- y, ,y- y
s=! s=l

s=l

Thus, by induction, (3.2) holds for i= and all j < n. similarly, (3.2) holds for j
and all < m.

Assume now that we have shown that

i--I i--I

Z 2 Xr>=Z 2 Yr
r=l s=l r=! s=l

and
j--I j--!

E E x->-E ZYrs
r=l s=l r=l s=l

for some < m and j < n. Then, since the y’s are nonnegative we must have

{ -’ ,-,

Yo <-min a,- E Y,s,b- E Yj, ri- E E y
s=l r=l risj

(r,s)(i,j)

which implies that

y,min a,+ y,, + Y,Yo
r=l s=l r=l s=l r=l s=l

min a+ x, + x,
r=i s=l r=l

r=l s=l

In case j n or m, the foregoing arguments are valid with the third term in brackets
deleted. The conclusion of the lemma now follows by induction.

Corollary. ffthe matrix (Y0) satisfies (2.1) the matrix (xo) given by (3.1) satisfies
(1.1b) and (1.1c).

Proo Since (2.1) is satisfied (1.1), (1.3) has a feasible solution (Yr). By Lemma
3.1, we have for i= 1,..-, m,

r=l s=! r=i s=l r=!
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On the other hand, (3.1) shows that

for each r so that

Xrs ar
s=l

r=l s=l r=l

It follows that (1.1b) holds. Similarly it can be shown that (1.1c) holds.
Example 3.1. Let m n 3 and take a a2 a3 3 and bt 3, b2 2, b3 4. Let

This matrix satisfies (2.1) and so the system (1.1b-d), (1.3) has a feasible solution. In
fact the algorithm (2.2) gives the feasible solution

(x) 2
0

However, the algorithm (3.1) gives the matrix

(x,) -1

which is not a feasible solution of (1.1b-d), (1.3).
We must impose further restrictions on the matrix (3,o) to ensure that (3.1) gives

a feasible solution (l.lb-d), (1.3); in particular, we are interested in (1.1d).
LEMMA 3.2. If the (m- 1) x(n- 1) matrix (3,o) satisfies (2.1) and has theproperty

that whenever r >=i and s >=j, the inequalities

(3.3a) 3,0 + 3, >- 3, +
(3.3b) 3,o <=
(3.3c) 3,o =< 3’0

hold, then (3.1) gives a feasible solution of 1. b-d), (1.3).
Proof. Because of the corollary to Lemma 3.1 it suffices to show that the matrix

(x) defined by (3.1) is nonnegative. And for this it suffices to show that the third term
in the bracket defining x is always nonnegative.

Since 3,! _>- 0 we have xl ->- 0. If xl 2, , x._ have been shown to be nonnegative
j--Ifor some <j < n, we have s= xs -<_ 3,.j_| which, together with (3.3b), implies

j-l

3,| Y x _-> 3,| 3,|,_| >- 0.
s----i

It follows that x >- 0 for _-<j < n. Similarly x ->_ 0 for <_- < m. For j n or m,
xo >-0 since there is no third term in the bracket defining xo.

Assume that x, has been shown to be _>-0 for l<-_r<-_i, l<-s<-j, (r,s)(i,j), for
some m>i>l and n>j>l. Ifx=0fors-1,...,j-l, then

i--I

r=l s=l r=! s=i

(r,s)#(i,j)
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which implies that

Yij- xrs ->- %j-Yi-d 0.
r=l s=l

r,s)(i,j)

This in turn implies that xi >_-0.

Similarly, if xo =0 for r= 1,..., i- 1,

"lij E E Xrs ’)lij ’)ti,j-l 0
r=l s=l

(r,s)(i,j)

which implies that xi-_> 0.
Assume now that there is an origin destination pair (p, q) with p<i and q <j

such that Xp > 0 and Xiq > O. This means that the definition of Xpq did not exhaust the
supply at p or the demand at q. It must therefore be the case that the capacity constraint

P q

(3.4) E E xs=ypq
r=l s=l

is satisfied. Fix q, and redefine p as the largest index <i for which (3.4) is satisfied.
Then clearly x 0 for all p < r < and s > q. This follows since in defining xq by the
greedy algorithm we do not exhaust the demand at q (because xq > 0) or satisfy a

capacity constraint (by the definition of p). We therefore exhaust the supply at
r, p < r < i. It follows that

vo-E E Xr,=ro- E x+ E x-E x
r=l s=l r=l s=l r=l s=l r=l s=l

(r,s)e(i,j)

Yo- Yp %q + Ypq 0

by (3.3a). Thus xo 0. By induction this is true for all and j if i< m and j < n. e
cases where i= m or j n are covered by again observing that there is no third term
in the bracket.

Remark We emphasize that Lemma 3.2 gives a sufficient condition for (3.1) to
give a feasible solution of (1.1b-d) and (1.3). It is not necessary for (3.3) to hold in
order to obtain a solution by our method.

Example 3.2. Let m n 3 and take a 3, a2 2, a 4 and b 5, b2 3, b 1.
Let

This matrix satisfies (2.1) but not (3.3). Yet the algorithm (3.1) gives the feasible solution

of (1.1b-d), (1.3).

(x,) 0

2

This brings us to the main result of our paper. It generalizes the greedy algorithm
given in [2] for a cost matrix C satisfying the special Monge condition (1.2).

THEOREM 3.1. If the matrix (x) defined by (3.1) is a feasible solution for problem
(1.1), (1.3), it is an optimal solution.
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Proofi It is clear from 1.1 b) that the solutions of (1.1), (1.3) do not change if we
add a constant to any row of C. Moreover, the property (1.2) is not destroyed by such
a change in C. Thus without loss of generality, we may assume that tin-0 for

1, , m. If necessary we replace cij by cij cn, j 1, , n, in order to accomplish
this. Similarly, we may assume that Cmj----0,j 1," ", n.

For each i-1,...,m-1 and eachj=l,...,n-1 let F-(FS) be the mn
matrix defined by

F={10 ifr<=iands<-J,
otherwise.

Lemma 3.1 shows that

(3.5) max i i

r=l s=l r=l s=l

where the maximum is taken over matrices (YIs) satisfying (1.1b-d), (1.3). This proves
the theorem for the special case C- F.

Let
fij Cij Ci,j+l -- Ci+l,j+l Ci+l,j

for 1, , m andj 1, , n 1. Note that (1.2) implies f0 => 0. A direct calcula-
tion shows that

fij Crs- Cr,o+l -- Cu+l,o+l- Cu+l,s
i=rj=s

for any u > r and v > s. In particular
m--I n--I

2
i=r j=s

We can write this as

or in matrix notation as

m--I n--I

Crs= foFij

i=l j=l

m--I n--I

C= X fijFij"
i=1 j=l

The fact that (xI.) solves (1.1), (1.3) now follows immediately from (3.5) and the
nonnegativity of the f’s.

4. Possible extensions. The same techniques show that a greedy algorithm will
solve (1.1), assuming (1.2) and some conditions more general than (1.3). For example,
assume that {1,. , m} is partitioned into {1,. ., d}, {d+ 1,. ., dE}," ",{dk+
1,. ", m}. In place of (1.3), assume (writing do=0, dk+- m)

Xrs<--_y fort=0,...,k, i=d,+l,’",d,+l,
r=d+l s=l

where for each t, (3.3) holds for d, + < d,+. Then all the foregoing goes through.
In particular, the partition {1}, {2},..., {m} was very useful to us in [3]. It seems
plausible that other variants of (1.3) might also be amenable to greedy algorithms.
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BITHRESHOLD GRAPHS*

P. L. HAMMERt AND N. V. R. MAHADEV

Abstract. A graph is called bithreshold if it is the edge-intersection of two threshold graphs T, T2 and
if every stable set of it is stable in T or T2. In this paper an easy recognition algorithm is proposed for this
class of graphs and bithreshold graphs are proved to be strongly perfect.

1. Introduction, definitions and notation. All graphs considered in this paper are
undirected, finite, loopless and have no multiple edges.

Let us denote by E(G), the set of edges of a graph G, and by V(G) the set of
all vertices of G. We shall denote by (a, b), (a, b, c) and by (a, b, c, d) respectively an
edge with end vertices a and b, a triangle on the vertices a, b, c and a 4-clique on a,
b, c and d. The set of all vertices adjacent to a vertex x, will be denoted by N(x).

A graph G is called (cf. [3]) a threshold graph if N(x) N(y)[3 {y} or N(y)_
N(x) J {x} for any pair of vertices x and y.

It has been shown in [3] that G is a threshold graph if and only if there are no
four vertices Xl, x2, x3, x4 in V(G) inducing 2K2, P4 or C4. Graphs 2K2, P4 and C4
are illustrated in Fig. 1.

It has been shown in [3] that G is a threshold graph if and only if there are no
four vertices Xl, x2, x3, x4 in V(G) inducing 2K2, P4 or C4. Graphs 2K2, P4 and Ca
are illustrated in Fig. 1.

2K2 P4
FIG.

The object of this paper is the study of bithreshold graphs, i.e., graphs G which
are the edge-intersection of two threshold graphs TI and T2 defined on the same vertex
set, with the property that every stable set of G is also stable in TI or in T2. In this
case G is called decomposable into TI and T2.

Obviously, the stability number of a bithreshold graph G is simply equal to the
maximum of the stability numbers of TI and of T2, and hence can easily be calculated.

The main result of this paper is a good recognition and decomposition algorithm
for bithreshold graphs.

In 2, we shall consider the general problem of recognizing monotonically increas-
ing Boolean functions (also known as positive Booleanfunctions) which can be represen-
ted as the product (conjunction) of two "regular" functions. By a Boolean function f
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we mean a mapping of {0, 1}" into {0, 1}. A Boolean function
f(x, x,. , xn) is called monotonically increasing iff(x, , xi_, 0, xi+, , x,) =<
f(x,...,xi_,l,x+,...,x,) for any i{1,2,...,n} and any values of
x, , x_, x+, , x,. Ifx (x, x2, , xn) is any 0-1 vector, we denote by x the
vector (x,. ., xi_l, 1, xi+, ., xj_, 0, x+l, ., x,).

A monotonically increasing function is called regular if for any pair i,j
{ 1, 2,. ., n}, the relation (1) f(x) ->f(Jxi) or the relation (2) f(x) -<_f(Jxi) holds in
any 0-1 point x. If f is regular and (1) holds we shall say that xi >’-yx, while if (2)
holds we shall write x-<_yx. For a regular function, the relation "" being transitive
defines a linear pre-order in the set of its variables. (The same relation could also be
defined for arbitrary monotonic increasing functions, defining a partial preorder in the
set of their variables.)

A Boolean function f(xl,’’’, x,) will be called biregular if there exist regular
functions f(x,..., x,) and f(x,,..., x,,) such that (3) f(Xl," "’, Xn)
f,(xl, ,x,,)’fz(xl, ,x,,).

A monotonically increasing quadratic Boolean function (i.e., one which can be
written in the form f--c v c2 v... v c, where each c is the product of exactly two
variables x, and xi) has an obvious graphic representation, obtained by associating a
vertex to every variable and an edge to a conjunction; such functions will be called
graphic. It will be shown in 2 that a graphic function is biregular if and only if its
associated graph is bithreshold.

A graph is called signed if every edge is given a (positive or negative) sign. A
signed graph is called balanced if it contains no cycles involving an odd number of
negative edges. It is well known that the recognition of balanced graphs can be done
in O(n) time. In 3 we shall associate to an arbitrary graph G a signed graph H. It
will be shown there that G is bithreshold if and only if the signed graph H’ associated
to its complement is balanced.

In the concluding 4, we shall prove that bithreshold graphs are strongly perfect.

2. Decompositions of biregular graphic Boolean functions. A variable is Boolean
if it takes values in {0, 1}. The complement of a Boolean variable x is defined to be
1- x. Boolean variables and their complements are called literals.

A Boolean expression is recursively defined as follows.
(i) The constants 0, and all literals are Boolean expressions.
(ii) The conjunction (product) of two Boolean expressions (the conjunction of

a, b, denoted by a. b, being defined as min (a, b)) is a Boolean expression.
(iii) The disjunction (sum) of two Boolean expressions (the disjunction of a, b,

denoted by a v b, being defined as max (a, b)) is a Boolean expression.
(iv) The complement of a Boolean expression a (t being defined as 1-a) is

a Boolean expression.
(v) Every Boolean expression is obtained by applying the above three operations

a finite number of times.
An expression of the form c v c2 v v c, where each c is a conjunction of one

or more literals, is called a disjunctive form. Further if no c contains both a variable
and its complement then the expression is called a normal disjunctive form.

LEMMA 2.1. Every Boolean function in n variables x, x2,""", x, has an expression
in normal disjunctive form.

Proof. It is easy to check that

f(Xl,’’’, Xn)-- v(,,.....,,)lo.,/"f(a,, a,,)xT’ x"
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is the n.d.f, for f where

{xi ifai=l,
x.=_i ifcti=0.

Further if the Boolean expression is monotonically increasing then it has an
expression in normal disjunctive form in which no variable appears complemented.

DEFINITION 2.2. A Boolean expression is called graphic if it has a normal disjunc-
tive form in which each conjunction contains exactly two distinct uncomplemented
variables.

DEFINITION 2.3. If f(x, X2, ", X,) C V C2 V" V C, is graphic then to f we
associate the graph G(f) with V(G) {x, x2, ", xn} and e (x, y) E(G) itt x. y c
for some i. Conversely if G is any graph with V(G)={1,2,...,n} and E(G)=
{et, e2,. , e,,} we define a Boolean function f(G) c v c2 v. v Cm, where c Xk" X
itt (k, l)=e,, i{1,..., m}.

Thus a natural correspondence exists between graphs and graphic functions. It is
easy to verify Lemma 2.4 given below.

LEMMA 2.4. Iff is graphic and G is the corresponding graph then f(x)=0 if and
only if x is the characteristic vector of a stable set in G.

We recall that a biregular function is defined as the product of two regular
functions. We shall prove that a graphic biregular function is the product oftwo graphic
regular functions. The proof of the following lemma follows from the definition.

LEMMA 2.5. Ifa positive Booleanfunctionfis given in theformf Axix v Bx v Cx v
D where A, B, C, D are Boolean expressions not involving the variables xi and x, then
x >’-yx if and only if B >= C.

LEMMA 2.6. Iff is of theform described above (in Lemma 2.5) andf’=f v Cx then
(i) xi =j, x and (ii) for any Boolean function g such that xi >’-e, xj and f<=g, we have
f<__f’<=g.

Proof. (i) f’ Axx v (B v C)x v Cxj v D. Since B v C => C, x >’-, x by Lemma 2.5.
(ii) Let F= {x/f(x)= 1}U {’x/f(’x) =0 andf(xi) 1} and letus definef*(x)=

iff x F. Now f(x) g(x) since f<-- g and f(x’) g(Jx) g(x)
since x g xj. Thus g(x) for all x F, therefore f* -< g. Also f<=f* since f(x)
f*(x) 1. In conclusion f<=f*<= g. We now show that f* has the form fv Cx. Then
f* is our required f’, proving the lemma.

We apply the following three rules which are easy to verify.
If x, y and z are Boolean expressions then

(i) xvy=., (ii) (xvy).z=x.zvy.z, (iii) xv.y=xvy.

Notice that f(x) B v D and f(x) C v D. Hence,

f* f v B v D)(C v D)x,

f v B. D( Cxfi. v Dx,)

=f v BDCxi
Axixj v Bxi v Cxl v D v BCxfil
Axixj v Bxi v Cx v D v Cxi

=fv Cxi.

In conclusion f* =f’, proving the lemma.
LEMMA 2.7. Iff is graphic and f* is a regular function such that f<-f* then there

exists a graphic regular function g such that f<- g <=f*.
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Proof. Assume without loss of generality that x ->_y x2 >’- g xn. Iff is regular
then f=g and the lemma is proved; otherwise

(1) There exists such that xi yXi/l. Define f’ as in Lemma 2.6 so that x >--, x/
and f<=f’ <=f*.

(2) If f’ is regular f’ =g and the lemma is proved; otherwise let new f=f’ and
go to step 1.

Since after each iterationf’ > old f’, the process ends in a finite number of iterations.
Thus the final g is regular satisfyingf=< g =<f*. Further after each iteration f’ is graphic
if f is graphic (see Lemma 2.6, applied to our case in which f is graphic and c is a
single variable: thus f v Cx is graphic). Thus g is graphic too, proving the lemma.

THEOREM 2.8. Iff is graphic and biregular then there exist two graphic and regular
functions f, f2 such that f f f2.

Proof. By definition, there exist two regular functions f*, f2* such that f=f* f2*.
nence f<-f* f <- f*2

Now, by Lemma 2.7 there exist two graphic regular functions f, f2 such that
f<-f <-f* and f<-f<--f*2. Hence f<-_f f2<-f* f* =f. Therefore, f=f f2, proving
the theorem.

Remark 2.9. Iff is graphic and regular then G(f) is threshold.
Remark 2.10. Iff is graphic biregular and fl, f2 are two graphic regular functions

such that f=f. f2, then G(f) is the intersection of G(f) and G(f2); further, every
stable set of G is also stable in G(f) or G(f2). The converse is also true. Thus we
have the following theorem.

THEOREM 2.1 1. f is graphic biregular if and only if G(f) is bithreshold.

3. Recognition and decomposition of bithreshold graphs. It is easy to see that the
complement of a threshold graph is also threshold. Thus the complement of a
bithreshold graph which we shall call a cobithreshold graph, is the edge union of two
threshold graphs T and T2, such that every clique of the graph is also a clique in Tl
orin T2.

THEOREM 3.1. If a graph G is the edge intersection of n graphs G, G2,’",
and every stable set ofsize k, 3 <= k <- 2n, in G is also stable in at least one ofG, G2, ,
then every stable set (of any size) of G is also stable in at least one of Gl, G2," ", G,.

Proof. Assume there exists a stable set S in G which is not stable in any of the
graphs G, G2,"’, G,. Therefore the subgraph induced by S in G contains an edge
ei of E(G) for i= 1,2,. ., n. Let S’S be the set of all end vertices of the edges
e, e2," , e,. Notice that not all of e, e2," , e, define the same edge since otherwise
it would be an edge in G induced by the vertices in $ contradicting that S is stable
in G. It follows now that 3-< IS’I <- 2n. But S’ is not stable in any of G, G2," , Gn
a contradiction proving the theorem.

COROLLARY 3.2. If G is the union of two threshold graphs T and T2 such that all
3-cliques and 4-cliques of G are also cliques of T or T2 then G is cobithreshold.

Proof. Follows easily by applying Theorem 3.1 to G. l-]

Let us associate to an arbitrary graph G, the 2-summability graph G* as follows"
The vertex set of G* consists of edges of G. Two vertices of G* are linked if and

only if they correspond to edges of G whose end vertices induce in G a subgraph
isomorphic to 2K, P4 or Ca.

Let NV(G*) denote the set of nonisolated vertices of G*. Define now a signed
graph H(G) as follows"

The vertex set of H consists of nonisolated vertices of G* and the set of negative
edges of H consists of all the edges of G*. Two vertices of H are joined by a positive
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edge if and only if they correspond to edges of G whose end vertices induce in G a
clique.

The example in Fig. 2 illustrates the graphs G* and H associated with a graph G.
THEOREM 3.3. If G is cobithreshold then the associated graph H(G) is balanced.
Proof. Let T and T2 be the two threshold graphs such that G is the union of T

and T2 and every clique of G is also a clique of T or T2. Since the two end vertices
e, f of any edge in G* correspond to edges of G whose ends induce a subgraph
isomorphic to 2K2, P4 or C4 in G, e and f belong to different threshold subgraphs of
G. It follows that NV(G*) can be partitioned into two sets S and $2 where S
NV(G*)f3E(Tt) and S2--- NV(G*)f3E(T). Since no two vertices in Si (i= 1,2) are
adjacent in G*, the edge-cut defined by the partition (S1, $2) contains all the negative
edges of H (i.e., E(G*)). We shall prove now that a cut (S, $2) does not contain any
positive edge of H. Assume there exists e S and f $2 such that (e,f) is a positive
edge of H. Then e and f belong to a clique K of G. Then K is also a clique in T or
in T2. If K is a clique in T then f SI and if K is a clique in T2 then e $2. In either
case it leads to a contradiction since S and $2 are disjoint. Thus the cut (S, $2)
contains no positive edge of H and contains all the negative edges of H. Hence by a
theorem of Harary [4] H is balanced. 13

a g b a b
a b

e f c d e + f c + dG
G* H
FG. 2

We shall prove later that the converse of the above theorem is also true.
Suppose G is a graph such that its associated signed graph H(G) is balanced.

Construct two graphs G and G2 as described in the following four steps.

ALGORITHM A.
1) Obtain a partition (S, Sz), as shown in [4], of vertices of H such that the cut

(S, $2) consists of all the negative edges.
2) Let Y" be the set of all 3-cliques and 4-cliques in G. For K Y" and S

_
V(H),

we shall say that "K meets S" if i, j are vertices of K and the edge (i,j) of
G corresponds to a vertex of H belonging to S.

Let g’ := {K Y’/K meets S} and Y2 := {K Y’/K meets S2}.
Let E (Y") be the set of vertices in G* corresponding to edges in G that

belong to a clique in Y", where Y"_Ytq Then E:=SU E(() and E2:=
S U E(YG).

3) Let E(K) be the set of vertices in (3* corresponding to edges in the clique K.
Let YG:={K Y/E(K)C- E and E(K)C- E2}.
Let E := E U E(YG) and E:= EaU E(YG).

4) Let E be the set of all edges of G that do not correspond to any vertex of G*
belonging to E or E. Let G and G be the graphs defined on V(G) such
that E(G) E U {edges of (3 corresponding to vertices in E} and E(G2) E U
{edges of G corresponding to vertices in E}.
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We make the following observations about algorithm A.
1) El f’l $2 E2 f’) S. For, otherwise, if say,

E(r) f-) $2 . It follows that there exists a clique K
contradicting that cut ($1, $2) does not contain a positive edge.

2) E’ f’l $2== Ef’l S. Follows using the above observation and the fact that
K does not meet Si (i= 1, 2) for any K in

LEMMA 3.4. IfG and G2 are constructed as in algorithm A using a graph G such
that H(G) is balanced then

(A) G is the edge union of Gl and G2.
(B) Every clique of G is also a clique in G or
(C) The set ofvertices ofH corresponding to the edges of Gi (i 1, 2) do not induce

a negative edge in H.
Proof. (A) follows from the definiti6n of E in step 4 of the algorithm.
(B) Follows from the definition of E and E in step 3 of the algorithm.
(C) By observation 2, SfqE’2==S2fqE’. It follows that Sf’IE(G2)=

$2 f’l E(G). Since each negative edge of H has one end in
(C) follows.

For simplicity in proofs that follow we identify the edges of G with the correspond-
ing vertices of G*.

LEMMA 3.5. IfG and G2 are as in the previous lemma and if there exists a 3-clique
(a, b, c) of G such that (a, b) E(G2)-E(GI) and (b, c) E(G) then there exists a
vertex d such that (c, d), (b, d)e E(G) and (a, d): E(G).

Figure 3 illustrates the lemma.

b b

c

FIG. 3. Broken lines indicate nonedges ofG. Lines numbered are edges ofG and the line numbered 2
is an edge in E(G2)-E(GI).

Proof By hypothesis and by observing step (4) of the algorithm (b, c) E(G)- E.
Hence (b, c) S or E-S or E]-EI.

Case 1. (b, c)sS. It follows that (a, b, c)Y( and hence (a, b)E E(G), a
contradiction to the hypothesis. Therefore (b, c) S.

Case 2. (b, c)E-SI. It follows that (b, c)6E(K). Let K*e Ytc be such that
(b, c) E(K*) and (d, e)s E(K*)f’)S.

Subcase 2.1. Both d and e are distinct from b and c. If a, b, d, e induce a 4-clique
in G then such a clique is in . Hence by Step 2, (a, b)e E(G), a contradiction to
the hypothesis. It follows that a, b, d, e do not induce a 4-clique. Hence (a, d) or (a, e)
is a nonedge in G. Assume without loss of generality that (a, d) is a nonedge in G.
Then the claim is proved in this case.

Subcase 2.2. e coincides with b or c. If a, b, c, d induce a 4-clique in G then such
a clique is in Y[. Hence by Step 2, (a, b) E(GI), again a contradiction to the hypothesis.
It follows that a, b, c, d do not induce a 4-clique in G. Hence (a, d) is a nonedge.
Then the claim is proved.



BITHRESHOLD GRAPHS 503

Case 3. (b, c) E-E. There exists a K* Y’3 such that (b, c) E(Y*).
Subcase 3.1. V(K*)= {b, c, d}. If (a, d) E(G) then a, b, c, d induces a 4-clique

(a, b, c, d). But (a, b, c, d)c- EIOY3 since (a, b):Elt3Y[3. Therefore (a, b, c, d)_E2.
Hence E(K*)_ E2 contradicting that K* Y’3- Hence, (a, d): E(G). Thus the claim
is true in this case.

Subcase 3.2. V(K*) {b, c, d, e}. If (a, d), (a, e) E(G) then a, b, c, d induce a
4-clique (a, b, d, e). But (a, b, d, e) g El [3 Y’3 since (a, b) E [3 Y’3. Therefore
(a, b, d, e)_ E2. By similar reasoning (a, b, c, d)_ E2 and (a, b, c, e)_ E2.

Thus K* (b, c, d, e)
_

E2, implying that K* Y3, a contradiction. Therefore,
(a, d) or (a, e) E(G). Assume without loss of generality that (a, d): E(G). Then the
lemma is proved in this case.

Since all possible cases are examined, we conclude that the lemma is true in
general.

LEMMA 3.6. If Gl, G2 are constructed by algorithm A then both Gl and G2 are
threshold graphs.

Proof. We prove that G is a threshold graph. By a similar argument G2 is also
a threshold graph.

Assume that G! is not a threshold graph. Then there exists four distinct vertices
a, b, c, d such that (a, b) E(G), (c, d) E(G), (a, c) E(G) and (b, d) E(G).
Since (a, c), (b, d) do not induce a negative edge in H (by Lemma 3.4) (a, b) or
(c, d) E(G) and (a, d) or (b, c) E(G). It follows that it is enough to consider the
following 4 cases.

(i) (a,b)E(G)-E(Gl),(a,d)E(G),(c,d):E(G)and(b,c)E(G).
(ii) (a,b)E(G)-E(G),(c,d)t:E(G),(a,d)E(G)and(b, c)E(G).
(iii) (a,b)E(G)-E(G),(c,d)E(G)-E(G),(a,d)E(G)and(b,c):E(G).
(iv) (a,b)E(G)-E(Gl),(c,d)E(G)-E(Gi),(a,d)E(G)and(b,c)E(G).
All four cases are illustrated in Fig. 4. We use the same conventions as in Fig. 3.

a b a b. a 5_ b a b

c d c d c d c d
(i) (ii) (iii) (iv)

FIG. 4

In each of the four cases we shall prove that there exists a negative edge in
contradicting statement C of Lemma 3.4.

(i) Apply Lemma 3.5 on (a, b, d). Then there exists e such that (b, d), (d, e) are
edges in G and (a, e):E(G). But then (b, e), (a, c) of G induce a negative edge
in H.

(ii) Apply Lemma 3.5 on (a, b, d). Then there exists e such that (b, e), (d, e) are
edges in G and (a, e): E(G). But then (d, e), (a, c) of G induce a negative edge in H.

(iii) Same as in case (i).
(iv) Apply Lemma 3.5 on (a, b, c) and (a, b, d). There exist e and f such that

(b, e), (a,f) are in E(G) and (a, e), (b,f) are not in E(G). But then (b, e) and (a,f)
of G induce a negative edge in H.
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Since in all four cases we get a contradiction, G1 is a threshold graph. The lemma
follows.

THEOREM 3.7. If H( G) is balanced then G is cobithreshold.

Proof. Since H is balanced we can obtain G and G2 as in algorithm A. By
Lemmas 3.5 and 3.6, the theorem follows.

By Theorems 3.3 and 3.7, it follows that a graph G is bithreshold if and only if
the signed graph associated to its complement is balanced.

Recognizing and decomposing bithreshold graphs. The above theorem gives rise to
the following method to recognize and decompose bithreshold graphs. Let G be the
given graph.

(1) Construct the signed graph H associated with the complement of G.
(2) IfH is not balanced then G is not bithreshold. If H is balanced go to step

(3), noting that G is bithreshold.
(3) Construct the two threshold graphs G, G2 as in algorithm A.
(4) Then G is decomposable into the complements of G and G2.
The complexity of this algorithm is at most O(n4).
4. Strong perfectness of bithreshold graphs. A graph G is strongly perfect if for

any induced subgraph H there exists a stable set meeting all the maximal cliques of
H. Strongly perfect graphs are also perfect 1].

We prove that bithreshold graphs and their complements are strongly perfect.
A graph G is perfectly orderable if there exists an ordering of its nodes such that

no four nodes, say a, b, c, d inducing the edge set {(a, b), (b, c), (c, d)} have the order
a<b and d<c.

Chvatal [2] proved that perfectly orderable graphs are strongly perfect. We prove
that the intersection of two threshold graphs is perfectly orderable. It follows then that
bithreshold graphs are strongly perfect.

THEOREM 4.1. If G is the intersection of two threshold graphs T and T then G is

perfectly orderable.
Proof. Let us order the vertices of G in nonincreasing degrees in T. Thus x may

precede y only if deg (x)_-> deg (y). We prove that this order is a perfect order for G.
Consider any four vertices, say a, b, c, d inducing the edgeset {(a, b), (b, c), (c, d)}.
It is enough to show that in T deg (a)< deg (b) or deg (d)< deg (c). Now since T
(for i- l, 2) is a threshold graph containing all the edges of G, it follows that (a, c)
or (b, d) is an edge in T.

Case 1. (a,c)E(T1). Hence (a,c)_E(T). Therefore (b,d)E(T2), implying
that (b, d): E(T). It follows that deg (d)<deg (c) in this case.

Case 2. (b, d) E(T). By a similar argument as in the above case it follows that
(a, c) E(T) implying that deg (a) < deg (b) in this case.

Thus have we proved that the order is a perfect order and hence G is perfectly
orderable, l-3

THEOREM 4.2. IfG is the union oftwo threshold graphs T and T2 then G is strongly
perfect.

Proof. Since every induced subgraph of G is also a union of two threshold graphs,
it is enough to show that G has a stable set S meeting all the maximal cliques of G.

Let x be any vertex of largest degree in T. Let y be a vertex of largest degree in

T among all the vertices in
V(G)-(N(x)U{x}).

Let S= V(G)- N(x)- N(y) (.).
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Notice that both x and y are in S. We first show that S is a stable set.
Assume a and b are two vertices in S such that (a, b) E(G). Then both a and

b are different from x and y by the constrtlction of S. Further, neither a nor b is
adjacent to x or y for the same reason. It is well known that in a threshold graph T
a vertex of largest degree is adjacent to all nonisolated vertices of T [3]. Hence if (a, b)
is an edge in T then x is adjacent to both a and b, which is not possible. Similarly
if (a, b) is an edge in T2 then y is adjacent to both a and b, which is not possible. It
follows that (a, b) is not an edge in G and S is a stable set.

We shall now show that S meets all maximal cliques of G. Let K be any maximal
clique of G not meeting x. Then K contains a vertex z not adjacent to x. Hence for
each l( z) in K the edge (l, z) is in T2. Hence K meets y unless K consists of z alone
and z is not adjacent to y as well. But in this case z S. Thus S meets all maximal
cliques of G. Hence G is a strongly perfect graph. [3

COROLLARY. Cobithreshold graphs are strongly perfect.
Remark 4.1. The proof of the above theorem can be used to obtain a minimum

coloring for graphs that are unions of two threshold graphs TI and T2 if T and T2
are given. For instance S, $2," ", Sk is a partition of V(G) into a minimum number
of stable sets where for each i, Si is obtained from the graph induced by (V(G) J i-__l S)
as given by (.) in the above theorem.

Remark 4.2. As we mentioned earlier, a maximum stable set for bithreshold graphs
can be obtained in polynomial time. Further by the above remark a minimum partition
of the vertex set into cliques can be obtained in polynomial time. Also given a perfect
ordering of a graph G, one can obtain a minimum coloring and a maximum clique
for G in polynomial time as is clear from [2]. Hence by Theorem 4.1, it follows that

FIG. 5
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minimum coloring and a maximum clique can also be obtained for bithreshold graphs
in polynomial time.

Remark 4.3. A bithreshold graph need not be a comparability graph, e.g. G of
Fig. 5.

A cobithreshold graph need not be a comparability graph, e.g. G2 of Fig. 5.
Neither a bithreshold graph nor its complement need be triangulated, e.g. G of

Fig. 5.
Remark 4.4. Given any positive integer n, there exists a bithreshold graph whose

Dilworth number as well as its complement’s Dilworth number is n. For example
consider the graph Hn with vertices x, x2, , xn, y, y, , yn and z, z, , z such
that {x,..., xn} induces a clique {z,..., z,} induces a clique, {y,..., y,} induces
a stable set and each xi is linked to yj for i>-j and each zi is linked to yj for i<-j.
Graph H, is cobithreshold and both H, and H, have Dilworth number n. See Fig. 5
for H4.
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Abstract. This paper introduces a new approach to the T-coloring problem for complete graphs. The

problem arises from Hale’s formulation of the channel assignment problem for potentially interfering
communication nets. The motivating result of this paper is that the T-span of Kn, denoted sp-(Kn), is

asymptotically independent of n. More precisely, each T-set has a rate, rt (T), and n/spT (K,) converges
to rt (T). We introduce a finite algorithm for computing the rate of T. This is accomplished by associating
to a given set T an infinite sequence of integers with the property that the first n integers of this sequence
T-color K, in an asymptotically optimal way. Lastly, we compute rt (T) or bounds on its value for some
interesting special cases of sets T.
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1. Introduction. This paper introduces a new approach to the T-coloring problem
for complete graphs. The problem arises from Hale’s formulation of the channel
assignment problem for potentially interfering communication nets (see [4], [2]). Let
T be a nonempty finite set of positive integers and let G V, E) be a (simple) graph.
A T-coloring of G is an assignment f: V-> Z of integers to the vertices of G such that
[f(v)-f(w)[= TU{0} whenever v and w are adjacent in G. The span of a T-coloring
is the difference between the largest and smallest integers assigned and the T-span is
the minimal possible span for a T-coloring of G.

Cozzens and Roberts [2] consider the problem of determining the T-span of the
complete graph, Kn, for arbitrary T and n. A complete solution to this problem would,
by a result in [2], also determine the T-span of all weakly 5,-perfect graphs and would
provide an upper bound for the general case. The problem has been solved in the
special case where T is "r-initial"; in this case, the optimal coloring is obtained by a
greedy-type algorithm (see [2]). However, a greedy-type algorithm does not work in
the general case. This means that for some set T and integer n, an optimal coloring
of K,+I will not contain (as a subset) an optimal coloring of K,. Forgeneral background
and a discussion of applications, the reader is referred to [4].

The motivating result of this paper is that the T-span of K,, denoted spy (Kn),
is asymptotically independent of n. More precisely, let - be the family of finite
nonempty sets of positive integers and let I {q s Q[0 < q =< 1/2}, where Q denotes the
rationals. Then there is a "rate" function rt" T- I such that

n
lim rt (T)

sp (K,,)

for T3-.
Moreover, we introduce a finite algorithm for computing the rate of T. This is

accomplished by associating to a given set T an infinite sequence of integers with the
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property that the first n elements of this sequence T-color Kn in an asymptotically
optimal way. The algorithm is exponential in the largest element of T. It does, however,
enable us to T-color Kn in an asymptotically optimal way in constant time (as a
function of n). Lastly, we compute rt (T) or bounds on its value for some interesting
special cases of sets T.

2. The rate of T-sets. The main purpose of this section is to show that

lim n/spr (K,)

exists and, thus, that rt (T) is well defined. We begin with a few basic definitions.
DEFINITION 2.1. Let T be a set of positive integers and let G be a simple graph,

that is, a graph with no loops or multiple edges. A T-coloring of G is a function

f: V(G)--> Z, Z the set of integers, such that If(v)-f(w)l is not an element of TIJ {0}
whenever v and w are adjacent in G.

DEFINITION 2.2.
(a) The span of a T-coloring is the difference between the largest and smallest

integers used in the coloring.
(b) The T-span of G, denoted spT-(G) is the minimum possible span for a

T-coloring of G.
DEFINITION 2.3. The complete graph on n vertices, denoted K, is the graph with

n vertices each pair of which is connected by an edge.
The object of this paper is to address the problem of determining the T-span of

K, for arbitrary T and n. At first glance, one is led to believe that the problem must
be considered anew for each T and each n. Evidence in support of this hypothesis
can be drawn from an example given in [2]. Let T {1, 4, 5}; the T-span of K2 is 2
with (1, 3) an optimal coloring while the T-span of K is 6 with (1, 4, 7) optimal. Thus,
one cannot simply extend an optimal T-coloring of K2 to obtain one for K3. This is,
incidentally, a rephrasing of the point made in [2] that the greedy algorithm does not,
in general, provide minimal span colorings. We shall see, however, that in point of
fact, one need not consider the T-span problem independently for each n.

We begin by relating our problem to the study of maximal independent sets in
circulant graphs.

DEFINITION 2.4. Let T be a finite set of positive integers.
(a) G(T) is the infinite graph defined as follows:

(1) V(G(T))=Z (the integers);
(2) {v, w}E(G(T)) if and only if [v-w[ T.

(b) H(n, T) is the finite vertex subgraph of G(T) defined as follows:
(1) V(H(n, T))={O,...,n-l};
(2) {v, w}E(H(n, T)) if and only iflv-wl T.

(c) G(n, T) is the finite point symmetric graph defined as follows:
(1) V(G(n, T)) Z, (the ring of integers mod n);
(2) {v, w}E(G(n, T)) if either (v-w)n T or (w-v)n T, where (x),=

xmod n.
We note that G(n, T) is a circulant graph, that is, a graph with a circulant adjacency

matrix. For fixed T and n, let S, be the union of T and all integers of the form n-x,
where x T, x < n. Then, in the notation of [5] and ], G(n, T) G(n, S,), that is, S,
is the symbol of G(n, T).

DEFINrrION 2.5. The independence number of a graph is the cardinality of a largest
possible set of vertices in the graph, no two of which are adjacent.
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Notation 2.6.
a(n, T):= independence number of G(n, T).
/3(n, T):= independence number of H(n, T).
LEMMA 2.7. (a) /3 (m + n, T) _-</3 (m, T) +/3 (n, T).
(b) /3 (n max (T), T) <-_ a (n, T) <- fl (n, T) where max (T) is the largest element

ofT.
(c) a(n + 1, T) is not necessarily greater than or equal to a(n, T).
Proof. (a) This follows immediately from the definition.
(b) Since H(n, T) is a subgraph of G(n, T) with V(H(n, T))= V(G(n, T)) and

E(H(n, T)) c E (G(n, T)), we must have a (n, T) <_-/3 (n, T). For the first inequality,
let {Xl,-" ",XA} be an independent set in H(n-max(T), T) of cardinality
fl(n-max(T),T). Then {x,...,XA}C{O,...,n-max(T)-l}{O,...,n-1}=
V(G(n, T)). Without loss of generality, assume xi<xj for i<j. Then, (xj-xi),=
Ix x x x T for <j by assumption and (x- x), _-> max (T) + so (xi- x), T
either. It follows that {Xl, , XA} is independent in G(n, T) and hence that a(n, T) ->
A =/3 (n max (T), T).

(c) For T {1, 3}, we have a(6, T)- 3 and a(7, T)- 2. Q.E.D.
LEMMA 2.8. (a) SpT (K)-<m ifand only iffl(m+l, T)>-n.
(b) fl(1 +SpT (K,)) h.
(c) spT (K+,)---->SpT (K,.)+SpT (K,).
Proof. (a) SpT (K,) _--< rn if and only if one can T-color K, using integers selected

from the set {0,..., m}= V(H(m+ l, T)). Since all n vertices of K, are mutually
adjacent, this can be done if, and only if, H(m + l, T) has an independent set of size
at least n.

(b) This follows from (a) and the fact that SpT (K,,+)> SpT (K,).
(c) Let r=SpT(Km+.) with {0=xl, x2,"" .,x.+=r} an optimal T-coloring of

K.+.. Then {xl,. , x.} colors K. and {x.+l, , x,.+.} colors K.. Thus, spT (K.) <--

x,. and spT(K.)<=r--x,+ so that spT(K,.+.)=r=(r-x,.+)+(x,.+-x,.)+x,. >-

X.+-Xm +SpT (K,)+SpT (K.) >--SpT (K,)+SpT (K.), with equality possible only if
n or m is0.

THEOREM 2.9. For any fixed T, the limits

n #(n, T) (n, T)
lim lim lim

(K)’SpT n.oo n n-. n

exist and are equal
Proof. It follows from Lemma 2.8c and a theorem of P61ya-Szeg6 [6, p. 17] that

exists and that

lim

Similarly, by Lemma 2.7a,

lim/3 (n, T)

SpT (K,)

SpT (K,) SpT (K,)
lim sup

(n, T)
exists and lim

Thus, by Lemma 2.8c we have

(lim fl(m, T))(lim

inf fl (n’ T)
n

SpT n(Kn))=(lim +spT (K.) n
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This proves that

n /3(n, T)
lim and lim
n-’oSpT (K,,) .-.oo n

exist and are equal. Finally, it follows from Lemma 2.7(b) that

a(n, T) (n, T)
lira lira. Q.E.D.
noo /I no /’/

DEFINITION 2.10. Let W be the family of finite nonempty sets of positive integers
and let J-{r R: 0<_-r-<_ 1}, where R denotes the real numbers. The rate function
rt" - J is given by

rt T)- lim
-o SpT (K,)

for T-.
We shall see later on that 0 < rt (T) <_- 1/2 for all T and that rt (T) is always a rational

number.

3. An algorithm for the determination of rt (T). In this section we show that, for
any T-set, the rate can be calculated in finite time. This is important, since the definition
of the rate involves the determination of SpT (K,) for some infinite sequence of values
of n. The technique is constructive in that it not only calculates rt (T) but also provides
T-colorings of K, for each n which realize this asymptotic rate. More precisely, for
each T we construct an infinite sequence, the first n positive elements of which are to
be used to T-color K, (see the discussion following Theorem 3.14). Unfortunately,
the algorithm is, in general, highly exponential. Nevertheless, there are interesting
cases where the answer is produced quite rapidly and these are discussed at the end
of this section. Subsequent sections deal with much more efficient techniques for
calculating rt (T). These latter techniques, however, deal with restricted classes of
T-sets.

LEPTA 3.1.

a(n, T)
rt (T) lim.

Proof This follows at once from Theorem 2.9 and Definition 2.10.
For simplicity of notation, we now fix a set T and write a(n) insread of a(n, T).

Also, we let m max (T).
SUBLEMMA 3.2. If n >-- rn + and k > 1, then a (kn) >- ka (n).
Proof. Let {x,. ., x} be an independent set in V(G(n, T)) {0,. ., n- 1} with

r= a(n) and such that x <x) for i<j. Then, for i<j, x)-x-(x)-x),, T and
(x-x)), n+x-x): T. Fix k and consider the set Sk Zk, {0,’’’, kn-l} defined
by

Sk {y Zk,,Iy x + an for some and a with -<_ <_- r and 0 _-< a <_- k- }.

Since Sk has kr- ka(n) elements, it suffices to demonstrate that Sk is an independent
set in V(G(kn))= Zk,. Suppose then that y, z Zk, with y < z and write y- x + an
and z=x+bn. We must show that (z--Y)kn=Z--y-: T and (y--z)k,=kn+y--z-T.
There are several cases to consider.

Case 1. b a, x < x]. Then z y x x T by assumption and kn + y z >-
2n + y z _-> n -> m + 1. Since m is the largest element of T, it follows that kn + y z T.
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Case 2. [b=a+l, xi<=xj]. Then z-y>-n>=m+l and kn+y-z=(k-1)n+
xi- xj. This latter term is -> n if k => 3 and equal to n + x-x if k 2. In either case, it
is not in T.

Case 3. b a + l, x > xj]. Then z y n + x x T and kn + y z k -1) n +
xi-x> (k-1)n >= n >= m+ 1.

Case4. [a+2<-_b<-_a+k-2].Thenz-y>-nandkn+y-z>-_kn+an-(b+l)n >
kn+an-(a+k- 1)n n.

Case 5. [a 0, b k ]. If k 2, this is Case 2; thus, assume k => 3. Then z y ->_ n
and kn+y-z=kn+xi-xj-(k-1)n=n+x-x. If xi<x, then n+x-x:T by
assumption and if x -> x, then n + x- xj -> n.

It is easy to see that these are all the possible cases. In fact, z > y implies that
b -> a and moreover that if b a, then x > x. Cases 1-3, therefore, cover all instances
where b a or b a + 1. Since b <= k 1, the possibility that b > a + k 2 only occurs
when a=0 and b=k-1. Thus, Cases 4 and 5 cover all instances where b=>
a+2. Q.E.D.

LEMMA 3.3. If n>--_m+ l, then rt(T)>-_a(n)/n.
Proof. Since the sequence {a(n)/n} converges to rt (T), any subsequence also

converges to rt (T). In particular

o( kn)
rt (T) lim

kn

for any fixed n. If n _-> m + 1, then by Sublemma 3.2 we have

a(kn) ka(n) a(n)
kn kn n

It follows that

o(kn) a(n) ce(n)
rt (T)= lim => lim ---. Q.E.D.

k kn k Yl

LEMMA 3.4. If n > 2", then there exists an integer s such that
(a) m+ <=s_<-2",
(b) a(n)/n <= a(s)/s.
Proof Suppose n>2" and let X={x,...,x} be an independent set in

V(G(n, T)) Z, with xi < x for <j and r a (n). Define a periodic binary sequence
(ai)iz of period n by setting a=0 if (i),_X and ai if (i),X. Let Si by the
m-vector

Si (ai, ai+l,""", ai+"-l).

Since n > 2" and there are only 2" different m-vectors, there must exist an and j
with 0 <-i <j _-< n- and such that S S;. The idea of the proof is to use Si and S; to
decompose X into two parts, one of which will yield an s such that m + =< s < n and
a(s)/s>=a(n)/n. We note that this is sufficient for the proof of the lemma since the
process can be repeated, if necessary, until s =< 2".

It is crucial in what follows to differentiate the case where (j-i),=> m+ and
(i-j), => m + from the case where one of these is =<m. Note that if (i-j), <= m and
(j- i), -< m, then n =< 2m =< 2" contradicting our assumption. We proceed to consider
the two cases separately.
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> m + ]. Let X’ c Z_i be defined by x X’Case [(i-j)n ->- m + and (j- i),
whenever ai/x and let X"c Z,/i_ be defined by x X" whenever a/, 1. We
claim that:

(*) Ixl-Ix’l+lX"l where IAI is the cardinality of A.
(**) X’ and X" are independent sets in G(j-i, T) and G(n + i-j, T), respec-

tively.
Assuming (.) and (**) and recalling that we are in the case wherej- and n + i-j

are both >-re+l, it suffices to show that a(j-1)/(j-i) or a(n+i-j)/(n+i-j) is
>=a(n)/n. By (**), a(j- i) > Ix’l and a( n + i-j) > Ix’q; by (*), it follows that a(j- i)+
(n/i-j)>lx’l/lx"l-Ixl-(n). Suppose, for the sake of contradiction, that
a(j-1)/(j-i)<(a(n)/n and a(n+i-j)/(n+i-j)<(a(n)/n. Then a(j-i)<
(j-i)a(n)/n and a(n+i-j)<(n+i-j)a(n)/no But this implies that a(j-i)+
a(n+ i-j)< a(n), completing the proof.

It remains to prove (.) and (**). Let 3’" Z_--> Z, be defined by 3"(x)= (x + i),
and let 3’"" Zn+_ --> Zn be defined by 3’"(x) (x +j),. If x X’, then a+, which
means that (i + x)n X. Thus, 3"" X’ --> X; similarly 3’"" X" --> X. We claim that X is the
disjoint union of 3"(X’) and 3’"(X"). Suppose first that x X’, y X" and 3"(x) 3’"(y).
Then, (i + x), (j + y), from which it follows easily that + x =j + y or + x =j + y n.
Now x <j and y < n + -j. Thus, + x j + y implies that j x y _-< x <j i,
and + x =j + y n implies that j x y + n >= n y > n (n + -j) =j i. To com-
plete the proof of the claim and, with it, the proof of (.), we need only show that
X ’(X’) "(X").

LetxX so that ax=l. Ifi-<x_-<j-1 then x-iZ_ and a+_)=a=l so
that x- X’. It follows that x (x- i)+ 3"(X’). A similar argument shows that if
O<=x<=i-1 orj<-x<-n-1, then (x-j),,X" and x=3""((x-j),).

For the proof of (**), let x,yX’ with O<=x<y<=j-i-1. We must show that
(y x)_i and (x y)2_i are not in T. Clearly, (y x)_ y x (y + i) (x + i)
3"(y)-3"(x) T, since 3"(y) and 3"(x) are elements of X. For (x-y)2_, note first that
ifx>=m then (x-y)2_=x-y+j-i>-m-y+j-i>=m+(-j+i+l)+j-i=m+l so
we need only worry about the case where x <-rn- 1. Since x X’, a+ and since
S S2 and x _-< tn- 1, it follows that a+ as well. Thus, (j + x), e X. Now y X’
implies that (i+y),X and, hence, (x-y)2_=x-y+j-i=(x-y+j-i),=
[(j + x)n-(i+ y),], T. This proves that X’ is independent in G(j-i, T); the proof
that X" is independent in G(n + i-j, T) is entirely analogous.

Case 2. [(i -j), =< rn or (j i), =< m]. We consider only the case where (j i), < m,
the other case being virtually identical. Next, note that if X (x, , x} is indepen-
dent in G(n, T), then Y= {(x-i),,..-, (x-i),} is independent as well. Thus, we
may assume, without loss of generality, that i= 0. We proceed to define X’ and X"
exactly as in Case 1; the proofs of (*), (**), and the fact that a(j-i)/(j-i) or

o(n+ i-j)/(n+ i-j) is >a(n)/n go through unscathed. The only problem is in the
event that it is o(j-i)/(j-i) which is >=(n)/n, the conclusions of the lemma are
not met since j- i_<- m. Suppose then that S So, <-j_<- m, and a(j)/j>= a(n)/n. Then
there is an integer k > such that m + -<_ kj <= 2m. It suffices, therefore, to show that
for some such k, a(kj)>= ka(j).

(The situation is similar to that of Sublemma 3.2. However, the conditions of 3.2
are not met here and we must make use of the fact that So S to show that the
conclusion of Sublemma 3.2 nevertheless holds.)

Since j =< m, we may write m ,j +/z with >= and 0 <-/z >-j- 1. Now
(ao,’’’, am-l)-So--Sj--(aj,’’’, aj+m-l). It follows that ai=a+, for all i,j with
O<=i<=j-1 and l<-p<=h. Also, (h+l)>-m+l so that {ao, al,’",a_+} is a
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sequence of length >_- m + 1. Let Wc Z(+j be defined by x W if and only if ax 1.
Then [W[ (h + 1)a(j) and it is a straightforward exercise to show that W is indepen-
dent in G((A + l)j, T). Q.E.D.

THEOREM 3.5. Let T be a finite set of positive integers and let m be the largest
element in T. Then

(n)
rt (T) sup -----.

m+ n_2

Proof. Let M be this supremum. By Lemma 3.3, rt (T)=> M. Since

(n) (n)
rt (T) lim lim

n-,o t/ n--,oo

it follows at once from Lemma 3.4 that rt (T)_-< M. Q.E.D.
THEOREM 3.6. For any finite T, rt (T) is a rational number with 0 < rt (T)<-_ 1/2.
Proof. The fact that rt (T) is rational follows at once from Theorem 3.5. If m is

the largest element of T, then a(m+ 1)-> and it follows from Lemma 3.3 that
rt (T) >- a(m+ l)/(m + 1) > 1/(m+ 1)>0. It remains to be shown that rt (T)_-< 1/2 for
nonempty T. Since T D T’ clearly implies that rt (T’)_-> rt (T), it suffices to show this
for T a singleton, T-{m}. By Theorem 3.5, there is an s,m+l<-s<-_2 such that
rt (T)= a(s)/s. Let X- {x,..., xr} be a maximal independent set in G(s, T). Then
r={(x+m),...,(xr+m)}fqX=f and Ixl-lrl. Thus
Q.E.D.

Our next aim is to reduce the upper bound, 2m, in Theorem 3.5.
DEFINrrION 3.7. A binary k-tuple S (So,’", Sk-) is T-admissible if s =sj

with <j implies that j- T. In other words, s is T-admissible if now two of its l’s
are separated by a distance in T.

Notation 3.8. We denote by Nk(T) the number of T-admissible k-tuples.
PROPOSIa’ION 3.9.

(n)
rt (T) sup ----.

m+l_n<Nm(T)

Proof. The proof is completely analogous to that of Theorem 3.5.
We now proceed to show that the rate of T may be determined by examining the

cycles in a certain subgraph of the binary de Bruijn graph of span rn + 1. We caution
the reader that there is no real connection between this work and the theory of de
Bruijn sequences. The de Bruijn graph simply provides a convenient way of describing
the technique.

DEFINITION 3.10. (See e.g. [3].) The binary de Bruijn graph of span n, denoted
Pn, is given as follows:

(a) The vertices of Pn, V(Pn), are the binary n-tuples.
(b) There is a directed edge originating at V--(Vo," ", v,-i) and terminating at

W- (Wo, , wn_l) if and only if (Vo," , v,-2) (w, w,_).
DEFINITION 3.11. Let T be a set of positive integers with largest element m. P(T)

is the vertex subgraph of the de Bruijn graph P,,+ determined by the T-admissible
(m + 1)-tuples. That is, V(P(T)) is the set of T-admissible (m + 1)-tuples and there
is an edge from v V(P(T)) to w e V(P(T)) if and only if there is an edge from v to
w in P,,+.

DEFINITION 3.12. Let C be a cycle in P. The weight of C, wt (C), is the average
of the weights of the vertices in C.
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PROPOSITION 3.13.

rt (T) max wt (C).
m -I- c cycle in P(T)

Proof. This is essentially a graphical reformulation of Proposition 3.9. We leave
details to the reader.

Our algorithm for T-coloring Kn is buried in the preceding definitions and theorems
and it is appropriate at this point to describe it more explicitly:

Step 1. The construction ofP(T). Given a set T, we denote by m the largest element
of T and by Pm+l the binary de Bruijn graph of span m + 1. We call a vertex of Pm+l
T-admissible if no two of its l’s are separated by a distance in T. Finally, P(T) is the
vertex subgraph of P,,+ generated by the T-admissible vertices.

Step 2. The selection of an optimal cycle of P(T). The weight of a vertex of P(T)
is the number of l’s it contains. The weight of a cycle of P(T) is the average of the
weights of the vertices comprising it. We choose a cycle C in P(T) of maximum
weight. (This is the difficult part of the algorithm.)

Step 3. The construction of the coloring sequence. Let C (vl, Vk) and let vi
be the leftmost bit of W. Next, let {a} be the sequence obtained by repeating
/)l, 2," /)k indefinitely. Finally, define a sequence of integers B {bj} by letting bj
be an element of the sequence if and only if abj 1.

Step 4. The t-coloring of Kn. To T-color Kn use b, b2," ", b,.
Although Step 2 is, in general, exponentially hard, there are many cases where it

is, in fact, quite easy. Corollaries 3.14 through 3.16 give several such examples.
COROLLARY 3.14. If a(m+ l, T)=fl(m+ l, T) then rt(T)=a(m+ l)/(m+ l).
Proof Since rt (T) equals / (m + times the maximal cycle weight and the weight

of a cycle is the average of the weights of its vertices, it follows that rt (T)_-<
fl(m+ l, T)/(m+ 1). (Note that fl(m+ l, T) is the maximum possible weight T-admis-
sible (m+ 1)-tuple.) On the other hand, if a(m+ l, T)=fl(m+ l, T) then there is a
maximum weight vertex in P(T) all of whose cyclic shifts are also in P(T). Thus,
there is an entire cycle in P(T) constiting purely of maximum weight xertices. Q.E.D.

COROLLARY 3.15. If (m + 1, T) then rt (T) /(m + 1).
COROLLARY 3.16. If[3 (m + l, T) 2 and there exists a k, <- k <-_ m such that neither

k nor m + k is an element of T, then rt (T) 2/(m + ).
The proofs of Corollaries 3.15 and 3.16 follow easily from Corollary 3.14; details

are left to the reader.
Example 3.17. (a) Suppose T-{l,4, 7}. Then it is an easy exercise to see that

/3(8, T)= a(8, T)= 3. It follows from Corollary 3.15 that rt(T)= 3/8. To T-color K,,
we use the first n elements of the sequence (1, 3, 6, 9, 11, 14, 17, 19, 22, 25, 27...).

(b) Suppose T { 1,. , r}. Then fl(r+ 1, T) 1. It follows from Corollary 3.16
that rt (T)= 1/(r+ 1). The sequence is (1, r+2, 2r+3, 3r+4, .). This is, in essence,
the result in [2] on r-initial sets.

(c) Suppose T { 1, 4, 5}. Then/3(6, T) 2 and there is an integer, namely 3, such
that 3 and m + -3 =6-3 3 are not in T. It follows from (3.17) that rt (T) 2/6= 1/3.
The sequence to be used is (1, 4, 7, 10, 13, 16,...).

We close this section by noting that the techniques developed here can be used
to obtain precise bounds on the error involved in approximating spT- (K,) by n/rt (T).
Moreover, Corollary 3.15 remains true if m + is replaced by any integer n > m+ 1.
These results will be dealt with in a future paper.

4. Special classes of T-sets. The structure of the graphs G(n, T), H(n, T), and
G(T) reflects the structure of the set T. For example, if the elements of T have a



ASYMPTOTIC APPROACH TO THE CHANNEL ASSIGNMENT PROBLEM 515

greatest common divisor g, then the graph G(T) splits into g disjoint isomorphic
components. Also, when T is a 2-set or a 3-set of the form a, b, a + b, then the graph
G(T) can be embedded on a surface of an infinite cylinder. These and similar
observations lead to a number of results concerning rt (T) for special classes of T-sets.

THEOREM 4.1. If g is the greatest common divisor of the elements of T, then the
graph G(T) is the disjoint union ofg mutually isomorphic components Gi( T), 0 <- <- g 1.
Gi( T) is defined as follows:

V(G,(T))={x x= i+Z ajt, be T);
E G(T)) is the restriction of E G(T)) to V( G(T)).

Furthermore, rt T)=rt (T/g) where T/g= {xlx t/g, T}.
Proof. Let xp V(Gp(T)) and Xo V(Gq(T)), where pq, 0-<_p,q-<_g-1. Then

(Xp--Xq), =((p--q)+(Y. at--k bktk))g=(p--q)g O and so (Xp-Xq): E(G(T)).
This shows that the graphs G(T) are disjoint. The isomorphism between the com-
ponents Gp(T) and Go(T) is defined by mapping xp p + ab Gp(T) to Xq
q + F. at Gq(T). To show that rt (T) rt (T/g), observe that the graph H(gn, T)
consists of g isomorphic components Hi(gn, T)-H(n, T/g). The isomorphism maps
x,- i+ atj Hi(gn, T) to xo/g=, a(t/g). Thus fl(gn, T)= g. fl(n, T/g) and so
rt (T) rt (T/g). Q.E.D.

PROPOSITION 4.2. rt (T)>-_ 1/s, where s is the smallest integer such that sX for all
tT.

Proof. The set M, {ksl k 0, 1,. ., [n/ s]} is an independent set in H(n, T), and
SO

rt(T) limfl(n’ T)> lim
[n/s]+l->-. Q.E.D.

/I n-oo /1 S

COROLLARY 4.3. rt (T) >= / (m + 1), where m max { tit T}.
PROPOSITION 4.4. Let T { k, ., r}. Then rt T) k/ k + r).
Proof. It can be easily shown that in any set of k + r consecutive vertices of H(n)

at most k can belong to any maximum independent set of H(n) and so fl(nk + nr, T) <=
nk. But since the set M={xlx=p+a(k+r);p=0,1,...,k-1; a=0,1,...,n-1}
is an independent set in H(n), we conclude that fl(nk+ nr, T)= nk. Thus, rt (T)=
lim,_.(nk+nr)/(nk+nr)=k/(k+r). Q.E.D.

COROLLARY 4.5. Let min --<_ <= max for T. Then rt (T) >- min/(min+ max).
Proof. This follows immediately from the fact that the set T is contained in the

set T’= {rain, rain + 1, , max}.
LEMMA 4.6. Let T { a, b} with (a, b) 1. Then the graph H(a + b, T) is a simple

cycle of length a + b.
Proof. Since (a, a + b) (a, b) 1, we may write the vertex set of H(a + b, T) as

V(H(a+b,T))={VklVk=kamod(a+b); k=O, 1,...,a+b-1}. It can easily be
shown that E(H(a+b, T))={(Vk, Vt)ll=(k+l)mod(a+b)}, which completes the
proof.

LEMMA 4.7. Let T { a, b}, (a, b) 1. Then the graph H(n (a + b), T) has a span-
ning subgraph consisting of n disjoint cycles C of length a + b defined by

Ci {VIVk Vk + i(a + b), Vk V(H(a + b, T))}.

Proof. Obviously, each of the cycles C is a translation of the graph H(a + b, T)
by i(a + b). We have to show that these cycles are disjoint. But this is clearly so, since
the cycle C consists of vertices i(a+b), i(a+b)+ 1,..., i(a+b)+(a+b- 1).
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THEOREM 4.8. Let T (a, b), (a, b) 1. Then rt (T) h(a + b)/(a + b) where
h(x) integer part ofx/2 Ix/2].

Proof. Each cycle Ci of the graph H(n(a + b), T) can contain at most h(a + b)
independent vertices. Therefore, (n(a + b), T) <= n. h(a + b). Let

Mo= {VOklVk Co, k= 2q, q=0, 1,’’., h(a+ b)-1},

Mi {VklVk Vk + i(a + b), Vk Mo},

and finally,

n-I

M(n)= U Mi.
i=0

Clearly, each set Mi is a maximum independent set in the cycle Ci. If M(n) is an
independent set in H(n (a + b), T), then/3 (n (a + b), T) n. h (a + b) for all n, and so

rt (T) lim (na + nb, T)/(na + nb) h(a + b)/(a + b).

To show that M(n) is an independent set, we first define

r+(Vk) (Vk + a, Vk + b),

F-(V)={Vk a, Vk

i+1)Then F/ v) F- vk because
i+1Vk+ a Vk + i(a+ b)+ a Vk +(i+ 1)(a+b)-b Vk -b,

+b--+i(a+b)+b=+(i+l)(a+b)-a= -a.

Moreover, the neighbors of are precisely the four vertices in

r+(o,) u r-(o).

Now two of these vertices are neighbors of v in the cycle C and so cannot be
in M(n). The other two neighbors belong to the cycles C_ and C+. However, they
too cannot belong to M(n) because they are neighbors of vertices in the cycles C_
and C+. Q.E.D.

It is worth noting that the greedy algorithm (see [2]) does not provide minimal
span colorings even in this sample case. For example, if T {7, 10}, then the greedy
algorithm chooses seven out of each seventeen vertices to belong to the independent
set, while Theorem 4.8 shows that eight is the maximum possible.

5. The rate f T and the clique sie f G(T). In this section, we consider the
relationship between the maximum clique size in the graph G(T) and the rate of T.
In particular, we show that rt (T)<= 1/clq (G(T)). The proof is based on a suggestion
of Mark Ramras. Finally, we give a lower bouna for 3-sets T with clq (G(T)) 3 and
conjecture that this lower bound is actually equal to the rate.

DEFINITION 5.1. A clique of size in a graph G is a subgraph of G with n vertices
that is isomorphic to a complete graph K,. The size of the maximum clique of the
graph G will be denoted by clq (G).

THEOREM 5.2. rt (T) -< / clq (G(T)).
Proof. get c Ckl (G(T)), and let C { oli 1, 2,. -, c; < <. < } be a

clique in G(T) so that T for all <j. Choose > and let M be a maximum
independent set in G(n, T). For i-- 1, 2,..., c, define M {u + v- vt),,I u M} to be
a translation of the set M by (vi v). Clearly, M M and M I’q M for all pairs
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j. But then

, v((,
i=!

and so a(n, T)/n<-a(n, T)/ca(n, T)= l/c= 1/clq (G(T)). But this implies

(T)= lim (a(n, T)/n) 1/clq (G(T)). Q.E.D.

Suppose now that T is a 3-set with clq (G(T)) 3, that is, T {a, b, a + b}, a b.
If g gcd (a, b), then by Theorem 4.1, (T)= (T/g), so assume that a and b are
relatively prime. By Theorem 5.2, (T). If 3 is relatively prime to all elements of
T, then Proposition 4.2 implies that (T) and, hence, that (T) . The remainder
of the paper deals with the determination of (T) in the case where 3 divides one of
the elements of Z

PROPOSITION 5.3. Let T {a, b, c} be a 3-set such that
(i) a+b=c;
(ii) a, b, c are pairwise relatively prime;
(iii) 31a or 31b or 31c;
(iv) a < b.

Let p=a+c or p=b+c and let t(p)="third of p"=[p/3]. Define S={i(b-a)+
kplk O, 1, 2, .} and set

(p)-

M=U
i=0

en Mp is an independent set in the graph G(T).
Proo We show first that each set S is an independent set in G(T). Let u, v S,

uv. Ifp=a+c, then u-vlp=a+c=2a+b, and ifp=b+c, then u-vlp=
b + c a + 2b. Clearly, then S is independent.

To complete the proof, it suces to show that S (S + aa + fib)= for all
a, fl {0, } and all j. We consider only the case where p a + c 2a + b; the other
case is entirely analogous. Suppose S (S + aa + fib) . Then there exists i, j, k,
with 0 i, j t(p)- such that

i(b- a)+ k(2a + b) =j(b- a)+ l(2a + b)+ aa + fib.
This implies that

a(-i + 2k +j-21- a) b(j + l- i- k + fl).

Since (a, b)= l, it follows that
(5.1) -i+2k+j-21-a=Ab,

(5.2) j + l- i- k + fl Aa,

for some integer A.
Equations (5.1) and (5.2) lead to

(5.3) 3(k-l)-a-fl= A(b-a)

(5.2) implies

(5.4) j-i= Aa + (k- l)- fl.
We proceed to multiply (5.4) by 3 and sustitute for 3(k-l) from (5.3) to conclude that

(5.5) 3(j- i) x (a + b) + 2#.
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We know that 1-t(p)<-j-i<=t(p)-l, and so 3-3t(p)<=3(j-i)<=3t(p)-3. Since
3 t(p) -< p, it follows that

(5.6) 3-p-<Ap+a-2fl_-<p-3.

We observe that in (5.5), the left-hand side is divisible by three and is nonzero.
On the right-hand side, the only values possible for a 2/3 are 1, 0, 1, -2, and therefore
A 0. But that with (5.6) leads to a contradiction and so Si, Sj are disjoint and their
union forms an independent set. Q.E.D.

TI-IEOREM 5.4. Let T {a, b, c} be such that
(i) a+b=c;
(ii) a, b, c are pairwise relatively prime;
(iii) 31a or 31b or 3lc;
(iv) a<b.

Then

Proofi The set

t(b+c) t(a+c))rt(T)-->max
b+c a+c

t(p)-i

Mp= U Si where S =SlH<n,r
i=0

and n mp for some m is an independent set in H(n, T). Therefore, /3(n, T)/n >-

m. t(p)/mp t(p)/p and so rt (T)=> t(p)/p. Q.E.D.
CONJECTURE 5.5. In Theorem 5.4, equality holds.

Acknowledgments. The authors are indebted to the referee for several most useful
suggestions for simplifying a number of theorems in this paper.
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ON GRACEFUL DIRECTED GRAPHS*

G. S. BLOOMt AND D. F. HSU

Abstract. A digraph D with e arcs is numbered by assigning a distinct integer value O(v) from
{0, 1,..., e} to each node v. The node values, in turn, induce a value O(u, v) on each arc (u, v) where
0(u, v) 0(v) 0(u) mod (e + 1). If the arc values are all distinct and nonzero, then the numbering is graceful.
A digraph is graceful if it has a graceful numbering.

Graceful digraphs are related in a variety of ways to other areas of mathematics. It is shown here that
the graceful numberings of certain classes of digraphs are characterized by the existence of particular
algebraic structures, including cyclic difference sets, sequenceable groups, (K, 1) complete mappings, and
(K, 1) near-complete mappings. Some digraph models of cyclic groups are examined here, and cyclic
neofields are shown to generate families of graceful numberings for the models.

Properties and examples of this new class of graph numberings are presented here. For instance, families
of graceful digraphs include certain orientations of cycles, paths, and the unions of cycles and paths, as
well as certain complete digraphs, wheels, windmills, and umbrellas. Techniques are developed by which

digraphs can be embedded as subgraphs of infinite families of graceful digraphs.
A variety of fundamental questions are posed and some conjectures advanced.

AMS(MOS) subject classifications. 05B10, 05B99, 05C20, 17D99, 20F99

1. Preliminaries and elementary observations. This paper is intended to introduce
some of the theoretical and applied aspects of graceful directed graphs to a variety of
specialists working in areas of algebra, graph theory, combinatorics, and number
theory. In consideration of this, more exposition and examples are presented than is
customary for a narrower technical audience.

In recent years considerable interest has developed in studying graph numberings.
For such numberings the nodes of an undirected graph are assigned values, which in
their turn induce values upon each edge as a function of the two values on the endnodes
of the edge. A wide variety of these numberings has been studied both for their intrinsic
mathematical interest and for their utility to an expanding range of applied fields.
Some indication of the variety of uses to which these graphs have been put can be
found in [B1], [BG1] and [BG2] which cite applications to radar pulse codes, x-ray
crystallography, circuit layout design, missile guidance, and numerical analysis, among
others. In addition, applications have been studied for communications loop addressing
[GP], radio astronomy [Be], sonar ranging [GT], coding theory [GS2], and broadcast
frequency assignments [CR], [RP] (this issue, pp. 507-518).

An undirected graph with e edges is gracefully numbered if each node v is assigned
a distinct value A(v) from the set {0, 1,..., e} in such a way that the set of edge
numbers equals {1,..., e} when edge uv is numbered by h(uv)=lh(u)-h(v)]. A
graph is said to be a graceful (undirected) graph if it can be gracefully numbered.
Examples of undirected graphs are shown in Fig. 1. The problem of characterizing
graceful graphs was introduced in [Ro] and [Go] and remains unsolved. Indeed, despite
considerable effort, it is still unknown whether all trees are graceful [B2]. Recently,
"harmonious" and "elegant" numberings of undirected graphs have been studied. In
these an edge is numbered with the modular sum of the values on its endnodes, see
[GS1], [GS2], [CHR], and [H2].
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Research grant 071225. This work was presented at the SIAM Second Conference on the Applications of
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27-29, 1983.
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undirected

directed

graceful not graceful

3 2 2 3

FIG. 1. A selection of graphs and digraphs classified as graceful or not.

One can obtain a graceful numbering for directed graphs analogous to that for
undirected graphs by defining an arc value as the simple difference of the values on
its endpoints, and by requiring that arc numbers be limited in value to the range of
the node numbers by using modular arithmetic. Using modular arithmetic also ties
graceful digraphs to a variety of algebraic problems of long standing, as will be seen
later in this paper. A "real world" application of graceful digraphs to a communication
network addressing problem is considered in [BH1].

A directed graph D with n nodes and e arcs, no self-loops, and no more than
one arc directed from any one node x to any other node y, is numbered by assigning
to each node a distinct element from the set Ze/l {0, 1,..., e}. An arc (x, y) from
node x to node y is numbered with O(x, y)= O(y)-O(x) mod (e+ 1), where O(y) and
O(x) are the values assigned to y and x. A numbering is a graceful numbering if all
O(x, y) are distinct. If a digraph D admits a graceful numbering, then D is a graceful
digraph. Figure 1 shows examples of graceful numberings of several digraphs.

Often it is convenient to consider graphs associated with a particular digraph D.
An undirected (simple) graph G IDI is said to be the underlying graph for digraph
D, if G has the node set of D and includes the edge xy if either (x, y) or (y, x) or
both belong to D. Because each edge of IDI can be oriented in one or both of two
directions in D, there are, at most, 3 digraphs associated with each underlying graph
IDI on e arcs. Each of these digraphs is an orientation of IDI, If no pair of edges (x, y)
and (y, x) both belong to D, then D is a simple orientation of IDI.

Given a gracefully numbered undirected graph G with node numbering A (x) for
node x, it is trivial to assign a simple orientation that produces a graceful digraph D
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with G as its underlying graph. Merely orienting each edge of D to point toward the
larger node value accomplishes this.

Although a graceful graph always gives rise to a graceful digraph, an ungraceful
graph may underlie a graceful directed one; moreover, not all orientations of an
undirected graph are graceful, regardless of whether the underlying graph is graceful
or not. Figure 1 demonstrates the possibilities.

A graceful orientation of C4 is shown in Fig. 1, as is the gracefully numbered C4
trivially obtained from the illustrated graceful numbering of C4. Nevertheless, the two
other simple orientations of C4 cannot be gracefully numbered. C5 is not graceful and
neither is the unidirectional t5. C6 is not graceful, but its unidirectional orientation
is. Even the gracefully numbered two-edge tree has both graceful and nongraceful
simple orientations.

An undirected graph is termed digraceful if some orientation of its edges produces
a graceful directed graph. It was previously seen that every graceful graph and some
nongraceful ones are digraceful by the "trivial orientation." Nevertheless, not every
graph is digraceful, i.e. has an orientation of its edges that yields a graceful digraph.
A class of nondigraceful graphs as noted in [De] is specified in Proposition 1.1. This
class includes C5; so it is not only the unidirectional orientation already discussed,
but every orientation of the edges, that is not graceful.

PROPOSITION 1.1. A graph with e arcs having even degrees at each node and e =- 1
modulo 4 is not digraceful.

Proof. The sum of the arc values is 1 + 2/... / (4a / 1) which is odd. On the
other hand, this sum is also equal to v[degin(v)-degout(v)]0(v) which is even.
Although arithmetic for these cases is being done modulo (4a / 2), "odd" and "even"
retain their meaning, and the impossibility of obtaining a numbering is established.

In addition to the gracefully numbered simple orientations of graphs, some
digraphs have arcs both from u to v and from v to u. Among these there is another
set of digraphs that are immediately gracefully numbered from a graceful numbering
of their underlying graphs. A symmetric digraph based on (underlying) graph G has
the same node set as G, but has arcs (x, y) and (y, x) replacing each edge xy of G. It
is easy to show the following result:

PROPOSITION 1.2. Ifgracefully labelled graph G has e edges, then G is graceful with
the same node labels.

A graceful digraph D does not have a unique graceful numbering, since adding
a constant modulo (e / 1) to all of the node numbers of a digraph preserves the arc
numbers and therefore generates a new graceful numbering of D. Graceful numberings
of the nodes of D, 01(V(D)) and O2(V(D)) are termed equivalent if OI(V(D))=-
02(V(D))/k (mod(e/ 1)). A set of (e/l) equivalent graceful numberings of D
is called complete. It is easily seen that a complete set of equivalent graceful number-
ings of C results from adding constants to the sequence of labels (0,4, 1,2)
or from (0, 4, 2, 3). It is useful to be able to choose a representative numbering from
a complete set of equivalent graceful numberings. The canonical representative grace-
ful numbering of a complete set of equivalent numberings will be chosen so that
the arc labelled e is directed from the node labelled 0 to the node labelled e, i.e.,
0(0, e)- e.

A further obvious but useful implication of equivalent graceful numberings is the
rotatability of node numbers. Any desired node number may be assigned to any desired
node of a graceful digraph by adding an appropriate constant. It is also important to
realize that not all graceful numberings of a digraph are equivalent, as is illustrated
in Fig. 2.



522 Go S. BLOOM AND D. F. HSU

FIG. 2. Two nonequivalent graceful numberings of a digraph.

The next two propositions of this section demonstrate how knowing one gracefully
numbered digraph is sufficient to determine other distinct graceful digraphs. For
example, if D is a digraph, its corresponding reversed digraph (-D) can be obtained
from D by replacing each arc (u, v) by its reversed arc (v, u). Clearly, if O(V) is a
graceful node numbering for D, then it is also a graceful node numbering for (-D).
These observations are immediate corollaries to Proposition 1.3, for which the following
definition is needed. Digraphs D1 and D2 with common underlying graph G are said
to be similar (or arc-pair similar) if there is an identical node numbering which is
graceful for both.

PROPOSIa’ION 1.3. Each digraph with e arcs having graceful node numbering O(V)
is a representative ofa family ofarc-pair similar digraphs containing no more than 2 re
distinct graceful digraphs, all having identically numbered nodes in the common underlying
graph.

Proof. For the given graceful digraph D with node numbering 0(V), pair two
arcs (u, v) and (x,y) that are numbered respectively by values k and -k=
e + 1 k mod (e + 1). Replace this pair of arcs by (v, u) and (y, x) to form digraph D’.
In D’, 0(v, u)=-k and O(y, x)= k. Thus, the set of arc numbers is unchanged by this
exchange. There are at most [e/2J pairs that can be reversed in this way to generate
new graphs that preserve arc numbers. Since each arc pair can take one of two

orientations, there may be formed from a given node numbering at most 2 re/2/ distinct
members of this family of graceful graphs. This upper bound is realized for digraphs
containing an even number of arcs and no symmetric arc pairs (u, v) and (v, u), and
having an underlying graph with identity automorphism group (which guarantees that
the reversal of any set of arc pairs gives a digraph not isomorphic to any other).

Note that nonequivalent graceful numberings of a digraph generate distinct
families of graceful digraphs. For example, the two numberings of digraph D in Fig. 2
belong to families, say, A and B, of similar digraphs with eight members respectively,
since three arc-pairs in each digraph can be reversed. For these two families, it is easy
to see that Af’)B {D, (-D)}. In Fig. 1 the two graceful orientations of C4 can be
obtained from one another by applying Proposition 1.3, as can the two graceful
orientations of the three-point path.

Another transformation of one graceful numbering into another follows.
PROPOSI-rION 1.4. If k is relatively prime to e + 1, and if 0 is a graceful numbering

of the nodes of a digraph D, then 0’= kO is a graceful numbering of the nodes of
digraph D.

For some D, 0, and k, the graceful numberings 0 and 0’ are equivalent, and k is
called a multiplier of 0.
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Question 1.5. For what values of k is 0’ equivalent to 0 for a given digraph D?
In this section, three of four general methods for obtaining graceful digraphs have

been introduced: (1) Graceful numberings of undirected graphs. (2) Ad hoc graceful
numberings of particular digraphs (or families of digraphs). (3) Modification (or
extension) techniques to generate new graceful digraphs from ones already found The
fourth general method to obtain graceful digraphs is demonstrated in 4, where
algebraic structures produce graceful numberings for certain digraphs. Alternately,
one can say that that graceful digraphs furnish models for algebraic structures.

2. Complete symmetric digraphs. The only graceful complete (undirected) graphs
are those with no more than four nodes. Nevertheless, many complete symmetric
digraphs are graceful. This is best understood by associating these digraph numberings
with a well-studied but incompletely solved problem in combinatorial theory.

PROPOSITION 2.1. /n has a graceful numbering if and only if there exists a cyclic
v, k, A )-difference set with v n2_ n + 1, k n, and A 1.

Proof Suppose there exists a graceful numbering {a, a2," "’, an} of/n. Since
there are n(n- 1) arcs in/n, the arc numberings are computed modulo n(n- 1)+ 1
n2- n + 1. Consider D {al, a2, , an} as a subset of Zv, v n-- n + 1. The graceful-
ness of this arc numbering implies that, for each nonzero residue x modulo v, there
exists a unique pair of subscripts i,j such that ai-aj =- x (mod v). Thus, D satisfies
the conditions to be a cyclic (n2-n + 1, n, 1)-difference set. The converse of the proof
is similar, and follows by assigning elements of the difference set to the nodes of
The condition for D to be a difference set implies the gracefulness of the arc
numbers.

Giving a complete list of the values of n for which K, is graceful is not yet
possible. The well-known Singer theorem (see, e.g. [Ba]) asserts that there exists a

cyclic (v, k, 1)-difference set when k- 1 is any prime power, but the conjecture remains
unresolved that no (A 1)-cyclic difference sets exist for other values of k. (See [Ba]
and [St] and their references.) Consequently, despite the conjecture for the necessity
of the condition the following is the strongest statement that can currently be made.

PROPOSITION 2.2. If n- 1 is a prime power, then n is graceful.
Examples of graceful numberings of complete digraphs are listed here: K4, Ks,

and /9 can respectively be gracefully numbered with {1, 2, 4, 10}, {0, 3, 4, 9, 11}, and

{0, 1, 3, 7, 15, 31, 36, 54, 63}. Note that 3 is a multiplier of/4, and that a partial answer
to Question 1.5 is given by Hall’s multiplier theorem (see, e.g. [Ba]) which implies that
if 0 is a graceful numbering of/p-+l, then p is a multiplier for 0.

3. Trees. In Fig. 1 it is shown that one orientation of the tree with three nodes is
graceful and that the other two are not. In this section what is known about graceful
directed trees is summarized and a conjecture is advanced.

The most studied problem for graceful undirected graphs is to determine if all
trees are graceful. A history of this problem is given in [B2]. As was explained there,
it would not be difficult to number any tree gracefully, if graceful trees could be
renumbered gracefully so that any specified node could be labelled by zero. This would
allow an inductive growing of graceful trees, since a new arc and node can be attached
to the node labelled zero without disrupting the numbering of any other nodes or arcs.
Unfortunately, as was shown in [CH] such rotatable numberings cannot always be
accomplished. On the other hand, the graceful numberings of directed graphs are
rotatable as explained in 2. However, adding a new node and a new arc changes the
modulus and the way arithmetic is performed in the expanded digraph. Unlike the
case for undirected graphs, attaching an arc to any node (even zero) in a directed
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graph generally causes arc values to change even if the arc endnodes retain their
original values. Thus, for quite different reasons, it is apparently as difficult to grow
all graceful directed trees by adding one branch at a time as it is to grow their graceful
undirected counterparts.

Beyond the facts that graceful trees trivially give graceful directed trees, and that
all trees similar to these are graceful, little is known about general, arbitrarily oriented
trees. Only one infinite class of graceful directed trees has been characterized. A directed
path is unidirectional if all internal nodes have indegree outdegree 1.

PROPOSITION 3.1. The unidirectional path n on n nodes is graceful if and only if n
is even.

Proposition 3.1 was proved in [BH1] in which the values for consecutive nodes
a, a2," , an were given as O(a) (-1) i+ [i/2]. A nonequivalent graceful numbering
of a unidirectional path can also be generated by the process of sequencing the elements
of a sequenceable cyclic group.

The procedure for using sequenceable cyclic groups to generate graceful number-
ings for the unidirectional path can be viewed as constructing a special class of "ruler"
using the additive group of integers modulo n. First, segments of the intended ruler
are created of lengths 1,..., n- 1, i.e. their lengths are equal to the nonzero elements
of Zn. These segments are then put into a linear sequence to form a ruler of length

n--I /,/2i--o i= -n)/2, such that the set of n- 1 measurements made between one desig-
nated end node of the ruler and each of the other n-1 ruler marks are all distinct
when calculated modulo n. Thus, if the sequence of "segments" is So 0, s,..., s,_
and measurements do, d,. ., dn_ are made from endnode do 0, then Zn is termed
sequenceable if {s} {di Yk=O Sk (rood n)} Zn. This is equivalent to saying that for
a sequenceable group, assigning di as the node number of the ith node, gives {s} as
the distinct arc numbers and automatically yields a graceful numbering.

The following is an alternate way of stating Proposition 3.1.
PROPOSITION 3.1’. /5, is graceful if and only if Zn is sequenceable.
For an excellent current survey of sequenceable groups, see [Ke].
Example 3.2. {So, s, , s7} {0, 1, 6, 3, 4, 5, 2, 7} is a sequencing of the cyclic

group Z8. Consequently, {do, d, , d7} {0, 1, 7, 2, 6, 3, 5, 4} is used to label the nodes
of/38. (In addition to the unidirectional /58 being graceful, so, clearly, are the seven
arc-pair similar orientations of its underlying graph P8.)

Although little specific is known about the graceful labelling of directed trees, the
following conjecture seems plausible.

CONJECTURE 3.3. All trees are digraceful.
This is a weaker conjecture than the one that claims that all undirected trees are

graceful. If the stronger conjecture holds, then Conjecture 3.3 is true by using the trivial
orientation of each graceful tree to produce a graceful directed tree. Even if the graceful
tree conjecture is false, it is nevertheless possible for nontrivial edge orientations of
ungraceful trees to give graceful digraphs.

4. Unions of unicycles. Unidirectional cycles (or unicycles) are connected digraphs
in which every node has indegree--outdegree-1. Some unicycles are graceful and
some are not, as shown in Fig. 1. Moreover, some collections of disjoint unicycle
components are graceful as is illustrated in Fig. 3, and some are not as is indicated in
Proposition 4.1 which was proved in [BH 1].

PROPOSITION 4.1. For a union of n >- 1 unicycles to be graceful, it is necessary that
the total number of arcs in the digraph be even.

The remainder of this section specifies the relation between graceful unicycles
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and complete mappings by establishing the relation of each to a particular class of
permutations.

Example 4.2. If arc numbers are ignored, Fig. 3 can be regarded as the permutation
(1 8 4)(2 3 6 5 7) of Z9\{0}.

FIG. 3. A graceful numbering of unicycle components, 3 U 5, using Zg.

DEFINITION 4.3. For a specified integer h and sequence K {k, k2,... k,} in
which the ki are integers such that i= ki h (n- 1), a (K, A) complete mapping is an
arrangement of h copies of the nonzero elements of Z. into cyclic sequences of
lengths k, k2," ’, kt, say, (gg2... gk,)(g21922 g2k2) (gtgt2 gtk,), such
that the following distinct difference property holds. For 1, 2, , and gi,(k+) gi.l,
the set of differences { g,j+- gi,j} comprises h copies of the nonzero elements of Z..

In other words, in the special case for h- 1, a (K, 1) complete mapping is a
permutation of Z.\{0} with cycles, in which the set of modular differences between
successive elements in the cycles equals Z.\{0}. (In Fig. 3 it is shown that Example 4.2
is a permutation which satisfies the distinct difference property.) In fact, when h 1,
the distinct difference property is equivalent to requiring that all edge numbers be
distinct in the graphical representation of the permutation cycles. Consequently, as a
direct result of the definitions, the following characterization holds:

k. where t ki e, exists ifPROPOSITION 4.4. A graceful numbering for
and only if there exists a (K, 1) complete mapping ofZe+ where K {k, ., k,}.

Study of complete map.pings gives the following results"
(;, the union of disjoint identical unicycles on nPROPOSITION 4.5. Let G

nodes. G is graceful if (a) t= 1 and n is even; or if (b) t=2; or if (c) n =2 or n=6.
Moreover, G is not graceful if tn is odd.

Proof. These have been proved in the context of generalized complete mappings
(which include (K, A) complete mappings) and these proofs are referenced rather than
repeated here. Several researchers including the second author of this paper [H 1] have
independently proved (a). The proof for (b) is in [FGT]. For (c), the case for n 2 is
immediately demonstrated by letting the node numbers for the 2-cycles be (0, e),
(1, e-1),..., (t-1, + 1) where e 2t and the arc numbers are calculated in Z2,/.
The case for n 6 was demonstrated in [HI]. The ungraceful result for G is a special
case of Proposition 4.1.

Example 4.6. (1 6 5 7)(2 8 3 4) is a (K, 1) complete mapping of Z9 where K {4, 4}.
Hence, (1 6 5 7) and (2 8 3 4) are cyclical node sequences that give a graceful numbering
of the unidirectional t4 U 4.

This section ends with two explicit constructions for gracefully numbering sets of
isomorphic cycles. In the following let (x, y) denote the greatest common divisor of x
and y.

PROPOSITION 4.7, Let a Z.\{O} such that a and both (a, n) 1 and (a 1, n)
1. Then a permutation a(n)= an on Z.\{0} provides a graceful numbering of the digraph

U where the unicycle length is the least integer in Zn\{0} such that a= 1 and
where the number of unicycles is n )/i.
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Proof. The nodes of the unicycles of digraph G are cyclically numbered with
(1 a ae. ai-)(x2 ax2 a2x2 ai-x) (x, ax, a2x, a’-lx,) where x, is
any node number not listed in any of the previous j- lists of unicycle node numbers.
Consequently, ax-x= a(x)-x. Since (a-l, n)= 1, the arc numbers are all distinct
and the numbering is graceful. 0

Proposition 4.8 is an immediate corollary of Proposition 4.7.
PROPOSITION 4.8. Let p be an odd prime. Then permutation a(n)= an on Z,\{0}

for a {2, 3,- ., p- 1 } provides a graceful numbering of digraph G , Ci where is

the order of a and p 1)/i.
Examples 4.9. For p 7, graceful numberings are generated for unidirectional C6,

23, and 32 as follows: For a=2, (124)(365); for a=3, (132645); for a=4,
(1 42)(3 56); for a=5, (154623); for a=6, (16), (2, 5), (3,4).

In 5 it is observed that some unions of cycles and paths are graceful; then in
6, graceful digraphs are discussed more generally as models for algebraic structures

built upon cyclic multiplicative groups.

5. Collections of unicycles and paths. Figure 4 shows a gracefully numbered
three-component digraph consisting of two unidirectional 3-cycles and a single edge
path. In a manner similar to that of the previous section, the graceful unions ofunicycles
and unidirectional paths can be characterized.

Since the components in Fig. 4 are not all cycles, Fig. 4 cannot be viewed as
representing a permutation in the way that Fig. 3 was; however, it is almost a permuta-
tion. That is, the mapping is almost bijective, going from Z8\{4} to Z8\{0}. The "almost
permutation" character of Fig. 4 corresponds to the following algebraic structure for
the case A 1.

5 3 6

FIG. 4. A graceful numbering of unidirectional 2 [..J/5 using Z8.

DEFINITION 5.1. For a given integer A and sequence K={k,k2,’. ",kr;
h, h2,"’, hs} such that the hi and kj are integers satisfying i-- ki+j=i h= An,
a (K, A) near-complete mapping is an arrangement of A copies of the elements of Z,
into r cyclic sequences with lengths k, , kr and s sequences of lengths h, , hs,
say, (g gk,)""" (gr’’’grkr)[g’l’’" gk]’’" [g’s’’" g’sks], such that the follow-
ing distinct difference property holds for i=l,2,...,r, j-l,2,...,s, and
gi,(k,+l) gi., the sets of differences {gi,j+l gi,j} and {g’i,j+l g’i,j} together
comprise A copies of Zn.

The correspondence between near-complete mappings and graceful digraphs is
made explicit in Proposition 5.2.

PROPOSITION 5.2. Let n total number of nodes and e total number of arcs in a
digraph, a graceful numbering of ([.J r= k,) [-J ([-J ]=,-hj), where ,=, k, + ,j=i hj n
e + s, occurs ifand only if there exists a (K, 1) near-complete mapping ofZn Ze+s where
K {k,..., kr; ht,’", h}.

The proof of 5.2 is similar to that of Proposition 4.3.
PROPOSITION 5.3. A graceful digraph D comprising a collection of both unicycles

and unidirectional paths must contain exactly one path and contain an odd total number
of arcs.
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Proof. For a digraph with n nodes and e arcs to be graceful, it is necessary that
n-< e+ 1. Consequently, no more than one path can be present. Proving that the
cardinality of the arc set must be odd is accomplished by establishing a contradiction
for the sum of the arc values when the cardinality is even. If D ((.J__j (n,)(-J/3k is
gracefully numbered by 0 so that O(vo) represents the node value of the jth node in
cycle and 0(vj) represents the node value of the jth node in the path, then the sum
of the arc values can be written as

E (u,v)= E (O(u)-O(v))
(u,v) (u,v)

h. 12
i=lj=l j=l

For the ith cycle, the inner sum is

L (O(Ui,j+I)-- O(ui,j)) O(Ui,hi+l)-- O(U,,I)"--0.

For the path on k nodes, a similar cancellation of node numbers leaves only the first
and last values, O(uk)-O(ul), in the sum. Consequently, for all of D,

L O(U, )) O(Uk. 0(Ul).
D

On the other hand, the sum of arc labels in D is the sum of the nonzero elements of
Z,, i.e.

YO(u,v)=Yi=n(n-1)/2 (mod n).

If the number of ares, e, in D is even, then n is odd, which implies that (n- 1)/2 is
an integer. Thus, n(n- 1)/2-=0 (mod n), which implies that O(u)-O(u)=O (mod n).
Consequently, when e=even, 0(u)= 0(Ul), which violates the requirement for dis-
tinctly numbering nodes in graceful numberings. The contradiction is established; thus
for graceful D, n cannot be odd and e cannot be even. (Note that when e is odd, this
contradiction does not occur.)

Example 5.4. A (K, 1) near-complete mapping of Z14 for K {3, 4, 5; 2} is (1 2 4)
(6 10 8 11)(3 9 5 13 2)[0 7] which provides a graceful numbering for the unidirectional
components in t LI 4 (.J s -j Jt2.

The close relation between structures discussed in this section and in 6 has been
studied algebraically in [HK1] and [HK2]. It has been useful to have the following
definition.

DEFINITION 5.5. A generalized complete mapping is either a (K, 1) complete
mapping or a (K, 1) near-complete mapping.

A collection of generalized complete mappings can be found in [HK2].

6. Digraph models for cyclic groups and other structures. In 3, 4, and 5 the
application of certain algebraic structures for generating graceful digraphs was made
evident. Moreover, as Proposition 5.3 showed, certain algebraic facts may also be
gleaned from graceful digraphs. In this section some additional connections are made
between graceful digraphs and Latin squares, Abelian groups, Galois fields, and
neofields. More extensive expositions of the relations among the algebraic structures
themselves can be found, for example, in [HI], [HKI], and [HK2].

Let Hn be the cyclic multiplicative group of order n, Hn { 1, a, a 2, a n-l} with
generator a. Augment this group with a zero element 0 (x, 0=0, x=0) to form
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N,+ H, tA{0}. A permutation Zrl is defined on N,+, in which, for reasons of
convenience, r(0)= 1. The permutation can be represented as a digraph which is
termed the unit-addition digraph A for (N,+, zr). Figure 5 illustrates the unit-addition
digraphs for Examples 6.1-6.3.

Example 6.1a. On N8
0 1 a a2 a a4 a a6

1 0 a2 a4 a6 a a a

Example 6.lb. On N8
0 1 a a2 a a4 a a6

1 0 a2 a a a a6 a4

Example 6.2. On N9
x 0 1 a a2 a a4 a a6 a7

1 a4 a6 a2 a2 0 a a7 a

Example 6.3. On No
x 0 1 a a2 a a4 a a6 a7 a8

1 0 a a a6 a a7 a a2 a4

A second operation, addition, is defined upon N,+ in terms of the permutation
for x N,+, l+x r(x). It is required that x(y+z)=xy+xz and (y+z)x=yx+zx
for x, y, z Nn+; but no requirements of commutivity or associativity are made. These
relations allow the calculation of addition tableaux for (Nn+, +), as shown for
Examples 6.1 a and 6.1 b.

0

a
a
a
a
a
a

Example 6.1 a Example 6.1b

0 a a a a4 a a + 0 a a a a4 a a

0 a a a a a a
0 a a a a a a

a a 0 a a a a
a a 0 a4 a a a
a a4 a a 0 a a
a a a a 0 a a
a a an a a a 0
a a a a a a 0

0 0

/;/2
a
//4
a
//6

a a a a4 a a
0 a a a a a a

a a 0 a a a a
a a a 0 a4 a a
a a a 0 a a a4

a4 a a a a 0 a
a a a a a a 0
a a a a4 a a 0

The next proposition highlights a graph theoretical technique for expediently
calculating and representing the rows of the addition table for any (Nn+,+).

PROPOSITION 6.4. Given a cyclic group (H., .) of order n with generator a, the kth
row of the addition table for (N.+, +) corresponds to the labelled permutation digraph
Ak generated by multiplying the node values ofAk by a k.

This proposition is proved by exhibiting the correspondence between the digraph
mapping and the algebraic relations.
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6.1a

6.2

a a a

0 a a a a

a a

6.1b

6.3

(i

a a

a a a a

FIG. 5. Labelled unit-addition digraphs (A) representing the permutations used in Examples 6.1-6.3.

Proof. Let 7ri(x) indicate the image of x in the labelled digraph permutation Ai.
In Ak the image of a under 7rk is

7rk( a) ,rrk( aka-k) ak,a.( a-k),
that is, in the kth permutation graph the mapping a - 7rk(aj) comes from multiplying
the node labels in the mapping aj-k - 7r(aj-k) given in A by a k. The correspondence
to the proper result in the addition table is a direct result of (either one of) the
distributive laws of multiplication over addition, e.g. a k + a ak(1 / aj-k)
akzr(aJ-’). [3

Example 6.1a continued. The ith entry in the kth row of the addition table, a k + a
for 0 <= k =< 6, can be read directly from Ak as shown in Fig. 6. Each of the node values
in Ak is a k times the unit-addition permutation A1 shown in Fig. 5.

l a4+k a 2+k a 5+k a6+k

FIG. 6. The labelled digraph A showing the result ofadding a to the elements ofNsfrom Example 6.1a,
i.e. a + u v for arc (u, v).

Examples 6.1a and 6.1b are also of interest because of their differences, as well
as because of the similar way that their addition tables can be generated graphically.
Since no element of N8 in Example 6.1a is repeated in any row or column of the
addition table, that table is a Latin square (written in normalized form with the first
row equaling 0, 1, a, a2, a6). The addition table of Example 6.1b is not a Latin
square. In the remainder of this section, the significance for graceful digraphs of the
first of these two examples, 6.1a is explained.

The structure (Nn+, *, /) whose addition table is a normalized Latin square is
called a cyclic neofield.

DEFINITION 6.5. A neofield (S,., /) consists of a set S upon which two binary
operations / and are defined provided that (a) the addition table for (S, /) can be
written as a normalized Latin square; (b) (S\{0}, .) is a group; and (c) multiplication
distributes over addition on both left and right. A neofield is cyclic if (S\{0}, .) is a
cyclic group.
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A neofield is a finite field in which the associativity and commutativity of addition
are not required. Cyclic neofields have been characterized in [HI].

Using (K, 1) complete mappings and (K, 1) near-complete mappings, it was shown
in 4 and 5 respectively that graceful digraphs could be generated. Proposition 6.6
in turn implies that neofields generate a class of gracefully numbered digraphs. It
should also be noted that Galois fields are a class of commutative cyclic neofield.

The salient property that enables cyclic neofields, neofields, and the generalized
complete mappings (that the former structures imply) to generate graceful digraphs is
the "distinct difference property" (introduced in 5) that is inherent in their permuta-
tion (or row addition) labelled digraphs. It is the lack of this property that prevents
Example 6.1b from generating a Latin square and hence a cyclic neofield. A summary
of the interrelationships between graceful digraphs and cyclic neofields follows.

PROPOSITION 6.6. Let H, be a cyclic group of order n. Let N,+, 7r, 7"t’k, A, Ak be
defined as before. For anyfixed k, let Vo be the node with label 0 in Ak and let A be the digraph
Ak with its node labels removed. LetD A Vo. Then 7r defines a cyclic neofield N+, ,, +)
with N,+ H,, [_J {0} if and only if the digraph D is graceful.

Proof. Suppose 7r defines a cyclic neofield (N,+,,, +) with N,+ H, [_J {0}. By
Definition 6.5 7r generates a normalized Latin square addition table. By Proposition
6.4, it suffices to show that the digraph D generated by A is graceful.

n--lThe labelled unit-addition digraph AI has node labels 0, 1, a, a, ., a Hence
D has n nodes and n- arcs. Suppose D has the same labelling as A Label the arc
(a’, aj) as aj-’= 7r(ai)*a -i. If two arcs (a , aj) and (a k, a h) have the same labelling,
i.e., 7r(a’).a-’ 7rl(ak).a -k, then (1 + ai),a-i=(1 + ak)*a -k.

Furthermore, by the distributive law:

+a= a.(a+ ak)*a -k (a i+a+k)*a -k a -k+a .
Since the addition table is a Latin square, a -k= 1. That is a i= a k. Therefore, D has
distinct arc labellings and is graceful with respect to the cyclic group H,. Hence, it is
graceful.

The proof that a graceful digraph yields a cyclic neofield follows from reversing
the above argument.

Examples 6.2 and 6.3 (continued). A transformation of the latter two digraphs of
Fig. 5 to the gracefully numbered digraphs in Figs. 3 and 4 can be achieved by first
eliminating the nodes labelled zero from the original digraphs and then by assigning
the exponents of a to be the new node numbers.

A corollary of Propositions 6.4 and 6.6 follows.
PROPOSITION 6.7. The n labellings of the labelled digraph A generated from the n

rows of a cyclic neofield addition table based on Hn correspond to the set of n equivalent
graceful numberings ofA- Vo.

The correspondence established in 4, 5 and 6 between algebraic structures and
graceful digraphs generates a plethora of questions concerning how these topics can
yield mutual insights. Nevertheless, the set of digraphs contributing to this correspon-
dence is limited. In the next two sections, methods of generating additional graceful
digraphs are presented.

7. A graceful supergraph construction. To extend the class of known graceful
digraphs, it is natural to seek methods for building larger graceful digraphs from
smaller gracefully numbered ones. Figure 7a shows such a construction in which arcs
are connected from two isolated nodes to a gracefully numbered unidirectional path
P8 (numbered as in Example 3.2) to form the illustrated gracefully renumbered digraph
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/58 + {u, v}. In general, the notation D+ K, specifies the digraph obtained by directing
arcs from each of m isolated nodes to each of the nodes of a digraph D. For any
digraph obtained by this construction, the following holds:

PROPOSITION 7.1. If D is a graceful digraph with n nodes and n-1 arcs, then
D + K is graceful for every finite m.

Proof. Let 0 be a graceful numbering of D, a graceful digraph with n nodes
ul,’", u,, and n-1 arcs. Designate the nodes of K by vl,..., v,,. Number the
n + m nodes of the digraph E D + K, by q, as follows"

(i) q,(u,) (m + 1)0(ui),

(ii) q(v,) i,

Since the total number of arcs in E is (n- 1)+ mn (i.e. the number of arcs in D plus
the new, connecting arcs), arithmetic in E is done in Z,/,,,. (Inasmuch as the node
numbers assigned in (i) are bounded above by n + mn, modular arithmetic is not needed
to compute the node values.) To prove that q is a graceful numbering, it is necessary
only to show that the n + m node values are distinct and that the (n + 1)+ mn arc
values comprise Z,+,,,\{O}.

Clearly, the node numbers in E are distinct, since (1) the nodes of D are numbered
by distinct, constant multiples of their value in D, and (2) the node numbers of K,
are the distinct, positive integers {1, 2,. , rn}, each of which is less than the nonzero
node values of D.

The numbers on arcs in E can be directly calculated. For convenience, they can
be viewed relative to (rn + 1) as follows" (a) For arcs in the D subgraph of E,

q,(u,, u) q,(u)-

=(m+ 1)O(uj)-(m+ 1)0(u,)

=(m+ 1)[O(uj)-O(u,)]

=0 mod (m + 1).

Thus, calculating in Z,m+), the arcs of D are numbered with the n- 1 distinct nonzero
multiples of m + 1. (b) For arcs emanating from node vi,

q(v,, uj)=d/(uj)-q(v,)=(m+l)O(u)-i=--i mod(rn+l).

That is, in Z,,,+a) these n arcs bear the n distinct values (m + 1)-1, 2(m + 1)-i,.., n(m + 1)- i. Since these values are distinct for each i, 1 =<i=< m, all arc numbers
are distinct and E is graceful. [3

Figure 7b illustrates this construction used )n the disconnected grace,fully num-
bered digraph of Fig. 4 to produce a gracefully numbered (2C3 t_J P2)+ K. Because
the graceful numbering of E used in the previous proof puts the arc labels of subgraph
D in a congruence equivalence class distinct from the other arcs, it is possible to
reverse the direction of all the arcs in E that are not in D to obtain an arc-pair similar
digraph which by Proposition 1.2 is also graceful. Thus, if the notation (D+K)’
specifies the digraph obtained by directing arcs to each of rn isolated points from each
of the nodes of a digraph D, the following proposition holds:

PROPOSITION 7.2. If D is a graceful digraph with n nodes and n-1 arcs, then
D + K)’ is graceful.

This construction is applied and extended in 8.
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23 I1

22 I0

(a) Z23

14

15 7 11 13 3 9 5

(b) Z,6

FIG. 7. Two graceful digraphs determined by joining isolated points to each node of an already graceful
digraph for which n e + 1.

8. Other families of graceful digraphs.
A. Directed windmills. An undirected windmill graph comprises n-cycles joined

at exactly one node and is designated (t)C,. A study of graceful windmills was made
in [Be]. The gracefulness of one digraph family for which windmills are the underlying
graphs is considered here. Recall that C3 represents a unicycle of length 3.

PROPOSITION 8.1. The unicyclic windmill digraph (t)C3 is graceful if and only if
is even.

Proof. If is even, say 2s, then (t)C3 contains 6s arcs to be numbered with
{1,..., 6s}. It is known (e.g. see [HI]) that Z6s/l\{0} admits a partition into s sets of
the form {x, y, y- x, -x-y, x- y}. Each of these sets will number the arcs of 2 "vanes"
of the windmill, when the 5 nodes are numbered as shown in Fig. 8. The node assigned
zero in this numbering serves as the common node for each pair of vanes. Thus, the
s distinct sextuples number the 6s arcs of (2s)C3 when the 4s + 1 nodes are numbered
as indicated. Hence, this numbering is graceful.

-Y x

FI. 8. Paired vanes of a indmill graph.

If is odd, say 2s + 1, there are 3t 6s + 3 arcs. The sum of the arc numbers is

6s+3., i=(6s+4)(6s+3)/2=(3s+2)(6s+3).
i=l

The modular sum for this digraph with 6s + 3 arcs is taken in Z+. Thus,
6+3

2 i---(3s+2) mod(6s+4).
i=1

However, each arc lies on a unicycle, around which the sum of arc numbers is zero.
Since 3s + 2 0 rood (6s + 4), there can be no graceful numbering of windmills bearing
an odd number of triangular unicyclic vanes.
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B. Directed wheels. An undirected graph consisting of a node (the "hub") joined
to each node of a cycle (the "rim") is termed a wheel. It was shown in [Fr] and [HoK]
that all wheels are graceful and, hence, digraceful. Here it is shown that certain
nontrivial orientations of wheels are graceful.

A directed wheel is. termed outspoken if all spokes point out from the hub to the
rim and inspoken if all spokes point from the rim toward the hub. If the rim of a
directed wheel is a unicycle, the wheel is called unicyclic.

PROPOSITION 8.2. An inspoken unicyclic wheel on n nodes is graceful if and only if
the outspoken unicyclic wheel on n nodes is graceful.

Proofi This corollary to Proposition 1.3 results from noting that the outspoken
unicyclic wheel ff’n has the inspoken unicyclic wheel as its corresponding reversed
digraph (-Wn). l-1

PROPOSITION 8.3. Let p be an odd prime number and a be a primitive element of
Zp. If a2-1 =-a2k+ (mod p) for some k, then the outspoken and inspoken unicyclic
wheels I;Vq and ff’q are graceful for q (p- 1)/2.

Proofi Since a is a primitive element of Zp, Zp\{0} {1, a, t2, aP-3}. Zp\{0}
can be partitioned into its quadratic residues R {1, a2, O4, OP-3}, and quadratic
nonresidues Rc= {a, O 3, a 5, oP-2}. Number the unicyclic rim of Wq with the
successive powers of a2 and the hub with zero. Then the spokes take the quadratic
residues as their values. Since O2- 1 -= o2k+1E R c, and O2i+2-- t2i-" O2i(O2-1), the arcs
on the rim are numbered with

{gg2i+2__ O2i" 0, 1," , q- 1 and ap-= 1} R c.
Since the arcs of ff’o take all values in Zp, this is a graceful numbering of fro. By

Proposition 8.2 -Wq is also graceful.
Examples 8.4. Listed in Table 1 are all rim number sequences for gracefully

numbered outspoken and inspoken unicyclic wheels obtained from the quadratic
residues as indicated in Proposition 8.3. The outspoken rim number sequence is read
left to right and the inspoken rim number sequence is read right to left. Zero numbers
the hub in all cases.

TABLE

II p Ol2-1 ada (mod p) rim sequence (quadratic residues)

2 5
3 7
5 11

17

9 19

11 23

22-1 3-= 23 4
52-1-= 3-= 55 4 2
62-1 2-= 69 3 9 5 4
82-1 8-= 81 9 4 3 5
52-1-= 7-= 55 8 13 2 16 9 4 15
122-1-= 7-= 127 8 13 2 16 9 4 15
72-1-= 14-= 77 15 4 9 16 2 13 8
102-1-= 14-= 103 15 4 9 16 2 13 8
22-1 3-= 213 4 16 7 9 17 11 6 5
32-1 8-= 33 9 5 7 6 16 11 4 17
152-1-= 15-= 151 16 9 11 5 4 7 17 6
102-1-= 7-= 1021 8 18 6 2 16 13 12 4 9
112-1-= 5-= 115 6 13 9 8 2 12 3 18 16
142-1-= 11-= 143 12 6 3 13 18 9 16 8 4
152-1-= 17-= 153 18 2 13 4 3 8 6 16 12
192-1-= 15-= 197 16 3 2 9 6 4 18 12

3
4
2
9

8 13

Some rim sequences arising from Proposition 8.3 meet other conditions.
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PROPOSITION 8.5. Let p be an odd prime number, let q=(p-1)/2, and let a be a
primitive element ofZp. Ira2-1 =-a 2k (modp) for some k and ifp=-3 (mod 4), then the
inspoken and outspoken wheels Wq are graceful.

Proof. The nodes on the rim of the inspoken wheel are numbered with successive
powers of a2. For the arcs numbered this way, the arc numbers are themselves the
quadratic residues of Zp. Since (--1)--ot(P-l)/2=--O2i+l (modp) for some i, if p---
3 (mod 4), the arc numbers for inward directed spokes are the quadratic nonresidues
of Zp. Proposition 8.2 indicates that reversing all arcs in this numbered digraph generates
a gracefully numbered outspoken unicyclic wheel.

The node sequences in Examples 8.4 for n 3, 5, 19, 23 all can be determined
from Proposition 8.5. The condition p-= 3 (mod 4) in Proposition 8.5 is essential to
disallow node sequences consisting of quadratic residues that do not give graceful
numberings. Ruled out, for example, is the sequence 4 3 12 9 10 1 for n 6 (p 13)
where 22 1 3 -= 24 and 1 12 --- 26 (mod 13).

Unicyclic wheels for which p 2n + 1 is not prime can also be graceful.
Example 8.6. Outspoken wheels W4 and W7 can be gracefully numbered by

numbering the hubs with zero and by assigning the following sequences to the rims
respectively: 3 8 6 1 and 3 8 7 11 9 6 1. The corresponding inspoken numberings
use these sequences from right to left.

For n -< 11, all unicyclic wheels W, are known to be graceful except for n 6 and
n 10. Can graceful numberings for these be found? And, more generally, will the
results for unicyclic wheels be as straightforward as for undirected wheels, that is, is
the following conjecture true?

CONJECTURE 8.7. All unicyclic wheels are graceful.

C. General construction techniques. In [BH1] strict bounds were determined for
the number of arcs that are required in a graceful digraph that embeds a graceful
digraph augmented by a pendant arc.

Different graceful superdigraphs of an arbitrary graceful digraph D are formed
by using Proposition 7.1 and the node deficiency of D, d(D)= e/ l-n, where n and
e respectively designate the number of nodes and arcs in D. (1) Gracefully number
the nodes of D with n values from the set {0, 1, , e}; (2) augment D with d isolated
nodes to which the remaining e+l-n values of {0, 1,..., e} are assigned. The
new graceful digraph contains D as a gracefully labelled induced subgraph; (3) now
connect m new nodes to the augmented D as described in Propositions 7.1 and
7.1’.

PROPOSITION 8.8. A graceful digraph D with n nodes and positive node deficiency
d can be embedded as a subgraph in a connected graceful digraph D’-
D 1,3 K d) + K c’,, with n + d + 1 nodes.

A corollary to this proposition concerns outspoken (or inspoken) umbrella digraphs,
0n (Cn t_J K1) + K1, which are outspoken (or inspoken) wheels with one additional
outwardly (inwardly) directed arc from (toward) the hub. Since a cycle has node
deficiency one, the union of an isolated node with a gracefully labelled cycle allows
the application of Proposition 7.1 (7.1’) as indicated.

PROPOSITION 8.9. A unicyclic outspoken (or inspoken) umbrella digraph Un is
graceful if n is even.

Since for odd n, Cn is not graceful, the construction in Proposition 8.9 does not
apply to umbrellas with odd n.

Question 8.10. For odd values of n, is Un graceful (or does Proposition 8.9
completely characterize graceful unicyclic umbrellas)?
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9. Concluding remarks. Graceful digraphs provide a plethora of possibilities for
further exploration. For example, we have shown [BH2, BH3] that graceful digraphs
are characterized by a canonical form of their adjacency matrices. Moreover, a subset
of these matrices give solutions to a constrained "n-queens" problem. We have also
shown that graceful digraphs generated classes of combinatorial designs [BH4]. There
are also possibilities to loosen constraints in investigating graceful digraphs. For
instance, as the following examples demonstrate, it is not necessary to number graphs
only with additive groups of integers.

Let D denote a directed graph and have G denote a group. D may be said to be
graceful with respect to G, i.e. (D, G) is graceful, if (a) D has e arcs and G has e+ 1
elements; if (b) numbering 0 assigns the distinct elements of G to the nodes of D and
the arcs (u, v) are assigned labels using O(v)O-(u); and if (c) the resulting arc labels
are distinct and nonidentity.

For example, unidirectional paths can be labelled by assigning the appropriate
sequence of elements of sequenceable groups to the nodes of a path (see, for example,
[Ke] and 5 of this paper). Thus, one can use the dihedral group of order 10 (a b2= e,
ab ba-) to label the nodes of a 10-node unidirectional path in the following order:
e, a, a 2, b, ba, ba4, ba2, ba3, a3, a4. Similarly, a unidirectional path of 21 nodes can be
gracefully labelled with the non-abelian group of order 21 (a3= b7= e, a-ba b2) by
assigning elements to the nodes in the following order: e, b, b2, b3, b 5, a, b4, ab, b6,
ab3, a2b, a2b, ab6, a 2, ab2, a2b4, ab5, a2b6, ab4, a2b3, a2b5.

Generalized graceful directed graphs can similarly be defined by (D, AG) where
D has Ae arcs, G has e/ 1 elements each of which appears as an arc label on D
exactly A times as a result of a graceful assignment of the e / 1 node labels. A more
extensive examination of algebraic questions associated with generalized graceful
numberings is found in [BHS].

Open questions remain, of course, for the nongeneralized graceful numberings
discussed in the main body of this paper. For example, the following questions are
currently unanswered:

How many distinct graceful numberings does a designated graceful digraph
have?

For which classes of undirected graphs can graceful orientations always be
found?

What is the probability that a digraph is graceful?
Of course, the following metaquestion is of central interest:
What other mathematical and "real world" applications can be determined for

graceful digraphs ?

Acknowledgments. Careful readings of this paper by S. A. Burr and C. Delorme
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PERMUTATION FACTORIZATION ON STAR-CONNECTED
NETWORKS OF BINARY AUTOMATA*

MAURICE TCHUENTEf

Abstract. In this paper it is shown that, in the worst case, the delay necessary to permute boolean
variables on a star-connected network of n binary automata is n- 1.

AMS(MOS) subject classification. 94C

1. Introduction. Let G (V, U) be a graph of order n with V {1, 2,-.., n} as
set of vertices, U c V x V as set of arcs, and let X be a finite nonempty set. A network
ofautomata N (G, X) is defined by associating with any vertex V, an automaton
Ai with X as state-set and whose inputs are the states of automata Aj such (j, i) U.
([2], [3]).

Clearly, a mapping F- (fl," ,f,) A,(X):X -> X is a possible transition-

function of the network if and only if, for any i V, f does not depend on variables
xj such that j # and (j, i) U. A function q) A,(X) is said to be computable on N
if it can be decomposed into the form Fp Fp_l F1 where any Fi is a transition
function of N; l(q)) denotes the minimum length of such a factorization and can be
interpreted as the time necessary to compute q) on N.

Example. G=(V, U), V={1,2,3}, U={(1,2), (2, 1), (2,3), (3,2)}, X={0, 1}.
(See Fig. 1.) The transition-functions of N- (G, X) are of the form

FIG.

F(xl, x2, x3)= (f(x, x2), f2(xl, x2, x3),A(x2, x3)).

The function P(x, x2, x3) (x3, x2, x) can be factorized as

e F1 F2 F1 where F(x) (x2, x, x3) and F2(x) (x, x3, x2)

or

P F_ F where F(x) (x + x2, Xl + x2 + x3, x2 + x3)

and F(x) (--X "- X2, X X2 + X3, X2 X3)

It is easily verified that I(P)= 2.

2. Permutation factorization. Let us consider a situation where cr S, is a permuta-
tion of order n and any automaton A wants to send a message to A<). Clearly, the
transmission of the collection of messages represented by tr, can be modelized as the
factorization of the mapping P," (x, , x,)-->(x<), , x<,)).

In this paper, we study the particular case where X {0, 1} and G is a star (see
Fig. 2).

In the sequel, any function f: {0, 1} {0, 1} is identified with its unique reduced
representative polynomial over the ring of integers modulo 2.

* Received by the editors July 6, 1983.

" CNRS-IMAG Laboratoire TIM3, BP 68 38402, Saint Martin d’Hres C6dex, France.
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2

i-I

FIG. 2

LEMMA 1. If

or

o’= (1, a2," ", ak) S,,

O" (a2, a3,""", ak S,,, tr(1) = 1

then P <- k- 1.

Proof.
Case 1. r (1, a2," ak). Clearly,

P P>P#->" P< where tr(i)= (1, a), i= 1,. ., k.

Hence I(P) <-_ k- 1.
Case 2. tr (a2, a3, ak), tr(1)= 1. Because of symmetry considerations, we

can assume that r-(2, 3,..., k). Let

FI(X (x -- x2 + Xk, X1 "AI- X2, X3, Xk-1, X1 + Xk, Xk+l, ., Xn)

F2(x) (x + Xk, X X2, X1-4i- X3, X4, Xn)

Fi(x) (xi+l + Xk, X2, Xi-l, Xi- Xl, Xl 4t- Xi+l Xi+2, Xn) >- 3.

It is easily verified that for i-> 2

F, F,_, Fl(X)

(X -- Xi+l -- Xk Xk X2 Xi_l Xl "- Xi -4t- Xi+ q;" Xk,

xi+2, ", Xk-, Xl + Xk, Xk+, ", Xn) for 2 _-< _--< k- 2,

hence

F_2 F,(x) (x, + x_ + x, x, x, ", x-3,

X -[- Xk_2 -- Xk_ t" Xk, X1-1- Xk, Xk+l, Xn).

Clearly, if

Fk-l(X) (Xk--X2, X2,’’’, Xk-2, Xk-1--Xl, Xl- Xk, Xk+l,’’’, Xn)

then F_ F_: F P; hence l(P) <- k- 1.
PROPOSITION 2. For any r S,, l( P) <- n 1.

Proof (follows directly from Lemma 1).
Case 1. or= (1, a2,"" ", ar)(bl, b:," b,) (z,z2," ,zt).

l(P) <= l(P(,,a,,...,,,)+" "+ l(P(z,,...,z,)
<_-r-l+s+...+t

=<n-1.
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Case 2. tr(1) 1, or= (al," ", at)" (zl, ",

I(P) <-/(P(,,,,...,,,r)) + + l(P(z,,...,zs))
<-r+. .+t

<-_n-1.

Let cr S, and P Fq Fq_ F. Since P is bijective it follows that any Fi is
bijective. Therefore, in order to obtain a lower bound for l(P), it is necessary to study
the structure of mappings F A,(X) which are bijective and compatible with a star.

LEMMA 3. IfF (f, f,) A,(X) is bijective and compatible with a star, then
any Fi, >-_ 2 is affine.

Proof. Since, for i_-> 2, f is a function of Xl and x, its reduced representative
polynomial is of the form

P a + bXl + cx / dXlX, a, b, c, d {0, 1}.

If d then it is easily verified that card (f-1(0)) 2"-1 and this contradicts the fact
that F is bijective, hence d- 0 and f is affine.

PROPOSITION 4. Ifcr=(a2,’’., an), or(l) then l(P,,)>-_n-1.
Proof Let P Fq Fq-i F where

Fi=(fi,, ,f/,,) A,(x), i=l,...,n

be a factorization of minimum length and let us denote

Fo F_o...o F (g,, g,:,..., g,,), j= 1,..., q.

Since any f,k, 1 _--<j <_--q, 2<_--k<_-n is affine (cf. Lemma 3), it is easily verified that any
g,k, 1 --<_ j --<_ q, 2 --<_ k -<_ n is of the form

q--1

g:,k a:,kX + fl,kXk + j,k,i,1.
i=1

Since Fq F-I F1 (gq,,. ., gq,,) P, we can write

q--1

U2 Xn Olq,2X q,EX2 q,2,i, 1,
i=1

q-1

U3 X2- otq,3Xl q,3X3 q,315i, 1,
i=l

q--1
(i)

i=l

In the vector-space of polynomials over X, the set of elements {u,..., u}, when
decomposed with respect to the independent system {x, x, , x}, yields the matrix

Oq,2 Oq, Oq,

-flq,2
M -flq,3

1
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and it is easily verified that rank (M)-> n-2. Since any ui, 2_-< i_-< n is generated by
{gi.1, 1 -<_ -< q}, it follows that q 1 _-> n 2; hence l(P) q -> n 1. Proposition 2 and
Proposition 4 can be summarized as follows.

THEOREM 5. maxims. I(P) n- 1.

3. Conclusion. In the literature, the most widely used criteria in the study of
interconnection patterns associated with finite networks of automata, is the concept
of diameter, which represents the maximum number of links to be used to transmit a
message [1]. Clearly, if one wants to take into account the potential parallelism of a
network, then the permutation-factorization concept studied here, is more appropriate.

Let l’(F) denote the minimum factorization length of F, when the transition
functions of the network N (G, X), are restricted to be of the form

F(x,’"’, x,,)= (xo,""", xo,,),
In [4] it has been proved that

If G is a star of order n, then max,,s, l’(P) [3(n- 1)/21 where [k] denotes
the greatest integer lower than or equal to k.

If G is a tree of order n, then maxims, l’(P) -> n and the lower bound is obtained
when G is a chain (see Fig. 3). These results, together with the main theorem of this

FG. 3

paper show that, with respect to permutation-factorization criteria, decentralized
(chain-connected) networks are better than centralized (star-connected) ones.
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THE FIELD OF VALUES OF A COMPLEX MATRIX,
AN EXPLICIT DESCRIPTION IN THE 22 CASE*

FRANK UHLIGf

Dedicated to Emilie Haynsworth

Abstract. It is shown that the field of values of a matrix A C22 is an ellipse with center tr A/2, major
axis parallel to the unit vector

fdet Ao

with length (llAoll + 2[det 3ol) 1/2 and minor axis of length (1130112 + 21 det Ao[) t/E, where IIAll denotes the
Schur-norm and Ao:= A-(tr A/2)I. Moreover, a real symmetric matrix S is given explicitly, for which the
quadratic form

x-Re---

( trA r.2.A)x- Re--, y-Im S =-det S

Im trA/ 4

describes the points (x, 3’) on the boundary of W(A)c_ C R2.

AMS(MOS) sub|ect classification. 15A60

The field of values

W(A) := {x*Ax Clx C", x*x 1}

of a matrix A Cnn has been studied for over 60 years. W(A) was first proved to be
convex by Toeplitz [7] and Hausdorff [8]. W(A) contains all eigenvalues of A and so
forth. The fact that W(A) is an ellipse in case n 2 is often used to prove convexity
of W(A) for arbitrary n. But for A (a ) C22, an explicit description of this ellipse
W(A) in terms of the elements a, b, c, d e C is missing from the literature so far.

Our aim here is to derive an explicit description of the ellipse W(A) for A C22
in terms of its center, direction and lengths of its half axis as well as an algebraic
equation for its boundary curve. Analogous formulas for A R22 were developed by
C. R. Johnson [4], but unfortunately they can not be generalized to A C22 in any
obvious way, as will be seen later.

The formulas for W(A) can best be derived in two steps" First we form Ao
A-(tr A/2)I whose field of values W(Ao) is congruent to W(A) and is centered at
0 C since tr Ao 0. Then we rotate Ao by an angle -a so that A := e-iAo has an
ellipse as field of values whose major axis lies on the real line in C. The length of the
major and minor axes of W(A) can be determined partially in the same way as
Johnson [4] has done for 2 x2 real A, namely via the eigenvalues of Re A and the
eccentricity equation relating the length of the two half axis and the focal distance (or
eigenvalues ofA in our case) for ellipses. We have Ao A-(tr A/2)I and At e-’Ao,
hence A e-i(A-(tr A/2)I) or A eA+(tr A/2)L Thus due to the standard
properties for the field of values, W(A) eW(A)+tr A/2

_
C, i.e. W(A) is an ellipse

* Received by the editors April 19, 1983, and in revised form April 9, 1984, This paper was presented
at the SIAM Conference on Applied Linear Algebra, Raleigh, North Carolina, April 26-29, 1982.

f Department of Mathematics, Auburn University, Auburn, Alabama 36849.
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542 FRANK UHLIG

in the complex plane with center tr A/2 of the same shape as the ellipse W(A1), but
rotated back by the angle a with respect to the real line in C.

In order to determine the rotation angle a, we need to know the eigenvalues of Ao:
LEMMA 1. Ao has eigenvalues Am,2 +(Idet Aol)l/2ei for

i ./-detAo

Proof. Since tr Ao=0 Am + h2, det Ao Am A2 -A. Hence

/-det AoA 1,2 4-det Ao: +41det Ao[ N/i- 4--"
If we rotate W(Ao) by the angle -a around its center 0, then A1 := e-iAo has
eigenvalues/x e-ih m/= +(Idet Aol) R. The ellipse W(Am) can now be completely
described in terms of the eigenvalues +z, of Re A1 and the eigenvalues/x of A1 via
the eccentricity equation X= z,2-/z (see Fig. 1). Note that Re A =(Am +A*)/2 has
real eigenvalues + , which give the length of the major half axis of W(Am).

W(A,)

-V

FIG.

In fact we have
LEMMA 2. Re Am has eigenvalues + z, +1/2([[aoll2 + 2[det ao[) m/2, where

Ilall :- x/lal2 + Ibl 2 + Icl = + Idl2

denotes the Schur norm of

Proof. We have

Am+A*|
ReAI=

e-’(a-d)+e’(a-d)
4

e-ic + ei
2

e-b +
2

e-i(d-a)+e’(d-a)
4
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Now det Re A =-/,,2 or

/)2_._-det Re A
I(a-d)+e2’(a-d)l Ib + e2i’?.l2

16 4

21a-dl+e-’(a-d)+e’(a d) Ibl= / e-:’"bc + e2iff+ [cl2+
16 4

2 2

+lbl2+lcl2+e_2i, ((a 2 d) +bc) +e2i, ((_2 d) +-c))
IIAII + Idet Aol

det Ao+ IdetAl det Ao

1
=([IAoll 2 + 21det Aol) R+.

Finally for the minor axis:
LEMMA 3. The minor axis of W(A1) has length X =1/2(llaoll2-21det aol)
Proof.

X2= v:’- In,
2 =-(llAoll2+ 21det Aol)-Idet Aol

1/4(llAol[2- 21det Ao[).
Thus we have

THEOREM 1. Let A ( ) C.2. Then the field of values W(A) ofA is an ellipse
in the complex plane centered at tr A/2 C. The major axis of this ellipse forms an angle
a with the real line in C, where

eia ./-det. Ao 0< ao= a trA

Vldet aol’
=c <2w, ---I.

The major axis has length 2v= (llAoll2+21det Aol) /2, while the minor axis has length
2x (llaoll2- 21det aol) 1/2.

Next we want to compare our formulas with those of Johnson [4] for A R22.
For simplicity, we assume that tr A 0, so that in Johnson’s notation 14, Thm., p. 105],
the major half-axis has length

y := 1/2(a + d +((a d)2+ (b + )2)1/2).
With A ( _b) R22, this turns out to be:

y := 1/2(4a 2 + (b + c)2) 1/2,
while the minor half-axis has length w:=l(b-c)/2I. Since trA=AI+A2=0, detA=
-a2- bc A1 A2----< 0. Hence from the theorem,

1/2(llAII = / 2]det 31) 1/2 1/2(2a 2 + b2 + c2 + 21--a2- bc[) 1/2= 1/2(4a 2 + (b + C)2) 1/2-" y,

X 1/2(2a2+b2+c2 21 -a2 bcl) 1/2 1/2((b c)2) 1/2 Ib-cl
2

Thus our formulas coincide for A R22.
For complex matrices, Johnson’s simpler formulas for y and w cannot be general-

ized by interpreting x2 as Ilxll =.
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Example. Take A=(1 ) C22. Then y=1/2ll+il=4-/2, while in fact ,=

1/2(1 + 1 + 2) 1/2= 1.
Finally we give an explicit formula for the boundary ofthe ellipse W(A) for A C22.
THEOREM 2. In the complex plane C R2, the boundary curve of the field of values

of a matrix A C22 is given by

x-Re--,y-Im--S r.2.A/=t
det S,

-Im

where () R2 and

S [ llall+ 2 Re (det ao) 2 Im (det ao)
2 Im (det Ao) IIAoll=- 2 Re (det Ao)

for Ao := A-(tr A/2)L
Proof. The boundary curve of W(A) for A1 e-i(A- (tr A/2)I) has the equation

x2/92+ y2/x2 1 for () R2 with , and X as in Theorem 1. Since Ao ei’A1, W(Ao)
is obtained from W(A) by a plane rotation for the angle a, and the equation of the
boundary of W(Ao) is

X2(x cos a + y sin a)2 + ,2(_x sin a + y cos a)2 ,2X2"
With ,2 and X

2 from above and using X2= ,2_/z2, this becomes

1/4(llao[}- 2ldet aol(cos= c -sin2 a))x2- sin 2aldet aolxy

+1/4(llaoll- 21det aol(sin2 -cos2 a))y2 (llaoll4_ 41det aol).

sin 2a Im e-i Im
-det Ao -det Aoand cos2a=Re
Idet Aol Idet Aol"

Now

Hence the equation for the boundary of W(Ao) is

IIAoll + 2 Re (det Ao))X2 + 4 Im (det Ao)xy + (llAoll- 2 Re (det Ao))y2

 (llAoll’- 4ldet Aol:).
A translation by

t
gives the result.

The formulas for W(A), A C22, could have been derived in various other ways,
none of which appear as easy computationally as ours. W. Donoghue [2, Lemma]
showed that the "reduced angle" between eigenvectors of a 2 x 2 matrix A determines
the eccentricity of W(A). A direct computation of the eigenvectors of A and their
reduced angle seems more complicated than our approach. R. Kippenhahn [5] used
the determinant function in two variables u and v, det (uH + uH2+ wI) 0, involving
the real and imaginary parts H1 and HE of A for defining the generating lines of the
field of values W(A) for any A C,, (or A H.,, the quaternion matrix algebra). This
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formula was recently refined by M. Fiedler [3, Thm. 2.4, p. 87, 88] to involve the second
compounds of Hi and their mixed second compound, and Fiedler gives an equation
for the boundary curve of W(A) in any dimension. While truly more general in scope,
these two formulas unfortunately are too cumbersome in case n 2 already to be used
for computing W(A) any faster than we did.

C. S. Ballantine [1] recently showed how to check whether a point z C lies in
W(A) for any A Cnn. Our formulas can be used to obtain an "inner approximation"
of W(A) for A C,n in much the same way as Johnson [4, Cor. 2] has done for A Rn,.
Another application of our results is given in F. Uhlig [6]. For another recent reference
see J. M. Patel [9].
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EXPLICIT INVERSION FORMULAS FOR TOEPLITZ BAND MATRICES*

WILLIAM F. TRENCH,"

Abstract. Explicit formulas are given for the elements of T and the solution of T,X Y, where Tn
is an (n + 1) (n + 1) Toeplitz band matrix with bandwidth k =< n. The formulas involve k k determinants
whose entries are powers of the zeros of a certain kth degree polynomial P(z) which is independent of n,
or simple related functions of these zeros if any are repeated. It is shown that T, is invertible if and only
if a certain k k determinant involving these zeros is nonvanishing.

AMS(MOS) classification numbers. 15, 65F

1. Introduction. We consider Toeplitz band matrices, i.e., matrices of the form

T. (r_s) =0,r,s

where there are nonnegative integers p and q such that

(1) b=0 ifu>poru<-q.

We use the notation of [13] and 115]. Notice that T, is of order n + 1, with rows and
columns numbered from 0 to n. We write

T- B,, (b,.sn)r,s=o.
It is assumed throughout that

(2) kpck-q # O and p+q=k-<_n.

Our main results are explicit formulas for the elements of T and for the solution
of the system

(3) T,,X= Y,

in terms of the zeros of the polynomial

p

(4) P(z)= E dP,z"+q.

These formulas involve determinants of order k, the bandwidth of T,.
Many authors (e.g., [1], [3], [6], [7], [9], [10], [12], [15]) have given formulas and

algorithms for inverting Toeplitz band matrices. Efficient methods have also been
developed for solving (3) (e.g., [2], [4], [11], [14]). Since a survey of results along these
lines is given in the introduction to the recent paper [9], there is no need to review
earlier work here. We believe that the results presented here are new, and more general
and explicit than others heretofore published. We treat the general Toeplitz band
matrix, without assuming that T, is symmetric or hermitian. Our formulas are explicit
(i.e., not recursive with respect to n), and we do not have to assume that any matrix
other than T, is nonsingular; however, we do give a method for computing T
efficiently in the case where T,_ is also nonsingular.

The idea motivating our approach is that if n is large compared to k, then T, is
"nearly triangular" in an obvious visual sense, which need not be defined precisely.

* Received by the editors December 20, 1983, and in revised form April 19, 1984.

" Department of Mathematics and Computer Science, Drexel University, Philadelphia, Pennsylvania
19104.
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Therefore, it is not surprising that the elements of T are closely related to those of
(T.L)-, where T. is the lower triangular Toeplitz matrix

T (b--q) ", =o.
The inverse of this matrix is the lower triangular Toeplitz matrix

(5) (T.)-’ (ar_s)r.s=o (a=0 if , <0),
with elements independent of n, defined by

(6) (P(z))-’= Z az-
=0

It is easy to find an explicit formula for a in terms of the zeros of P(z). Moreover,
we will show that the differences

b, a r-s-q, 0 r, s n

can be found easily and explicitly in terms of the zeros of P(z). This leads to explicit
formulas for T and the solution of (3).

We also give analogous formulas based on the inverse of the upper triangular
Toeplitz matrix

( )"T r-s+p r,s=O"

The inverse of this matrix is

(7) (T)-1 (fl-) .=o fl 0 if v < 0),

with elements independent of n, defined by

(8) zP E z.
=0

2. Preliminary results. The following assumption applies throughout. (Recall (2)
here.)

Assumption A. The distinct zeros of (4) are z,...,z,, with multiplicities
/zt, ,/x, thus, m -< k,/zi->_ 1, and

/z+’’’ +p,m k.

DEFINITION 1. Ifjl,’’’,jk are integers, let

C(z;j,," ,A) col [zJ’, ", zJk],

and let c(l)(z;jl, ",jk) denote the /th derivative of this column vector. Now
define the kk determinant D(jl,’’’,j,) as follows: Its first /zl columns
are c(l)(z;j, ,jk)(0--</--</Za--1); it next /z2 columns are C(1)(z2;ja, ,jk)(O<=
=</x2- 1) and so forth.

For example, if (4) has k distinct roots, then

D(j,, ,jk)=det (z) r,s=l"

There is an ambiguity in Definition 1, since the m zeros of P(z) may be numbered in
any order; however, our results involve ratios of the form

D(j,, jk )/ D(jl, j’k),

which are left invariant if zl,"" ", z,. are permuted. Because of (2), z#0 (1 =<j-< m),
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so D(j,... ,jk) exists for all j,... ,jk. It can be shown that

D(0,1,...,k-1)=K H (zj-z,) r’j,

where K > 0 and the ru’s are positive integers. If m k, then D(0, 1, , k- 1) is the
Vandermonde determinant, so K =ru 1.

LEMMA 1. Suppose 1 <= <= k and j,. ,jr-l, j+, ,jk are fixed integers. Then
the sequence

(9) er D(jl, ,j-l, r,j,+, ,jk), --< r < o

satisfies the difference equation

p

(10) e+=O.

Proof. Because of Definition 1, expanding the determinant in (9) in terms of
cofactors of its/th row yields

(11) e= Y E ao(r)’) -i
Zj

j=l i=0

where

(r)<)= 1, (r)<’)=r(r-1)...(r-i+l), i>=l,

and the aij’s are constants. But if 1 =<j-<_ m and 0 <= <-/zj- 1, then

p

(,+r)<i)z+-i=O, -< r<,
--q

since zj is a zero of zr-qp(z), with multiplicity j, for every r. This and (11) imply (10).
LEMMA 2 a) The sequence {at} defined by

(12)
(a) a,=0, r<0,

1 D(-r, 1,...,k-1)
(b) Or-- r>-_-k+ l,

b_q D(O, 1,. ., k-l)

satisfies

(13)
p

(,oj-q-l,--’jo,

b) e sequence { fir} defined by

(14)
(a) /3 O, r<O,

1 D(O, 1,...,k-2, r+k-1)
(b) r p D(O, 1,. ., k- 1)

satisfies

r_->-k+l,

p

(15) b/3_p+= 6o, -oo<j<oo.

(Note. The definitions (12) and (14) are redundant, but consistent, for -k + 1 <-j -<

-1. They are stated this way for convenience.)
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Proof. (a) Ifj<O, then (12a) implies (13). Ifj=O, then (13) reduces to

b_qao 1,

again because of (12a). This is consistent with (12b) with r-0. If j_-> 1, then (12b)
and Lemma 1 imply (13).

(b) Similar.proof.
Notice that the sequences {at} and {fir} can be computed recursively from (13)

and (15), or explicitly from (12) and (14).
Lemma 2 implies (5), (6), (7), and (8). Therefore, (12) provides an explicit formula

for T if q=0 (T, is lower triangular), while (14) serves the same purpose if p-0
(T, is upper triangular). Of course, the inversion of triangular Toeplitz matrices--
banded or not--is very simple, as was observed in [15]. We assume henceforth that

(16) p>-I and q>-l.

3. The main results. The next theorem follows from a result in [16] concerning
the eigenvalues of Toeplitz band matrices; however, since the proof in [16] utilizes a
more involved argument than is needed here, it is convenient to prove Theorem 1
directly.

THEOREM 1. If (2) and (16) hold, then T, is invertible if and only if

(17) D(O, 1,. .,q-l,n+q+l,. .,n+k)#O.

Proof. We prove the equivalent assertion that the system

(18) T’, X 0 (’ transpose)

has a nontrivial solution X -col [Xo,’’’, x,] if and only if

(19) D(0, 1,...,q-l,n+q+l,..., n+k) =0.

Easy manipulations show that (18) holds if and only if the finite sequence

X_q, X_l, Xo, Xn, Xn+l, Xn+p

satisfies the boundary value problem
p

(a) Y 4’,,X+r O, 0 <---- r <_-- n,

(20)
(b) xr=0 if-q<r<-l= orn+l<r<n+p.=

However, because of Assumption A and the fact that zj 0 (1 <_-j _-< m), the elementary
theory of constant coefficient difference equations implies that a solution of (20a) must
be of the form

(21) Xr ai(q+ r)i),.+’-.. -q<--r<----n+p,
j=l i=0

where

A col [aol,""", a-1,1,""", aom,’’’, a,.-,m]
is a constant vector. On recalling Definition 1, it can be seen that (21) is consistent
with (20b) if and only if A satisfies the k k system

(22) HA O,
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where

det H= D(0, 1,. ., q-l, n+q+l,. -, n+k).

Therefore (22) has a nontrivial solution, and the same is true of (18), if and only if
(19) holds. This completes the proof.

Henceforth, we assume that (17) holds.
DEFINITION 2. Let

U,={O, 1, q-l, n+q+ l,. n+k}.

If/.t U, and is an arbitrary integer, define

where

For example,

and

D(jo, jq-l, j,+q+, j,+k

D(O, 1,. ", q-l, n+ q+ l, ., n+ k)’

ifi U,-{/x},
J=

ifi=x.

a.(OI 1)- D(l, 1,. q-l, n+q+ l, n+k)
D(0, 1,..., q-l, n+q+l,..., n+k)

D(0, 1,..., q-l, l, n+q+2,... ,n+k)a,(n+q+l[l)=
D(O, 1, q-l, n+q+ l, n+k)

Lemma 1 and Definition 2 imply the following lemma.
LEMMA 3. If tZ is a fixed integer in U,, then

p

ba,(/x[ + r) 0, -m< r<,
--q

and

a. (z[ r) t/zr, r

i.e., er a,(l[ r) is the unique solution of (10) which satisfies the boundary conditions

er ar, 0<=r<_-q-1, n+q+l<=r<-n+k.

The uniqueness assertion of Lemma 3 follows from (17), as can be seen from the
proof of Theorem 1, since the difference of two solutions would satisfy (20).

The next two theorems give explicit formulas for brs,, the general element of T.
The formula in Theorem 2 is more convenient if q < p, while the formula in Theorem
3 is more convenient if p > q.

THEOREM 2. The general element b. of B. T is given by

q-1

(23) b,s. a__q- Y a,_,a.(llq+ s).
!=0

where { ar} is as in (12).
Proof. The condition B,T -I,, is equivalent to

bo.b;_ =/. O_< r, s_< n.
j=O
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which can be rewritten as

n+p

(24) Z bo.bj-s=&s, O<=r, s<-n,

if we define

(25) when-q<-s<-_-I orn+l<-_s<-n+p.

Shifting the index of summation in (24) and recalling (1) yields

P
(26) Z b.b.+s,. 6,,, 0-< r, s-<_ n.

wq

Now let

(27) brsn Og r-s-q r" tlrsn, 0 <= r <-- n, --q <-- s <-- n + p,

where llrs is to be determined. From (13) with j r-s,

P

Y cba -s-t/- 60,r-s 6s, 0 <= r, s <= n;
--q

hence, substituting (27) into (26) and recalling (25) shows that for each r in {0,. , n},
the sequence {urs.} "+p satisfies the difference equation

P

bur,+s,. =0, 0-<_s_-< n,

and the boundary conditions

us. -a_s_q 0, n+l<=s<-_n+p (of. (12a)),

us. a,_ q, q _-< s -< 1.

This and Lemma 3 imply that

q--1

urs. Y a_a.(llq+s),
/=0

which, with (27), implies (23).
THEOREM 3. The general element bs. of B. T- is given by

p-1

(28) b,.=s__p- fls_p++la.(n+q+l+lln+q-r),
/=0

with {fir} as defined by (14).
Proof The condition T.B. I. is equivalent to

b_b,.=,S,, O<-r, s<=n,
j=0

which can be rewritten as

n+q

(29) b_jbjs. &, 0 <- r, s -< n,

if we define

(30) bs.=0 when -p <= r <-_ I orn+l<=r<-n+q.
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Changing the index of summation in (29) and recalling (1) yields

p

(31) . br_.s,,=Srs, O<-r,s<=n.
mq

Now let

(32)

where yrs. is to be determined. From (15) with j s-r,
p

Y 4,/3__/ , O<-r,s<=n;

hence, substituting (32) into (31) and recalling (30) shows that for each s in {0,. ., n},
the sequence {v,}=_p satisfies the difference equation

p

Y’. bvr_.. 0, O<-r<=n,

and the boundary conditions

vs,, -/3__p 0, n + 1 =< r -<_ n + q,

v, -/3 _r_p, -p <- r -< 1.

This and Lemma 3 imply that

p-1

v,,=- .. _,+t+la,(n+q+l+lln+q-r);
/=0

which, with (32), implies (28).
The next theorem provides explicit formulas for the solution of (3) when T, is

invertible. Here we write

X=col[xo,...,x,] and Y=col[yo,...,y,]

and adopt the convention that

=0 if ,<.

TEOREM 4. If T is invertible, then the solution of (3) is given by

r--q q--1

(33) x=
=0 /=0 =0

and by

(34) x= t,__y- -++l.t"s a(n+q+l+lln+q-r), ONrNn.
s=r+p I= =0

Proo Since

(23) implies (33) and (28) implies (34).
Since convolutions can be implemented eciently by means of fast Fourier

transforms, (33) provides an ecient computational method for solving (3). The
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quantities

M= ya,(llq+s), O<=l<--q-1
s=0

(each of which can be expressed as the ratio of two kk determinants) would be
computed first. Then, from (33),

X MlOlr_l, O r<= q- 1,
l=O

and

r--q q--1

Xr E O r--s--qYs Mlar-l, q <- r <--_ n.
=0 /=0

It is easily verified that (33) and (34) remain valid if p-0 or q-0.
The next lemma follows trivially from the last four equations of [13].
LEMMA 4. Suppose Tn is an arbitrary (not necessarily banded) Toeplitz matrix, with

inverse T- brsn r,s =0, where

(35) boon # 0.

Then the elements bn(1 <= r, s<= n) are determined in terms of bon(O <- r<= n) and
bo (0 <= s <- n) by the recursion formula

(36) bn=b_,_.n+(boon)-(bo.bo.-bn_+,o,nbo,n_+l,n), l<=r,s<=n.

Since boo. =det Tn_/det Tn, (35) implies that Tn_ is also invertible. Since T is
persymmetric (i.e., symmetric about its secondary diagonal), it is only necessary to use
(36) for r+ s -< n, and then take

brsn bn_s,n_r.n, 1 <- r, s <= n, r + s > n.

Lemma 4 was rediscovered and presented in a useful matrix form by Gohberg
and Semencul [5]. In most applications (e.g., [3], [8], [13], [15], [16]), it has been
coupled with recursive procedures for obtaining the elements of the zeroth row and
column of T:; however, these methods usually require that other matrices in the
sequence {To, T,... } be nonsingular. Since Theorems 2 and 3 provide convenient
explicit formulas for the zeroth row and column of T, we can dispense with this
additional assumption here. Thus, from (12) and (23),

(37) bon=-(4,_q)-an(Olq+s), O<=s<=n,

while from (14) and (28),

(38) bo.=-(Ckp)-an(n+kln+q-r), O<=r<=n.

If evaluating the k k determinants in (37) is inconvenient, then it is only necessary
to use (37) for 0 <= s <= p; define

bosh O,

and compute recursively:

p--1

bosn=-(4,p)-’

-q + l =< s <- -1,

dPv bo,v+s-p,n, p+l<-_s<-n.
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(See Lemma 3.) Similarly, we can use (38) for 0-< r_-< q; define

bron 0, -p + 1 -< r -<_ 1,

and compute recursively:

q--1

bro,, _(_q)-i t-,,br+,-q,o,n, q+ <= r<= n.

REFERENCES

[1] E. L. ALLGOWER, Exact inverses of certain band matrices, Numer. Math., 21 (1973), pp. 279-284.
[2] G. BECK, Fast algorithms for the solution ofbanded Toeplitz sets oflinear equations, Alkal. Mat. Lapok,

8 (1982), pp. 157-176. (In Hungarian, with English summary.)
[3] R. P. BRENT, F. G. GUSTAVSON AND D. Y. Y. YUN, Fast solution of Toeplitz systems ofequations and

computation of Padd approximants, J. Algorithms, (1980), pp. 259-295.
[4] B. W. DICKINSON, Efficient solution of linear equations with banded Toeplitz matrices, IEEE Trans.

Acoust., Speech, Sig. Proc., ASSPo27 (1979), pp. 421-423.
[5] I. C. GOHBERG AND A. A. SEMENCUL, On the inversion offinite Toeplitz matrices and their continuous

analogs, Mat. Issled, 2 (1972), pp. 201-233. (In Russian.)
[6] W. D. HOSKINS AND P. J. PONZO, Some properties ofa class ofband matrices, Math. Comp., 26 (1970),

pp. 393-400.
[7] A. K. JAIN, Fast inversion of banded Toeplitz matrices by circular decompositions, IEEE Trans. Acoust.,

Speech, Sig. Proc., ASSP-26 (1978), pp. 121-126.
[8] T. KAILATH, A. VIERA AND M. MORF, Inverses of Toeplitz operators, innovations, and orthogonal

polynomials, SIAM Rev., 20 (1978), pp. 106-119.
[9] O. S. MEEK, The inverses of Toeplitz band matrices, Lin. Alg. Appl., 49 (1983), pp. 117-129.

[10] R. P. MENTZ, On the inverse of some covariance matrices of Toeplitz type, SIAM J. Appl. Math., 31
(1976), pp. 426-437.

[11] M. MORF AND T. KAILATH, Recent results in least-square estimation theory, Ann. Econ. Social Meas.,
6 (1977), pp. 261-274.

[12] L. REHNQVIST, Inversion ofcertain symmetric band matrices, Nordisk. Tidskr. Informationsbehandlung
(BIT), 12 (1972), pp. 90-98.

[13] W. F. TRENCH, An algorithm for the inversion offinite Toeplitz matrices, J. Soc. Indust. Appl. Math.,
12 (1964), pp. 515-522.

[14] ., Weighting coefficients for the prediction of stationary time series from the finite past, SIAM J.
Appl. Math., 15 (1967), pp. 1502-1510.

[15] Inversion of Toeplitz band matrices, Math. Comp., 28 (1974), pp. 1089-1095.
[16] ., On the eigenvalue problem for Toeplitz band matrices, Lin. Alg. Appl., to appear.
[17] S. ZOHAR, Toeplitz matrix inversion: the algorithm of W. F. Trench, J. Assoc. Comp. Mach., 16 (1967),

pp. 592-601.



SIAM J. ALG. DISC. METH.
Vol. 6, No. 4, October 1985

(C) 1985 Society for Industrial and Applied Mathematics
OO3

ON THE OPTIMIZATION OF THE CLASSICAL ITERATIVE SCHEMES FOR
THE SOLUTION OF COMPLEX SINGULAR LINEAR SYSTEMS*

A. HADJIDIMOSf

Abstract. For the numerical solution of a class of Complex Singular Linear Systems Ax b, with
det (A)=0 and b in the range of A, the generalized iterative methods of Extrapolated Jacobi (JOR) and of
Successive Overrelaxation (SOR), first introduced by Buoni and Varga, are considered. Under some basic
assumptions the various parameters of the optimal Generalized JOR and SOR schemes are determined
through formulas given by means of specific algorithms which are proposed. A number of numerical examples
are also presented to show how one can apply the algorithms and determine, subsequently, the optimal
parameters which make the corresponding schemes to semiconverge as fast as possible.

AMS(MOS) subject classification. 65F10

1. Introduction. Assume that

(1.1) Ax=b

is a complex, in general, linear system to be solved iteratively with A Cn’", det (A) 0,
x, b C" and b in the range of A. We write A as follows

(1.2) A=D-L-U,

where det (D) 0 and D, L and U are not necessarily diagonal, strictly lower and
strictly upper triangular matrices respectively. As in Buoni and Varga ([3] and [4]) we
form the Generalized Jacobi (GJ) the Extrapolated Generalized Jacobi (EGJ or GJOR)
and the Generalized Successive Overrelaxation (GSOR) iterative schemes associated
with splitting (1.2) for the solution of (1.1). These are the following

x(m+) Tx(r’) + c, m O, 1, 2, ,
xm+) T,oxm) + toc, m O, 1, 2,

(1.3)

(1.4)

and

(1.5)

respectively, where

(1.6)

x<m+)= .Y,ox<m) + to(D- coL)- b, m=0, 1,2,...

T= D-(L+ U), c= D-b,

T,o (1 to)I + toT,, (D- toL)-l[(1 to)D+ toU].

In (1.4) to C {0} is the extrapolation parameter and in (1.5) to C {0}, with det (D
coL) 0, is the overrelaxation parameter. (Note. In view of splitting (1.2), T, in (1.6),
may well have nonzero diagonal entries, which is not the case with the classical Jacobi
matrix, where D is chosen either as the diagonal or as a block diagonal part of A.
Thus T, and its components D-L and D- U, will be considered, in the sequel, in this
generalized form unless otherwise stated.)

Assume further that the spectrum or(T) of T, that is the discrete set of the
eigenvalues Aj, j 1 (1)n, of T, is known. Since A, in (1.1), is singular it is implied that

* Received by the editors October 18, 1983, and in revised form April 5, 1984.
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the real number one (1) is an eigenvalue of T with the same multiplicity with which
the number zero (0) is an eigenvalue of A. We denote by H the hull of or(T), that is
the smallest convex polygon containing or(T) in the closure of its interior. We also
denote by y(T) the number defined by

(1.7) y(T) #max (11: tr(T), Aj # 1},

which is connected with the semiconvergence of scheme (1.3) (Note: Since at least
one of the eigenvalues of T is known to be the number 1, p(T)_-> 1 and (1.3) does not
converge). Here it is simply reminded that p(T)= 1, y(T)<l together with the
fulfillment of the requirement index (I- T)= 1 (that is, all the elementary divisors of
T associated with the eigenvalue 1 are linear) imply that (1.3) semiconverges (see
Berman and Plemmons [1, p. 152] as well as [2]). In such a case y(T) is the asymptotic
semiconvergence factor and -ln y(T) gives the asymptotic rate of semiconvergence
of (1.3) (see e.g. [1, p. 198]).

In what follows we shall accept that the following two assumptions are valid.
Assumption I. The point A(1, 0) of the complex plane is one of the vertices of H

and
Assumption II. index (I- T)= 1.
The purpose of this paper is twofold: i) To prove, under Assumptions I and II,

the existence and uniqueness of an optimum to(toopt)C-{0} such that the GJOR
scheme (1.4) semiconverges as fast as possible and also to give expressions (by means
of a known algorithm) for both Wopt and y(Toop,); ii) Under some further assumptions
concerning the components D-1L and D-1U of T as well as the matrix T itself to
prove again the existence and uniqueness of an optimum to(toopt)eC-{0}, with
det (D toL) # 0, such that the GSOR scheme (1.6) semiconverges as fast as possible
and also to give, as before, a means of determining toopt and Y(Oopt)-

2. Optimum GJOR iterative scheme. Consider the GJOR scheme (1.4) together
with the appropriate relationships from (1.6). Since

(2.1) I-To=to(I-T)

and to # 0, it is concluded that in view of Assumption II for T

(2.2) index (I- To)--index (I- T)= 1.

Because of the expression of To as a function of T (see (1.6)), the eigenvalues/xj of
To, will be given in terms of those of T through similar relationships. Namely

(2.3) m=l-to+toA, j= l(1)n.

It is obvious that the point A(1,0) of the complex plane is invariant under the
transformation corresponding to (2.3). A consequence of this is that p(To) >- 1. So our
objective is to make p(To)= 1 on the one hand and on the other hand the GJOR
scheme (1.4) to semiconvergence as fast as possible. For this we state and prove the
following theorem which will be very useful in our analysis.

THEOREM 2.1. Let the matrix T in (1.6) satisfy Assumptions I and II. Then the
problem of determining an to(toopt) such that the GJOR scheme (1.4) semiconverges.in
an optimum sense is equival,ent to the problem of minimizing the spectral radius p(To)
of an extrapolation matrix To of " with spectrum of the latter tr( ’) tr( T) -{ 1 }.
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Proof. Since T satisfies Assumption II there will exist a nonsingular matrix Q
such that

0

where I is the s x s unit matrix (1-<_ s _<-n- 1) and T is a matrix of order n-s with

eigenv.alue .spectrum o-()= tr(r)-{1}. In view of (2.4) and Assumption I for T, the
hull H of T will leave the point A(1, 0) strictly in its exterior. From (1.6) and (2.4) it
is concluded that To will have the form

(2.5) TO,=Q[ Is 0]Q-1

where

(2.6) ’o (1 )I,,_s + to’
so that o, is an extrapolation matrix of with extrapolation paramete.r to. We notice
that o, can not have the number 1 as an eigenvalue, for otherwise T will have the
same ei.genvalue as well which is not possible. From (2.6) it is seen~ that the eigenvalues
/.tj of To, will be given again .by (2.3) with, however, hj tr(T). Because.of~ the form
(2.5) it is p(To,) max { 1, p( To)} and, by virtue of (1.7), 3’(To) p(To,). Since, from
(2.2), To, satisfies Assumption II scheme (1.4) will be a semiconvergent one if[ p(To) < 1.
On the other hand (1.4) will semiconverge in an optimum sense for that to(toopt) for
which p(T,)( < 1) is a minimum and the theorem is proved.

Having proved among others in Theorem 2.1 that A(1, 0) we state the main
result of [7] which guarantees the existence and the uniqueness of the optimum
extrapolation parameter of the p.revio.us theorem.

THEOREM 2.2. If the hull H of T of Theorem 2.1 is known and A(1, O): H then
there alw.ays exists~ a unique to(toopt) for which the spectral radius p( o ofthe extrapolation
matrix To, of T becomes a minimum (less than one).

The determination of toopt of Theorem 2.2 above is achieved by means of an
algorithm (see [7]) which is based on the concept of the optimum capturing circle and
is outlined very briefly below.

ALGORITHM FORTHE DETERMINATION OF toopt" Assume that A, j 1 1)I 1, n s]
is the reordered set of the eigenvalues of T different from 1. Let A, j 1(1)k [1, l],
be the new reordered set of those eigenvalues of tr(T) which are vertices of H, and
let P, j 1(1) k, be their images (points) in the complex plane. Omitting the trivial case
k- 1, when

toopt 1/(1-- ,1)

the algorithm to determine toopt and 3’(Toop,) runs as follows: 1) Take the points P,
j= l(1)k two at a time (P,, P2) and consider the intersection K,2(cl, c2) of the
perpendicular to P,P at its midpoint with the circle circumscribed to the tri.angle
AP,P. If the circle with center point Kja and radius R (K,P,) captures ; the
circle at hand is the optimum capturing circle, so go to step 3. If no such circle exists
go to the next step. 2) Take the points P, j= l(1)k three at a time (P.,, P2, P3) and
consider the circle circumscribed to the triangle P.,P2P3. L.et K,(cl, c2) be its center
and R (Kj,P,) be its radius. If this circle captures H and leaves A(1, 0) in its
exterior then it is a possible candidate for the optimum capturing one. Find all possible
candidates and proceed to the next step. 3) In case we have come from step or from
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step 2 with only one possible candidate the optimum values toopt and Y(Ttoopt) are
determined through the relationships

1 c) + ic2 R
(2.7) toopt-- (1 C)2+ C /(T,oop)=((l_Cl)2+c),/2
In case we have come from step 2 with more than one possible candidate, the optimum
capturing circle is the one which corresponds to the smallest 3/(T,,opt) of (2.7). As is
proved in [71 the circle in question always exists and is unique.

Remarks. i) In case is, in addition, symmetric with respect to (wrt) the real
axis (then H will also be symmetric wrt the real axis, as for example in the case where
T is real), toopt is a real number and the algorithm given previously may be simplified
(see [7], [5] or [6]).

ii) In case H is not symmetric wrt the real axis but lies strictly to the left or strictly
to the right of the line z 1 of the complex plane and we restrict ourselves to finding
a real to such that scheme (1.4) semiconverges as fast as possible, a new auxiliary hull
H’ of tr(T) symmetric wrt the real axis is considered. Then what is mentioned in i)
above is now applied with H’ taking the place of H.

3. Optimum GSOR iterative scheme. In this section together with the assumptions
I and II we shall consider two more basic assumptions. More specifically we consider:

Assumption III. The components D-1L and D-1U of T, in (1.6), are strictly lower
and strictly upper triangular matrices respectively.

Assumption IV. T is a weakly p-cyclic consistently ordered matrix.
Assumption III insures on the one hand that det (D toL)

det(D)det(I-toD-L)=det(D)O for any toC and on the other hand that an
obvious extension of Kahan’s theorem (see [9, p. 75]) holds. In other words a necessary
condition for semiconvergence of the GSOR iterative scheme (1.5) is Ito 11 <- 1, with
to C {0}. Assumption IV, together with Assumption III, provides us with a functional
relationship connecting the eigenvalues A, j 1 (1) n of T and the eigenvalues /z, j
1(1)n of o,. This is the well-known one

(3.1) (/z + to 1)p =/?-ltoPAjp.

(see [9] or [10]).
Before we go on with the determination of the optimum semiconvergent GSOR

scheme we make two observations: i) As is known and because of Assumptions III
and IV and by virtue of Romanovsky’s theorem (see [9, p. 40, Thm. 2.4]) apart from
the zero eigenvalues of T, all others appear in p-tuples with the same multiplicity for
the p elements of each p-tuple, ii) Because of Assumption I or II and observation i)
the numbers e=q/p, q 0(1)p- 1 are eigenvalues of T of the same multiplicity.

Now we can prove the following theorem.
THEOREM 3.1. If T in (1.6) satisfies Assumptions I-IV and to C-{0, p/(p- 1)}

with Ito 11 _-< 1, ,o given in (1.6) will satisfy Assumption II.
Proof First we observe that no eigenvalue Aj of T with modulus different from

1 can have as an image, through (3.1), the eigenvalue/zj 1 of ,o. Indeed, if that were
the case then on substitution in (3.1) we would obtain (1 + to 1)P 1 toPAZ. Since to 0,
IAI-- 1 which contradicts our assumption that IAl 1. By virtue of observation ii) made
previously for each set of p eigenvalues A e2=iq/p, q 0(1)p- 1, of T, (3.1) will give

(3.2) f(/x) (/x + to 1)p- toPlzp.-I =0.
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Since it is readily verified that f(1) 0, while f’(1) p(1 + to 1)p-1 (p 1)top
toP-l(p-(p-1)to)#O, f(txj) will have the number 1 as a simple root. This result
together with observation ii) imply that the eigenvalue 1 of has the same multiplicity
which the number 1 has as an eigenvalue of T. Since it can be obtained that

I-., to(I-toD-L)-(I T)

and the number 1 is an eigenvalue of T and oo with the same multiplicity, then the
relationship above and Assumption II for T imply that

(3.3) index (I-o)= index (I- T)= 1,

which proves the present theorem. [3

To be able to prove one of our main results of this section we present Varga’s
theorem [9, Thm. 4.4, pp. 111-112].

THEOREM 3.2. Let T in (1.6), which corresponds to a nonsingular matrix A in
(1.1)-(1.2), satisfy Assumptions III and IV. If all the eigenvalues of the pth power of T
are real and nonnegative, and 0 <= p(T) < 1, and with tob the unique positive real root
(less than p/ (p 1)) of the equation

(3.4a)

then

(3.4b)

(p( T)tob)p [pP(p 1)-P](tob- 1),

min p(.,) p(,o)= (tob- l)(p- 1).

Now we are in a position to state and prove an analogue to the previous theorem
for the determination of the optimum to(a3) in the singular case.

THEOREM 3.3. Let T in (1.6) satisfy Assumptions I-IV and let the eigenvalues of
its pth power be real and nonnegative with p(T) 1. Let also ( T) =- tr( T), {Aj: A tr(T)
and Ial- 1} and #(T) =- max {Ial, (T)}. Then the optimum to() for which the
GSOR scheme (1.5) semiconverges as fast as possible is the tob given by (3.4a) with
p( T) being substituted by ( T), namely

(3.5a)

and

(3.5b)

Then

(3.5c)

(#( T)) =[pP(p- I)1-"](o3 I)

O<<p/(p-1).

min 3,(,)= )’(o;)= (a3 1)(p- 1).

Proof. From the relationships (3.4b) of Theorem 3.2 and the assumptions of our
present theorem it is obvious that the images /x), through (3.1), of all eigenvalues
A) e &(T) of T will satisfy (3.5a)-(3.5b) and the corresponding to (3.4b) relationships
which will be

(3.6a)

where

(3.6b)

Therefore it is concluded that

(3.7)

min #(,o) #(,) (aS 1)(p- 1),

3/(7,) -> (a3 1)(p 1).
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So it remains to prove that the images/zj of the eigenvalues Aj e2wiq/p, q O(1)p- 1,
of T (of modulus 1 except the eigenvalue I itself) satisfy (3.6b). (In fact the relationship
which they satisfy is a strict one). Since for the eigenvalues in question A 1, equation
(3.2) will be valid. From Theorem 3.1 we know that f(/x) possesses 1 as a simple root.
We divide out f(/z) by/x 1, consider 03 in the place of to, drop indices for simplicity
and put y 03 1 to obtain

/x-1
/x + 1+ y /x

(3.8)

To prove that the roots of g(/x) are strictly less than (03-1)(p-1) yz in modulus
(where we put z=p-1) it is sufficient and necessary to prove that the roots of
h(v) h(la./(yz)) g(tz)/(yz)-p have moduli strictly less than 1. From (3.8) we have

yz

+ 1+ y+ -(l+y)’ vP-3+

1 [ (lP) ()y2 (P)>.]+ 1 + y+ +" "+ yP-l-(1 + yyp-1Zp-1 p 1

or

(3.9)

1 [(2P)y2 ()Y3 ()YP]h(v) --- vp-1 4- 4-. 4- /p--2
yz

yp-Izp-1

From (3.9), by putting h(v)=0 and since v # 0, we can obtain

=--1 [(2p)y2+()y3+...+(pp)yp]l_v
yz v

(3.10)
I [()y (pp) yp] I I (pp) yp I+...+ 7+. yp-

Suppose now that at least one root of h(v) or equivalently of (3.10) is in modulus
greater than or equal to I. By taking absolute values in (3.10) we successively obtain

1 [()y2 ()y3 (pP)yp]l_-<lvl_<- + +...+
yz

Yz’l [()y (pp) yp] 1 (pp) yp+--z-z +. .+ +. .+
yp-Izp-1

Z

y2
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yz
1 -yz

yz
1 -yz

From the first and the last members of the above series of relationships we take

1

1 -yz
(1 + z)P- yz-py-(1 + y)P + 1 +py]zp-1

or equivalently, after a simple manipulation and returning again back to the original
variables o3 1 + y and p 1 + z we have

(3.11) t5p <-[pP(p- 1)I-P](t5-1).

However, from (3.5a) and since t;(T)< 1 it is

a3p > [pP (p 1)-P](o3 1),

which contradicts (3.11). Therefore the images /j of Aj e2iq/p, q =0(1)p-1 of T
(except the image tz 1) are in a modulus strictly less than (a3 1)(p 1). Consequently
(3.7) turns out to be an equality and (3.5c) has been proved.

A much stronger result is obtained in case p 2. More specifically we have the
following theorem.

THEOREM 3.4. Let T in (1.6) satisfy Assumptions I-IV with p 2. If there exists
an eigenvalue-pair A,--Az 1) of T with corresponding images, through (3.1) (for
p 2), such that max (I/z,l, I/zj2l) is larger than the moduli of all other images
(except 1 and (to- 1)2 which comefrom thepair +1 of T) forallto’sfor which Ito- 11< 1,
then the optimum parameters for the GSOR scheme (1.5) are given by

2

l+(1-A)e/(3 12) toopt a3
1 + (1 A_)I/ y(,Oo,,)

Proof Let now that t(T) tr( T)- {-1, 1 } and H is the hull of t(T). In view of
the previous observations (i) and (ii) and Assumption I it is concluded that H will be
symmetric wrt the origin 0(0, 0) and that the point A’(-1, 0) will be also a vertex of
H. Similarly will be symmetric wrt the origin. For the time being we shall restrict
ourselves to considering t(T) and its hull H ignoring the eigenvalues + 1 of T. As is
known (see Kredell [8]) any ellipse centered at the origin and capturing in the
closure of its interior will be mapped, through (3.1), onto a circle c,o, centered at the
origin, which, in turn, will capture all the eigenvalues of o,, except 1 and (to- 1)2,
which are the images of the pair +1, in the closure of its interior for any to 0. Since
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according to our hypotheses there exists a critical eigenvalue-pair Ajl- -Aj2 in the sense
of [8] with corresponding images/zjl,/xj2 through (3.1), are such that max
is larger than the moduli of all other/x’s of o,, except 1 and (to- 1)-, for all possible
to’s for which Ito-11< 1. We then have that there exists a complex, in general, a3
determined by

2
2 1/2+(-)

where the square root of the complex number with the positive real part is taken,
which minimizes the quantity Ito- 11( < 1), namely the radius of ego,. Since such is the
situation we turn our attention to the eigenvalues +1 of T which we have ignored.
These have images 1 and (03-1)2. The following are deduced. The number 1 will be
an eigenvalue of ; such that (3.3) will be satisfied and the number (03-1)2 will be
an eigenvalue of o; satisfying I(03-1)21<1o3 1 I. Thus (ta-1)2 will lie strictly in the
interior of the circle ego; whose radius equals Io3 1 I. Therefore by virtue of the analysis
so far it is implied that the optimum parameters are given by (3.12).

In Theorem 3.4 the optimum a3(to) is in general complex. However, one may find
in some cases an optimum real to. In this direction the following analysis is of great
value, under the hypotheses that Assumptions I-IV for T are valid and p- 2.

In case IRe AI_-< 1 holds for all the eigenvalues of T (with equality holding for
those eigenvalues equal to + 1 only) and no critical eigenvalue-pair exists or if it exists
it is very difficult or even impossible to determine, then the following strategy to obtain
an op.timum real to and the corresponding optimum semiconvergent scheme is adopted.
Let H’ be the hull of &(T) which is now symmetric wrt both axes. By ignoring again,
for the time being, the eigenvalues + 1 of T and by following the algorithm by Young
and Eidson [11] (see also [10, pp. 194-200]) an optimum capturing ellipse ’ which
contains all the eigenvalues of T except those equal to +1 in the closure of its interior
is un,iquely determined. As is obvious this ellipse will be an optimum capturing one
for H as well as ’. Let / < 1 and 1/ be its real and imaginary semi-axes respectively.
The optimum value for to(a3) as well as the value for the radius t;2 of the optimum
capturing circle c,, which is the image of , through (3.1), will be given by the
expressions

2 2__( Mr+M, )2(3.13) 03
1 + (1 _/2r+ ]Ir/2)1/2 1 + (1 h/2 +/0r2)i/

(see [10, p. 194, equations (4.14)-(4.15)]). The optimum above is in the sense that the
radius 2 of the capturing circle cg,a is a minimum. Coming now to the eigenvalues 1
and (o3 1)2 of ,a which are the images of the eigenvalues + 1 of T we readily notice,
as before in Theorem 3.4, the following. First the number 1 is an eigenvalue of
with (3.3) holding and then the number (03-1)2 is also an eigenvalue of o; which,

^2because of the relationship 1(o3-1)2] <_-/9 lies strictly in the interior of the optimum
capturing circle c,a. Therefore

^2(3.14) toopt to, Y(,tOopt) P

with 03 and t3 being given by (3.13). It is remarked that if, besides the eigenvalues +1,
T possesses no other eigenvalues (or the eigenvalue zero only) then Mr M 0 and
from (3.6) 03 1, (o3-1)-=0 and t32= 0. Hence from (3.14), toopt 1 and 3’(,Oo,,)=0.
In other words the optimum semiconvergent scheme in this case is the Generalized
Gauss-Seidel (GGS) one with y()=0!
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Remark. If the matrix I- T is an M-matrix then because of Assumption I or II,
I-T is singular. By virtue of the definition of a singular M-matrix (see [1]) it is
implied that T is a (real) nonnegative matrix and p(T)-< 1, with the only eigenvalues
satisfying [Re Aj[ 1 those equal to +1. As is noticed Assumption I follows directly
from Assumption II and the fact that p(T)-< 1. Therefore it can be dropped from the
basic assumptions. Since T is real and Assumption IV is valid, tr(T) and t(T) of
Theorem 3.4 will be symmetric wrt both axes; so will be their hulls H and H.
Consequently the analysis of the case examined previously can be applied straightfor-
wardly to give a real value toopt and then Y(O,op,) by means ofthe formulas (3.13)-(3.14).
(Notes: i) If instead of assuming that I- T is simply an M-matrix, one assumes that
I- T is an irreducible singular M-matrix then Assumption II follows, so that it is not
needed to be included in the basic assumptions (see [1, Thm. 4.16, p. 156]) and the
previous theory to determine the optimum values for to and y(,o) can be applied
again as before, ii) The present remark and the previous note i) can be also applied
in a straightforward way for the case of the optimum GJOR method. This is an
immediate consequence of the remark i) of the previous section.) D

4. Numerical examples.
A. Optimum GJOR method.
i) Let T (I4’4 with tr(T) -= {-1 + 3 i, 3 + 3 i, 3 i, 1 }. As is seen the eigenvalue 1 is

simple so that index(I-T)= 1 and all others lie on the straight line z 3i of the
complex plane. Thus A(1, 0) is a vertex of the hull H of tr(T), which is the triangle
with vertices A=P3(1,0), P1(-1,3) and P2(3,3). We also have (T)-=
(-1 + 3i, 3 + 3i, 3i}. Its hull H is the line segment with end points PI(-1, 3) and P_(3, 3)
(see Fig. 1). By following the algorithm of 2 we find the point of intersection K12(cl, c2)

P(-I,3 B 2(3,3)

A P(i O) Rez

FIG.

of the perpendicular to PIP2 at its midpoint (it is the line z 1) with the circle
circumscribed to the triangle AP1P2. From Fig. 1, (AP1)2=(AK2)(AB) or (-1-1)2+
(3 -0)2= (AK12)((1-1)2 + (3 -0)2) /2, which gives (AK2) 13/3. Therefore
K2(c, c2)=K2(1,13/3), and R=(K2PI)=((-1-1)2+(3-13/3)2)/2=2x/-/3.
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Using (2.7) we obtain

(1-1)+ i13/3 3i
O)Pt (1-1)2+(13/3)2 13

and

r(T’r’t)=((1-1)2+(13/3)2)1/2- 13
0.5547.

If we restrict ourselves to real values of o in order to find an optimum semiconvergent
scheme we simply note that no.semiconvergent scheme can be obtained by extrapola-
tion. This is because the hull H does not lie strictly to the left or strictly to the right
of the line z 1.

ii) Let T e C5’5 and r(T) {-1, -1 + i, -1 + 3i/4, 1}, where 1 is a double eigen-
value of T with index(I- T)= 1. In this case the hull H of or(T) is the triangle with
vertices A= P3(1, 0), P,(-1, 0) and P2(-1, 1). It is d’(T)={-1,-l+i,-l+3i/4} with
hull the line segment with end points P,(-1, 0) and P2(-1, 1) (see Fig. 2). By
following the same algorithm as in the previous example we find that K,2(c,, c2) is the
intersection ofthe perpendicular to the midpoint ofthe line segment P, P2 (with equation
z i/2) with the circle circumscribed to the triangle AP, P:. (Its diameter is the line
segment AP.) From Fig. 2 we have (BK,2)2=(BP,)2=(-1-O):+(O-1/2)2=5/4,

Imz

FIG. 2

Rez

A--P (1,0)

so that (BK,,)=V/2. Thus c,=-//2, c2= 1/2. Also
((P1C)2+(CK12)2),/2 ((_1 (_1))2 + (1/2 0)2 + (_x//2 (_1))2 + (1/2_ 1/2)2)1/2
(10-4x/)1/2/2. Therefore

(1-(-,/712))+ i112 ,17 5
O)opt

(1-(-45/2))+(1/2)2 5 5

and

10 4,/7)’/=/2
2 0.2361.")’(T<<’’>’)

(( 1 -(-x/7/2))’ + (1/2)2) 1/2
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If we are now interested in real values of to only, the corresponding opti,mum semicon-
vergent scheme is found by the same algor.thm as before applied to H’ which is the
hull of t(T) symmetric wrt the real axis. H’ is the segment with end points (-1,-1)
and (-1, 1). Thus the center of the optimum capturing circle is at the point K( 0)
(see Fig. 2), where K2A =90. It is readily found that c -3/2 and R (KP2) 45/2.
Thus

and

(1-(-3/2))+i 0 2
(’ tPt (1 (--3/2))2 + 02 5

x//2
,y(To,opt) ((1-(-3/2))2+02) ’/2 5

0.4472.

As is seen 3’(Toopt) is much better than y(Ta,,opt), something which was expected.
B. Optimum GSOR method. For all the examples we shall give below it will be

accepted that Assumptions III and IV of 3 hold with p 2.
i) Let T C6’6 with or(T)-= {+1, +(1 + i), +Y(1 +/)}.Since I is a simple eigenvalue

of T, index (I-T)= 1. It is obvious that the pair +,Y(1 + i) constitutes a critical
eigenvalue-pair because the other two eigenvalues are interior points of the same line
segment with end points the images of the numbers +,Y(1 + i). We try therefore to
apply the results (3.12) of Theorem 3.4. Thus we have

and

2 2 v (2-,f).
(’Opt-

1 + 1 (v( 1 + i))2)1/2 1 +x/- 2 2

y(L’oo,) -IOgopt- 11-/- 1 0.4142.

Since the eigenvalues of T of modulus different from 1 do not all satisfy the restriction

IRe Ajl < 1, an optimum real o by using the algorithm by Young and Eidson cannot
be obtained.

ii) Let Te C5’5 with r(T)= {+1, 0, +(0.6+0.8i)}. Since index(I- T)= 1 and the
eigenvalues +/-(0.6+0.8i) constitute obviously a critical eigenvalue-pair we work as
before in i). Consequently

2 2
(’Opt

1 +(1 -(0.6+0.8i)2)/2= + 1.2- 0.4i

and

22 4
=--+--i
25 25

’)/(opt) l(,Oopt 11 - 0.2.

Now because all other eigenvalues of T, except + 1, satisfy the requirement IRe Ajl < 1
the algorithm by Young and Eidson (in fact a simplified version of it) can be applied.
Some of the corresponding optimum results are given in [10, Table 4.1, pp. 198-199].
Thus

(.Oopt’ =0.74913, y(,Oo,pt) =0.69118 and /L=0.70737.
Comparing the values ’y(o9Oopt 0.2 with the value ’)/(,Oo,pt 0.69118 we see that the
former is much better than the latter.

iii) Let T C8’8 with or(T) -= {+/- 1, + 1/2, +i/-/2}, where the eigenvalues +/- 1 are
double ones, and index (I-T)= 1. Because the other eigenvalues are two opposite
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pairs of real and purely imaginary numbers satisfying IRe hi] < 1 and it is obvious no
critical eigenvalue-pair exists for all possible to’s, Theorem 3.4 cannot be applied. Thus
we turn our attention to real to’s. It is readily obtained (see [10, pp. 194-195]) that
//r 1/2 and h/i 4/2. Therefore applying formulas (3.13) and (3.14) we have

toopt
1 + (1 (1/2)2+ (x//2)2) 1/2

4

and

y(op,) ( 1/2 +x/g/2 )2 7 + 2X/g

l + l i- --12 z 2 25
0.4760.

iv) Let T C6’6 with tr(T)= {+ 1, 0}, where all eigenvalues are double ones, and
index (I-T)= 1. Again either Theorem 3.4 with critical eigenvalue-pair with the
eigenvalue zero or thesimplified version of the algorithm by Young and Eidson of 3
can be applied with Mr Mi 0. In either case the optimum results are the same and
lead to the GGS iterative scheme. More specifically

2
toopt=l+(l_0)l/2=l and y(,Oopt)=[toopt-ll=0!

v) Let TC’1 with o-(T) {+1, +0.2+0.3i, +0.6+0.4i} and I- T is an irreduc-
ible M-matrix. In such a situation we are in the case of the Remark of 3 so that the
algorithm by Young and Eidson applies. Here H is the rectangle with vertices
(+0.6, +0.4) and since there is only one point in the first quadrant we obtain some of
the optimum results directly from [10, Table 4.1, pp. 198-199]. These are the following

toopt 0.97150, y(,Oo,,) 0.51626 and Mr 0.69876.
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IMPLEMENTATION OF A DOUBLE-BASIS SIMPLEX METHOD FOR THE
GENERAL LINEAR PROGRAMMING PROBLEM*

P. E. PROCTORf

Abstract. The basis handling procedures of the simplex method are formulated in terms of a "double
basis." The basis is expressed as a matrix product, one of the factors being the basis matrix of the last
refactorization. Forward and backward transformations and update are presented for each oftwo implementa-
tions of the double-basis method. The double-basis update is restricted to a matrix of dimension limited by
the refactorization frequency and two permutation matrices. This can lead to a saving in storage space and
updating time. The cost is that the time for the forward and backward transformations is about double.

Computational comparisons of storage and speed are made with the standard simplex method on
problems of up to 1,480 constraints. Generally, the double-basis method performs best on larger, denser
problems. Density seems to be the more important factor, and the problems with large nonzero growth
between refactorizations are the better ones for the double-basis method. Storage saving in the basis inverse
representation versus the standard method is as high as 36%, whereas the double-basis run times are 1.2
or more times greater.

AMS(MOS) subject classifications. 65K05, 90C05, 90C06

1. Introduction. Suppose that in solving a linear program of m constraints, the
basis inverse is refactored every r iterations. Then at any given iteration, the basis
matrix differs from the basis matrix of the last refactorization in no more than rm
columns. This redundancy can be exploited to avoid updating the full basis inverse at
every iteration.

This paper presents computational experience with a general algorithm for linear
programming that uses the update alluded to in the first paragraph. For historical
reasons this algorithm is called a "double-basis" method.

Double-basis methods have appeared in various contexts since 1955 when Dantzig
[8] suggested separating the block-triangular part of an LP coefficient matrix. Another,
related paper [6] is by Beale. His pseudo-basic variable method for problems with
coupling variables is equivalent to a double-basis factorization. Aonuma [1]-[5] and
Marsten and Shepardson [13] use double-basis methods to decompose problems along
the lines of "hard" and "easy" bases.

Bisschop and Meeraus [7] and Kallio [11] discuss the double-basis factorization
in the general context. Bisschop and Meeraus give estimates for storage requirements.
Kallio presents some details of a proposed implementation involving a product-form
representation of one of the basis factors.

Section 2 presents the double-basis method of this paper. Two implementations
of it were tested. These are introduced in 3. Section 4 gives the details of one version,
5 the other. Experimental results form the subject matter of 6. Finally, conclusions

are drawn in 7.

2. The double-basis method. Let the basis matrix at the last refactorization be B.
Let B be the current basis matrix. Since B and B have many columns in common, we
obtain mostly standard unit vectors for the columns of the product/-1B. More exactly,

* Received by the editors July 12, 1982, and in final revised form April 2, 1984. This paper was presented
at the SIAM Conference on Applied Linear Algebra, Raleigh, North Carolina, April 26-29, 1982.

" Bell Communications Research, Red Bank, New Jersey 07701.
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where I is the identity, P and Q are permutation matrices, and the dimension of G
is at most the number of iterations since .the last refactorization.

It turns out that the simplex method can be performed using only B, G, P, and
Q. Specifically, this reduces the update to that of the small matrix G, and the revision
of P and Q. However, one pays the price of four matrix multiplies with/-1 in each
iteration, compared with two B-1 multiplies in the standard simplex method.

The double-basis method distinguishes four types of columns. The type of a
column can change from iteration to iteration. At any given iteration we have the
following partition:

Bp--those columns in B, but not in B.
Bd--those columns in both B and B.
Bq--those columns in B, but not in B.
Brmall other columns.

Due to this partition we have four possible cases for the basis exchange (e and are
the entering and leaving columns, respectively)"

I. e Bp, Bq. Since the basis is regaining a column lost since the last refactoriza-
tion, G decreases in dimension by one.

I. e Br, Bq. G stays the same size in this case.
III. e Bp, Bd. G stays the same size.
IV. e Br, Bd. G increases in dimension by one.
The forward and backward multiplies with the basis inverse, B, are computed as

follows:

y B-1 e(FTRAN)

2) [Zl]=Pr.Z2

3) 1 G-Zl.

4) Pr-l(e-- Bail,).

5) y Qr)7.

Our research did not examine the possiblity of using the computed zeros in 4) to
monitor numerical error.

u cBB- (BTRAN)
1) (t 2)= cBQ T, where t has dimension equal to that of G.

2) m Yl-(Ol2)Pr-lBq.
3) u=(mG-’l2)pW-1.

3. Implementation. The double-basis method was implemented in two versions.
The first keeps G-1 as an explicit matrix, and the second uses Reid’s LA05 software
(17) to handle an LU factorization of G. Both implementations use Reid’s LU software
for the matrix B. Also, both implementations employ Marsten’s XMP package [12] to
perform the higher-level functions of the simplex method.

Note that the matrix H is nowhere used in the double-basis method computing.
However, its counterpart in the problem matrix, Bq, is. Bq is retrieved from the raw
problem data via the knowledge of which columns are basic, and information provided
by the permutation Q.
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4. Update of G-I--explicit version.
Case I. The departing row and column of G are permuted to the border of the

matrix, and a bordered-matrix technique is used.
Case II. G-1 is multiplied by an elementary column matrix corresponding to the

column exchange.
Case III. G-1 is multiplied by an elementary row matrix, since rows in G and

H are exchanged (corresponding to an exchange of identity columns between Bp and
Bd).

Case IV. A row and column are appended to G, and (3-1 is updated by a
bordered-matrix technique.

5. Update of G---LU version.
Reduction to two cases. No easy way to implement the case I and III updates

could be found for the LU representation of G. Therefore, case I was absorbed into
case II, and case III into case IV. As a result, an identity column is introduced into
G each time cases I or III occur. In our experiments these cases did not occur too
frequently. (See Table 1.)

TABLE
Basis-exchange casesmexplicit version. Entries are percentages.

Problem

Entering variable
same as leaving Case Case Case Case

variable II III IV

SCTAP3 0 0 16 0 83
SCTAP2 0 17 0 82
SCFXM3 0 2 19 3 75
BP1 0 53 0 45
PILOT.WELFARE 4 2 47 47
SCFXM2 0 4 23 4 70
SCRS8 0 2 13 5 80
SCAFR25 0 5 23 5 66
SCSD8 0 0 23 0 76
STAIR 0 6 30 7 56
STAIR (CYBER) 0 5 37 4 54
SCFXM1 0 9 27 7 57
SCTAP1 0 3 18 5 73
SC205 0 9 0 88
SCSD6 0 24 74
SCAGR7 0 4 19 7 70
SCSD1 0 2 25 2 71

TRAN simplification. The reduction to two cases results in simplification of the
TRAN computations. In the two-case situation, P= Q r. Consequently, successive
applications of PT and QT" can be eliminated since these two matrices are now inverses
of each other. With this elimination G- becomes the only matrix to which permutations
are applied. We have achieved the two following simplifications:

1) Elimination of four permutation applications per simplex iteration.
2) Reduction in storage requirements for the permutations from two arrays of

length equal to the problem dimension to one array of length equal to the refactorization
frequency.

Update ofthe Gfactorization. In Reid’s software the L factor is stored as a sequence
of pivots. We may visualize the U factor as a triangular matrix. We have L-1G U.
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Case II update. In Case II G receives a replacement column. This column, z, has
already been computed in the FTRAN. It is composed of the components of PT-e
that correspond to the rows of G.

From the LU factorization of G, we have L-1Gnew Uspike, where Uspik is identical
to the old U except for the column corresponding to Zl. In general this new column
of U destroys U’s triangularitymtherefore, it is called a "spike." Reid’s software
removes this spike from U, possibly adding pivots to L-1 in the process.

Case IV update. The situation here is very similar to case II, except that we are
gaining a column and a row. They are visualized as being prefixed to G, thus:

Premultiplying by L-1, we obtain

z G zl U

This multiplication is implicit since we already have all the quantities on the right.
It is seen that the right-hand matrix is triangular with a spike in the first column.

It is passed to Reid’s software which returns the updated factorization.

6. Experimental results. Both versions of the double-basis simplex method were
compared to the standard simplex method on VAX 11/780 and CYBER 175 computers.
XMP was used for the testing because its modular structure enabled simple substitution
of FORTRAN subroutines. Special double-basis subroutines were written for the
forward and backward transformations and the update.

Seventeen problems were employed for testing (Table 2). All of them except
HELSI2 are staircase problems [10], [18]. More results can be found in [16].

TABLE 2
Test problems.

Problem Rows Columns* Nonzeros* Density (%)

SCTAP3 1,480 3,960 10,354 0.18
SCTAP2 1,0906 2,970 7,804 0.24
SCFXM3 990 2,361 8,767 0.38
BP1 821 2,392 11,221 0.57
PILOT.WELFARE 722 3,591 10,384 0.40
SCFXM2 660 1,574 5,843 0.56
SCRS8 490 1,659 3,672 0.45
SCAGR25 471 971 2,025 0.44
SCSD8 397 3,147 8,981 0.72
STAIR 356 829 4,230 1.43
SCFXM1 330 787 2,919 1.12

SCTAP1 300 780 1,992 0.85
SC205 205 408 756 0.90
SCSD6 147 1,497 4,463 2.03
SCAGR7 129 269 549 1.58
SCSD1 77 837 2,465 3.82
HELSI2 57 608 3,664 10.57

* Included is one entry per row for an identity matrix.
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All problems were run with refactorization frequency equal to 51. Zero tolerance
was 10-1 and pivot tolerance was 10-6 except for:PILOT.WELFARE (10-12 10-7

and STAIR (CYBER) and HELSI2 (CYBER) (LU double-basis pivot 10-4). On the
whole, more numerical problems were encountered with the double-basis method, but
in certain instances it behaved better than the standard method.

BP1 and PILOT.WELFARE were started from feasible bases, all others from slack
bases.

The number of iterations per second was logged for each test. Table 3 gives the
ratio of that rate for the standard method to that for the LU version of the double-basis
method, which was always faster than the explicit version.

TABLE 3
Ratios of standard rates to LU rates.

Problem Ratio

STAIR (CYBER) 1.19
STAIR 1.24
PILOT.WELFARE 1.41
SCAGR25 1.41
BP1 1.48
SCFXM3 1.49
SCFXM2 1.51
SCTAP2 1.54
SCTAP3 1.58
SCRS8 1.58
SCFXM1 1.60
SC205 1.61
SCSD8 1.63
SCTAP1 1.73
HELSI2 1.8
SCSD6 1.82
SCAGR7 1.85

7. Conclusions. A comparison of storage requirements for the basis inverse rep-
resentation between the standard and LU double-basis methods is shown in Table 4.
Neither method is the winner. However, storage requirements could be more predictable
for the double-basis method because nonzero growth after refactorization is limited
to the small G matrix.

The results of Table 3 are repeated in Table 5 which also presents measures of
problem size and density. Average column length is shown instead of density because
it is independent of the number of rows. Also, average column length in the optimal
basis might serve as a better indicator of the densities truly encountered during the
simplex iterations. From the table it appears that density is more imortant than problem
size in determining the performance of the double-basis method.

With sparse matrix techniques execution times for the forward and backward
transformations (TRAN’s) on particular problems are roughly proportional to the
number of nonzeros involved in their computation. Some information along this line
was collected during testing, and it is analyzed here. First, a calculation is performed.

The number of nonzeros handled between refactorizations in both the standard
simplex and double-basis simplex methods is estimated, and a ratio of the two numbers
is formed. Let a be the number of nonzeros in the basis inverse representation
immediately following refactorization. We will assume that both methods follow the
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TABLE 4

Differences in storage requirements for the standard method and the LU version

of the double-basis method (in full words).

Maximum required
Problem by standard Standard- LU (%)

SCTAP3 25,411 1,777 7.0
SCTAP2 19,120 1,420 -7.4
SCFXM3 23,807 2,144 -9.0
BP1 28,818 1,824 6.3
PILOT.WELFARE 29,433 4,020 13.7
SCFXM2 16,346 290 1.8
SCRS8 11,719 1,703 14.5
SCAGR25 17,369 6,280 36.2
SCSD8 12,130 -616 -5.1
STAIR 26,604 3,837 14.4
SCFXM1 8,297 -1,142 -13.8
SCTAP1 5,939 -653 11.0
SC205 5,380 -46 -0.9
SCSD6 4,493 -173 -3.9
SCAGR7 4,451 0.0

TABLE 5
Results comparison. The last two columns give average column lengths.

Entire Optimal
Problem LU/Std Rows problem basis

STAIR (CYBER) 1.19 356 5.1 10.1
STAIR 1.24 356 5.1 10.1
PILOT.WELFARE 1.405 722 2.9 4.3
SCAGR25 1.411 471 2.1 2.7
BP1 1.48 821 4.7 5.3
SCFXM3 1.49 990 3.7 4.1
SCFXM2 1.51 660 3.7 4.1
SCTAP2 1.54 1,090 2.6 2.3
SCTAP3 1.576 1,480 2.6 2.4
SCRS8 1.580 490 2.2 2.6
SCFXM1 1.60 330 3.7 4.0
SC205 1.61 205 1.9 2.6
SCSD8 1.63 397 2.9 2.8
SCTAP1 1.73 300 2.6 2.6
HELSI2 (CYBER) 1.8 57 6.0 6.4
SCSD6 1.82 147 3.0 2.6
SCAGR7 1.85 129 2.0 3.0

same path to optimality, so that a is invariant between the two methods. Let b be the
number of nonzeros gained by the basis inverse representation in the standard method
at each iteration. We assume that b is a constant. Let c be the number of iterations
between refactorizations.

We will also make two assumptions regarding the G matrix" First, G-1 is repre-
sented explicitly, and each element is handled as a nonzero. Second, G increases in
dimension by one at each iteration (not true in generalmsee below).
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We obtain that the standard simplex method handles

c-1 (c-1)cbY, (a + hi) ac+
i=o 2

nonzeros in matrix multiplies between refactorizations. Given that each double-basis
method TRAN requires two applications of/-1 and one of G-1 (see below), we handle- (c-1)c(2c-1)a+ (a+i+a)=(2c-1)a+

nonzeros between refactorizations.
Forming the ratio of the number of double-basis nonzeros to that of the standard

method, we have

(2c- 1)[12a + c(c- 1)]
R=

c[12a+3b(c-1)]

Much study could be devoted to the factors influencing this ratio, and also to
the plausibility of our previous assumptions. However, our experiments, and others
in the literature [9], 14], [15] documenting values for b, indicate that it will probably
never be close to 1.0 for sparse problems. This is one reason that the double-basis
method is more promising for denser problems.

Average times for single simplex method operations were recorded. LU-to-stan-
dard ratios for these figures are given in Table 6. As was pointed out previously, the
theoretical TRAN ratio is over 2.0 when nonzero growth in the standard method is
small. As standard method nonzero growth increases, the ratios become more favorable
to the double-basis method.

Table 7 gives the average number of nonzeros gained per iteration between basis
refactorizations in the standard simplex method. These can serve as estimates for the
numbers b. Some sample calculations with b values and sample values of a yielded
results similar to the experimentally achieved values of R (Table 6).

TABLE 6

LU/standard ratios of average single operation times.

Problem BTRAN FTRAN Update

STAIR (CYBER) 2.3 2.1 0.39
STAIR 1.9 1.7 0.50
PILOT.WELFARE 2.0 1.9 0.75
SCAGR25 2.1 1.9 0.78
BP1 2.0 1.9 0.77
SCFXM3 2.0 2.1 1.0
SCFXM2 2.1 2.1 1.1
SCTAP2 2.2 2.3 1.2
SCTAP3 2.2 2.2 1.1
SCRS8 2.3 2.1 1.1
SCFXM1 2.4 2.1 1.2
SC205 2.7 2.0 1.6
SCSD8 2.1 2.2 1.4
SCTAP1 2.4 2.5 1.6
SCSD6 2.4 2.6 2.0
SCAGR7 2.7 2.7 1.7
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TABLE 7
Average nonzero growth. Average nonzero

growth per iteration between refactorizations in
the LU representation of the basis matrix

in the standard simplex method.

Problem Average growth

STAIR 27.4
PILOT.WELFARE 29.0
SCAGR25 11.2
BP1 23.4
SCFXM3 10.6
SCFXM2 10.8
SCTAP2 5.3
SCTAP3 5.3
SCRS8 9.2
SCFXM1 8.7
SC205 7.0
SCSD8 12.7
SCTAP1 4.3
SCSD6 6.7
SCAGR7 6.6
SCSD1 6.3

The theoretical TRAN ratio, R, is plotted in Fig. 1 as a function of a and b. Also
plotted are the test problems versus their a values at the optimal basis, and their
average b values (given in Table 7). The R values thus determined can be compared
to the experimental values (Table 6).
The line R-2-1/c is of particular interest in the figure. Below this line R is

decreasing in both a and b, while above, it is increasing in a for fixed b. To determine
optimal problem locations on the plot as a function .of problem size, density, and
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FIG. 1. TRAN ratio R vs. refactor nonzeros a and nonzero growth per iteration b ).
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structure, and to further relate these variables to the performance of the updates, would
be necessary for a full comparison of the standard and double-basis methods. This is
not to mention the necessity of validating the use of average, or typical, values for a

and b.
The double-basis method seems to hold promise for larger, denser problems. More

experiments and closer analysis are now needed.
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SOME GRAPH-COLOURING THEOREMS WITH APPLICATIONS TO
GENERALIZED CONNECTION NETWORKS*

DAVID G. KIRKPATRICKt, MARIA KLAWEf AND NICHOLAS PIPPENGERf

Abstract. With the aid of a new graph-colouring theorem, we give a simple explicit construction for
generalized n-connectors with 2k-1 stages and O(nl+l/k(log n)<k-)/2) edges. This is asymptotically the
best explicit construction known for generalized connectors.

1. Introduction. Our goals in this paper are twofold. Our first goal is to give a
new construction for generalized connectors. Under certain circumstances this new
construction is superior to all other known constructions. Our second goal is to use
graph-colouring theorems to systematically derive old and new results on networks.

For the purposes of this introduction, we shall give some informal definitions. We
shall give more precise and more general definitions in the next section. An n-network
is an acyclic directed graph with n distinguished vertices called inputs and n other
distinguished vertices called outputs. We shall be concerned with the minimum possible
size (number of edges) and depth (number of edges in the longest path from an input
to an output) that n-networks with various connectivity properties can possess. An
n-connector is an n-network such that, for any one-to-one correspondence between
certain inputs and distinct outputs, there exist vertex-disjoint paths joining each chosen
input to the corresponding output. A generalized n-connecter is an n-network such that,
for any one-to-many correspondence between certain inputs and disjoint sets of outputs,
there exist vertex-disjoint trees joining each chosen input to the corresponding set of
outputs. An n-crossbar is an n-network with depth 1 and size n 2, with an edge joining
each input to each output. For both of the problems considered here, a crossbar
provides a solution with small depth and large size. Our goal is to find alternate
solutions with larger but limited depth and smaller size.

Let f(n) denote the minimum possible size of an n-connector. It has long been
known (see Bene [2])thatf(n)= O(n log n) and f(n)=l)(n log n). (For the sharpest
known estimates, see Pippenger [12] for the upper bound and Pippenger [13] for the
lower bound.)

Let g(n) denote the minimum possible size of a generalized n-connector. It was
shown by Ofman [10] that g(n)=O(nlog n) and by Pippenger [11] that g(n)=
f(n) + O(n). The first of these results is proved by an extension of the explicit construc-
tion used to show that f(n)= O(n log n). (For the best explicit construction known,
see Dolev et al. [4].) The second result was established by a probabilistic construction.
It is now possible to replace this by an explicit construction (see Gabber and Galil
[5]), but in any case the constants involved are so large as to render the result completely
impractical. (For the best probabilistic construction known, see Bassalygo [1].)

Let fk (n) denote the minimum possible size of an n-connector with depth at most
k. It was shown by Pippenger and Yao [14] that

fk(n) O(nl+l/k(log n) 1/k)
and that

fk(n)=O(n’+’/k).

* Received by the editors May 14, 1984.

" IBWI Research Laboratory, San Jose, California 95193.
t University of British Columbia, Vancouver, British Columbia, V6T 1W5, Canada.

576



GRAPHoCOLOURING THEOREMS 577

(Throughout this paper, the constants implicit in the notation O(. .) are independent
of n, but may depend on k.) The upper bound here is proved by a probabilistic
construction; the best explicit construction known gives

f2k_(n)= O(n l+l/k)
(see Pippenger [12]).

Let gk(n) denote the minimum possible size of a generalized n-connector with
depth at most k. Dolev et al. [4] showed that

gk(n) O((n log n)+/k)

by a probabilistic construction; they also showed that

gak-E(n) O(n l//k)

by an explicit construction. Masson and Jordan [8] and Nassimi and Sahni [9] showed
that

g3(n) O(n5/3)

by two quite different explicit constructions. Attempts to extend these constructions
to depths greater than 3 do not give results competitive with the construction for depth
3k-2 mentioned above.

In this paper we shall show that

g3(n) O( n3/2(log n) /2)

by an explicit construction. We extend this to

g2k-l(n)- O(nl//k(log n)k-l/:),

which differs merely by logarithmic factors from the corresponding bound for f2k-l(n).
It seems unlikely that the construction of the present paper will be useful in

practice; to compare it with the competing constructions of Masson and Jordan [8],
Nassimi and Sahni [9] and Dolev et al. [4], we observe that n3/2(log2 n) 1/2--

rl
5/3 for

n about 103, n4/3 log n- n3/2 for n about 6 10 and n/(log n)3/2-- n4/3 for n about
6 x 1037. Nor is this result asymptotically the best; probabilistic constructions give
sharper upper bounds for all fixed depths. We can, however, say that it is asymptotically
the best explicit construction known, when the depth is fixed and the number of inputs
and outputs is large.

Edge-colouring in bipartite graphs provides a vivid and convenient language for
discussing connectors and their control algorithms. This relationship was observed by
Lev, Pippenger and Valiant [7] (who used it to describe parallel control algorithms)
and later by Hwang [6] (who did not, however, give any new results). We extend this
method in the present paper by using hyperedge-colouring of bipartite hypergraphs
to discuss generalized connectors. For the application of yet another combinatorial
colouring problem to networks, see Dolev et al. [4].

2. Networks and graph-colouring problems. A (p, q)-network is an acyclic digraph
with p distinguished vertices called inputs and q other distinguished vertices called
outputs. Vertices that are neither inputs nor outputs will be called links.

A request is a pair comprising an input and an output. An assignment is a set of
requests, no two of which have an input or output in common. A generalized assignment
is a set of requests, no two of which have an output in common.



578 DAVID G. KIRKPATRICK, MARIA KLAWE AND NICHOLAS PIPPENGER

A route is a directed path from an input to an output. A state is a set of routes,
no two of which have a vertex in common. A generalized state is a set of routes, any
two of which have at most an initial segment of their vertices in common.

An assignment or generalized assignment is realized by a state or generalized
state, respectively, if, for each request in the assignment, there is a route in the state
from the input of the request to the output of the request.

A (p, q)-connector is a (p, q)-network for which every assignment is realized by
a state. Let fk(P, q) denote the minimum possible size of a (p, q)-connector with depth
at most k. A generalized (p, q)-connector is a (p, q)-network for which every generalized
assignment is realized by a generalized state. Let gk(P, q) denote the minimum possible
size of a generalized (p, q)-connector with depth at most k. A (p, q)-crossbar is a
(p, q)-network with depth 1 and size pq, with an edge joining each input to each output.

We shall be particularly concerned with the three-stage construction shown in
Fig. 1. The first stage comprises r (a, c)-subnetworks, the second stage comprises c

(r, s)-subnetworks and the third stage comprises s (c, b)-subnetworks. An output of
each subnetwork in the first stage is identified with an input of each subnetwork in
the second stage to form a link and an output of each subnetwork in the second stage
is identified with an input of each subnetwork in the third stage to form a link. The
resultant is a (p, q)-network, where p ar and q- bs.

o o

o. c c b.,

o o

FIG. 1. The interconnection of subnetworks in three stages to form a network. The thick lines joining
subnetworks represent identifications of inputs and outputs to form links, not edges.

We shall be concerned with conditions under which, if various subnetworks are
connectors or generalized connectors, the resultant is a connector or generalized
connector. We shall systematically obtain such conditions by reducing them to graph-
colouring problems.

An (r, s, a, b)-graph is a bipartite graph (R, S, E) with vertices R { 1,. ., r} and
S {1, , s} and (possibly multiple) edges E such that at most a edges are incident
with each vertex in R and at most b edges are incident with each vertex in S.

A c-colouring of a bipartite graph is an assignment of the colours C {1,. , c}
to the edges of the graph such that the edges incident with any vertex are assigned
distinct colours.
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An (r, s, a, b)-hypergraph is a bipartite hypergraph (R, S, E) with vertices R
{1,..., r} and S-{1,..., s} and (possibly multiple) hyperedges E such that each
hyperedge is incident with exactly one vertex in R, at most a hyperedges are incident
with each vertex in R and at most b hyperedges are incident with each vertex in S.

A c-colouring of a bipartite hypergraph is an assignment of the colours U-
{1,. ., c} to the hyperedges of the graph such that the hyperedges incident with any
vertex are assigned distinct colours.

A c-hypercolouring of a bipartite hypergraph (R, S, E) is an assignment of subsets
of the colours C {1, , c} to the hyperedges of the graph such that the hyperedges
incident with any vertex in R are assigned disjoint sets of colours and the hyperedges
incident with any vertex in S are assigned sets of colours possessing a system of distinct
representatives.

The reductions of network conditions to graph-colouring problems are very trite.
Rather than present four such reductions in detail, we shall describe the paradigm
once. Given an assignment or generalized assignment, we construct a graph or hyper-
graph by associating a vertex in R with each subnetwork in the first stage, a vertex in
S with each subnetwork in the third stage and an edge or hyperedge in E with each
request or maximal set of requests having an input in common. We then apply a
graph-colouring theorem to obtain a colouring or hypercolouring of this graph or
hypergraph. We associated a colour in C with each subnetwork in the second stage.
From the colouring or hypercolouring, we construct assignments or generalized assign-
ments for the subnetworks. By hypothesis, there are states or generalized states realizing
these assignments or generalized assignments. We then patch together these states or
generalized states to obtain a state or generalized state for the resultant. In each case,
the graph-colouring theorem is a transparent paraphrase of the network condition.

3. Some graph-colouring theorems. The following proposition is perhaps the oldest
result concerning connecting networks (see Beneg [2, Thm. 3.1]).

PROPOSITION 1. If all the subnetworks are connectors, then the resultant is a
connector if

c >_- max {a, b}.

This proposition reduces to the following well-known graph-colouring theorem
(see Berge [3, Chap. 12, Thm. 2]).

THEOREM 2. Every r, s, a, b)-graph has a c-colouring if
c _-> max {a, b}.

Taking all subnetworks in Proposition 1 to be crossbars and choosing a b r
s In /2] yields n-connectors with depth 3 and size O(n3/2). Taking the subnetworks
in the first and third stages to be crossbars and constructing the subnetworks in the
second stage recursively yields n-connectors with depth 2k- 1 and size O(n+/k). This
is asymptotically the best explicit construction known for connectors with limited depth.

The following proposition is due to Masson and Jordan [8].
PROPOSITION 3. If the subnetworks in the first and third stages are generalized

connectors and those in the second stage are connectors, then the resultant is a generalized
connector if

c >_- max { as, b}.

This proposition reduces to Theorem 2 in the same manner as Proposition 1.
Taking all subnetworks to be crossbars and choosing a s In /3] and b r= In2/3]
yields generalized n-connectors with depth 3 and size 0(n5/3).
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PROPOSITION 4. If the subnetworks in the second and third stages are generalized
connectors and those in the first stage are connectors, then the resultant is a generalized
connector if

c>-a+(b(b-1)s) 1/2.

This proposition reduces to the following theorem.
THEOREM 5. Every r, s, a, b)-hypergraph has a c-colouring if

c>-a+(b(b-1)s) 1/2.

Proof. Let G be an (r, s, a, b)-hypergraph. Let G* be the hypergraph containing
those hyperedges of G that are incident with more than (bs/(b- 1))1/2 vertices in S.
There are at most (b(b-1)s) 1/2 hyperedges in G*. Let each hyperedge in G* be
assigned a distinct colour. It will suffice to show that this c-colouring of G* can be
extended to a c-colouring of G.

We shall prove this by induction on the number of hyperedges that are in G but
not in G*. If there are no such hyperedges, then we are done. If there is at least one
such hyperedge, let G’ be a hypergraph obtained by deleting one such hyperedge H
from G. By inductive hypothesis, the c-colouring of G* can be extended to a c-colouring
of G’. It will suffice to show that it can be extended to a c-colouring of G.

Let - be a vertex in R or S. Let us say that a colour is good at z if it is not assigned
to a hyperedge incident with r in G’. Let H be incident with the vertex/9 in R. All
but at most a- 1 colours are good at/9. The hyperedge H is incident with at most
(bs/(b-1)) 1/2 vertices in S. For each such vertex tr, all but at most b-1 colours are
good at tr. Since c> (a-1)+(b(b-1)s)1/2, at least one colour is good at every vertex
with which H is incident. Assigning this colour to H yields a c-colouring of G.

Taking all subnetworks in Proposition 4 to be crossbars and choosing a s n2/31
and b-- r= In 1/3 again yields generalized n-connectors with depth 3 and size O(n5/3).

Remark. It is not hard to see that Theorem 5 is, to within a constant factor, the
best possible. Clearly at least a colours may be necessary. We shall show that at least
1/2(b(b-1)s) 1/2 colours may be necessary. It will follow that at least max {a, 1/2(b(b-
1 )s) 1/2} ->_ 1/2(a + b( b 1 )s) 1/2) colours may be necessary.

To show that at least 1/2(b(b-1)S) 1/2 colours may be necessary, it will suffice to
construct a hypergraph (V, E) with at most s vertices in V and at least 1/2(b(b-1)S) 1/2

hyperedges in E such that there are at most b hyperedges incident with any vertex
and every pair of hyperedges is incident with a common vertex. It will in fact suffice
to construct a hypergraph V, H) with at most s vertices in V and at least s 1/2 hyperedges
in H such that there are at most 2 hyperedges incident with any vertex and every pair
of hyperedges is incident with a common vertex, for then we may take E to contain
[b/2J >-1/2(b(b-1)) 1/2 copies of each hyperedge in H.

Let t- [sl/2]. Then t(t-1)/2-<_ s. Let K be a complete graph with vertices and
t(t-1)/2 edges. Construct (V, H) by associating a vertex in V with each edge in K
and a hyperedge in H with each vertex in K (a vertex in V is incident with a hyperedge
in H if and only if the associated edge is incident with the associated vertex in K).

PROPOSITION 6. If all subnetworks are generalized connectors, then the resultant is
a generalized connector if

c_-> (a-1)[log2 (2s)J +2b.

This proposition reduces to the following theorem.
THEOREM 7. Every r, s, a, b)-hypergraph has a c-hypercolouring if

c-> (a- 1) [log2 (2s)] +2b.
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Proof. Let G be an (r, s, a, b)-hypergraph. We shall consider two cases. If
[log_ (2s)J >- 2b, then c >- (a 1) [log2 (2s)J + 2b -> ab. We can assign disjoint sets of b
colours to each of the a or fewer hyperedges incident with each vertex in R. A vertex
in $ is incident with at most b hyperedges, so the sets of colours assigned to these
hyperedges will possess a system of distinct representatives.

Suppose, then, that [log2 (2s)J <= 2b. We shall prove that G has a c-hypercolouring
in which [log2 (2s)J colours are assigned to each hyperedge. The proof is by induction
on the number of hyperedges in G. If G has no hyperedges, then we are done. If G
has at least one edge, let G’ be a hypergraph obtained by deleting one hyperedge H
incident with a vertex p in R. By inductive hypothesis, G’ has a c-hypercolouring in
which [log2 (2s)J colours are assigned to each hyperedge. It will suffice to show that
this c-hypercolouring can be extended to a c-hypercolouring of G by assigning a set
of [log2 (2s)J colours to H.

Let us say that a colour is good at p if it does not belong to the union of the sets
of colours assigned to the hyperedges incident with /9 in G’. All but at most (a-
1) [log2 (2s)J colours are good at p, so at least 2b colours are good at p. Let o- be a
vertex in S. Let us say that a colour is good at tr if the sets of colours assigned to the
hyperedges incident with tr possess a system of distinct representatives not containing
that colour. For each o- in S, all but at most b colours are good at tr. Let K be a set
of colours that are good at p. Assigning the set K to the hyperedge H will yield a
c-hypercolouring of G if, for every tr in S, some colour in K is good at tr. There are
at least (2b)... (2b-k+ 1)/k! ways of choosing k<=2b colours that are good at p.
For each tr in S, at most (b)... (b- k + 1)! k! of these do not contain a colour that
is good at tr. Thus at most s(b) (b k + 1 )! k! ofthem do not yield a c-hypercolouring
of G. If k [log2 (2s)J -<2b, then

s<2_-<(2b)... (2b-k+l)/(b)... (b-k+l),

and there exists a set K of k colours that yields a c-hypercolouring of G. [3

Taking all subnetworks in Proposition 6 to be crossbars and choosing a s
[(n/log2 n)/] and b r= [(n log n) 1/2] yields generalized n-connectors with depth
3 and size O(n3/2(log n)/2). More generally, we can prove by induction on k that
gk-(n) O(n+l/k(log n)(k-l/). If k 1, and n-crossbar provides the basis g(n)=
O(n2). If k=>2, we apply Proposition 6 with a=[nl/k(logn)(k-3/], b=
[nl/k(log /,/)(k-I)/2], r= [n(k-)/k/(log n)(k-3)/21 and s [n(k-1)/k/(log r/)(k-1)/2]. We
have r>-s, and gEk-a(r, S)<= [r/s]g2k-a(S), as can be seen by identifying the outputs
of [r/s] disjoint generalized s-connectors. Thus, by inductive hypothesis, we have
gEk_a(r, S)--O(rs1/(k-1)(logs)(k-2)/2). Taking the subnetworks in the first and third
stages to be crossbars and constructing the subnetworks in the second stage recursively
completes the induction. This is asymptotically the best construction known for general-
ized connectors with limited depth. It matches, to within logarithmic factors, the best
explicit construction known for connectors.

Remark. It is possible to improve Theorem 7 as regards constant factors but we
do not know whether it is, to within a constant factor, best possible. As we saw in the
proof of the Theorem, ab colours are always sufficient. We shall show that (a 1) b / 1)
colours may be necessary, if r and s are large enough.

Let [x, y] denote the binomial coefficient x(x- 1) (x-y+ 1)/y!. Given a and
b, construct the hypergraph H as follows. There are r b[(a- 1)b, b- 1] vertices in
R, each incident with a hyperedges, for a total of ar hyperedges. For each set of b
hyperedges, there is a vertex in S incident with just those b hyperedges, for a total of
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s =[ar, b] vertices in S. Suppose that H can be hypercoloured with c (a 1)b colours.
We shall derive a contradiction.

Because of the vertices in R, each of the c colours can be assigned to at most r
hyperedges. It follows that at most cr/b (a 1) r hyperedges are assigned b or more
colours, and thus that at least at-(a- 1)r r hyperedges are each assigned at most
b-1 colours. There are [c, b-1] ways of choosing b-1 colours; thus some set of
r/[c, b- 1] b hyperedges are assigned colours from some set of b- 1 colours. These
b hyperedges are incident with some vertex in S, but their colours cannot possess a
system of distinct representatives. This contradiction shows that at least (a- 1)b + 1
colours are necessary.

The foregoing example excludes the possibility that c O(max {a, b}) is sufficient
(as is the case for edge-colouring bipartite graphs), but it does not exclude the possibility
that c O(max {r, s, a, b}) is sufficient. If this were true, then taking all subnetworks
to be crossbars and choosing a=b=r=s= In 1/2] would yield generalized n-
connectors with depth 3 and size O(n3/2). Taking the subnetworks in the first and third
stages to be crossbars and constructing the subnetworks in the second stage recursively
would yield generalized n-connectors with depth 2k- 1 and size O(n/l/k). This would
match, to within a constant factor, the best explicit construction known for connectors.
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ON SUBCODES OF GENERALIZED SECOND ORDER
REED-MULLER CODES*

H. J. TIERSMA

Abstract. We study sets of quadratic forms in m variables over GF(q) such that the difference of any
two quadratic forms in the set has rank m. It is easily seen that the cardinality of such a set is at most q",
and we shall give four constructions of such sets which have cardinality exactly qm (where q is an odd

prime power). The first construction works only in the case when rn is odd, and uses a BCH code. The
second is an ad hoc construction in the case when m 2. The third construction is due to H. A. Wilbrink,
and generalizes the second (though not in an obvious way). The fourth uses symmetric representations of
finite fields and is due to G. Serousi and A. Lempel. These sets correspond to subcodes of the generalized
second order Reed-Muller code, and we give the weight distribution of these codes.

AMS(MOS) subject classifications. 94B05, 94B15

Introduction and history. Reed-Muller codes and especially first and second order
Reed-Muller codes over GF(2) have been studied extensively by Kasami, Lin, Peterson,
Goethals and Delsarte (see for instance [5, Chaps. 13, 14 and 15]).

The weight distribution ofthe binary second order Reed-Muller code was obtained
in the following way: First we notice that the second order Reed-Muller code is a
union of cosets of the first order Reed-Muller code. Then we observe that these cosets
are in 1-1 correspondence with symplectic forms, and that the weight distribution in
a coset is uniquely determined by the rank of the corresponding bilinear form. Now
by counting symplectic forms of given rank, the weight distribution of the second order
Reed-Muller code can be obtained. In [7] McEliece obtained the weight distribution
of a generalized second order Reed-Muller code over GF(q) (where q is a prime
power), by using almost the same method. The only difference is that he uses quadratic
forms instead of symplectic forms.

The next step is the observation that the minimum weight of a coset increases if
the rank of the corresponding form increases. In the binary case, one obtains subcodes
of the second order Reed-Muller code which have a large minimum distance by
constructing maximal sets of sympletic forms with the property that the rank of the
difference of any two symplectic forms in the set is maximal. If m is an integer, and
2 is the length of the (binary) Reed-Muller code, then it appears that for m odd
these subcodes are linear (in fact extended BCH codes), but for m even these subcodes
are the nonlinear Kerdock codes.

In the following sections we shall extend these results to generalized Reed-Muller
codes. In 1 we establish our notation. Then in 2 we shall say something about the
weight distribution. Section 3 contains the constructions of maximal sets of quadratic
forms. Finally in 4 we give the weight distributions of the corresponding codes and
conclude with some remarks.

1. Generalized Reed-Muller codes. In this section we establish our notation and
give some results on generalized Reed-Muller codes. For the proofs of the theorems
we refer to [1]. Let q be an odd prime power and let xi be a variable taking values in
GF(q), 1 <= <= m, (m [). Let x:= (Xl," , x,). P denotes the set of polynomials of
total degree less than or equal to z,, in the variables xl,’" ", Xm, with coefficients from
GF(q). V denotes a j-dimensional vector space over GF(q).
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We consider GF(qm) as an m-dimensional vector space over GF(q). If a is a
primitive element of GF(q’) then 1, a,. ., a-1 is a basis for GF(qm), and we can
write:

(1) aj= l)j.iOZ
i-1 where vj,, GF(q), O<-j<-q’-2.

i=1

Withf P there corresponds a vector v(f), having qm components; The ith component
of v(f) is:

(2) vi(f) := f( ti-2,1, ti-2,m), i= 2,’’’, q".

The initial component is: Vl(f)=f(0,..., 0). So v(f) can be viewed as a table giving
the values of f in the points of GF(qm) in some fixed order.

DEFINITION 1.1. Let 0<_--,_--<(q-1)m. The q-ary ,th order generalized Reed-
Muller code GRM(q, m) consists of the vectors: {v(f)lfe P}.

DEFINITION 1.2.

k,,(q,m):= (,-1,’" .,s,) 0--<si_<--q-1, si<-t,
i=1

THEOREM 1.3. GRM(q, m) is a linear code of dimension k(q, m) over GF(q).
DEFINITION 1.4. The code GRM*(q, m) consists of the words of GRM(q, m)

from which the first coordinate is deleted.
Remark 1.5. Each vector of GRM(q, m) satisfies an overall parity check, so the

words of GRM(q, m) are in 1-1 correspondence to those of GRM*(q, m).
m--1DEFINITION 1.6. For h in the range 0_-< h < q we define w(h) by: w(h):- =o ,

m--1where h i=o tq, 0-<_ 8i q- 1.
THEOREM 1.7. The code GRM*(q, m) is a cyclic code having zeros" {aal0< w(h) <

re(q- 1)- z,}.

2. Weight distributions. In this section we shall give an outline of a method for
finding the weight distribution of the generalized first and second order Reed-Muller
code. The detailed calculations are omitted, but can be found in [7].

From the definition of GRM(q,m) it is easily seen that GRM(q,m)c
GRM/l(q, m). Therefore GRM2(q, m) is a union of cosets of GRM1(q, m). Obviously
with each quadratic form Q(x) (i.e. Q(x)= xiQx where Q is a symmetric matrix
over GF(q )), corresponds the following coset of GRM1 q, m in
GRM2(q,m): {v(Q(x)+i= a,xi+e)leGF(q),aiGF(q),l<-i<-m}. Conversely
with each coset of GRM(q, m) in GRM(q, m) corresponds a unique quadratic form.

THEOREM 2.1. Every quadratic form of rank r in V,, can be transformed into

precisely one of the following standard forms by a linear nonsingular transformation of
the variables:

If r is odd:

type 1" Q(x) XlX +. + Xr-EXr-1 + X2,
type 2" Q(x) XlX+" "+ Xr-Xr-1 + TX;

If r is even:

type 3: Q(x) XlX2 +" + Xr-lX,
2 ,yX2rtype 4: Q(x) xx= +. + Xr-3X-2 + Xr-

where 3’ is a fixed nonsquare element of GF(q).
For the proof of this theorem we refer to [6] or to [7].
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DEFINITION 2.2. We shall call a quadratic form to be of rank r and type i, if it
is equivalent to the standard form of rank r and type i. A coset of GRMI(q, m) in
GRME(q, m) is said to be of rank r and type i, if the corresponding quadratic form is
of rank r and type i.

THEOREM 2.3. The weight distribution of a coset of GRMI(q, m) in GRME(q, m)
depends only on its rank and type.

For a proof of this theorem we refer to [7].
Using [7, Tables 4, 7 and 8], the weight distribution of a coset of rank r and type

can be obtained. The complete weight distribution of the second order generalized
Reed-Muller code is given in [7, Table 10].

3. Maximal m-sets and subeodes. If we look at the weight distribution of cosets,
we see that the minimum weight in a coset increases if the rank of the coset increases
(Cf. [7]). We shall now try to find sets of quadratic forms on Vm satisfying:

(a) 0 S,
(b) for all Q1, Q2 s: r(Q,- Q2) m.

These sets correspond to subcodes of GRM2(q, m) (taking the union of the cosets
corresponding to the forms of S). By (a) the corresponding subcode contains
GRM(q, m). By (b) the corresponding subcode has a high minimum distance (and
minimum weight). We shall try to make the sets S as large as possible. We have the
following theorem.

THEOREM 3.1. If S satisfies (a) and (b), then IS[<= q’.
Proof. Look at the first row of the matrices corresponding to the quadratic forms

in S, and observe that every m-tuple over GF(q) can appear at most once.
DEFINITION 3.2. If S is a set of quadratic forms satisfying (a), (b) and the bound

of Theorem 3.1 with equality (i.e. ISI q"), then S is called a maximal m-set.
In the following we will construct subcodes of GRM(q, m) which correspond to

maximal m-sets. Also we will construct maximal m-sets.
Construction 1. In this construction we shall use the theory of cyclic codes, which

can be found in [5, Chaps. 7, 8].
We shall use for instance cyclotomic cosets C (cf. [5, p. 197]) and minimal

idempotents 0* (cf. [5, p. 221]).
We also require the following lemmas and remarks.
LEMMA3.3. Let a t, a <- m(q 1). The minimalpositive integer satisfying w( h >- a

is: h (/z+l)qP-1, where tx, p are such that a=p(q-1)+lx (0<-/x <q-l).
Proof. Clearly h=(q-1)+(q-1)q+...+(q-1)qP-+lxq. l]

Let S(x) be a quadratic function (corresponding to a codeword v of GRM2(q, m)).
We can consider the coordinates of v to be the values S() for GF(qm). S corre-
sponds to a quadratic form and therefore to a symmetric bilinear form"

B(, n) S(+ ,)- S(:) S()+ S(0).

We now observe that S() is equal to 1In times the Mattson-Solomon polynomial
corresponding to v*. (This follows from [2, p. 417] since

S(sC) S(T,(XlSC), T,(A,:)) 1F(sC),
where T, is the trace function (cf. [5, Ch. 4]), F is the Mattson-Solomon polynomial
corresponding to v*, and A1,’’ ", A, is the trace dual basis of 1, a,. ., a"- where
a is a primitive element of GF(qm).)

The rank of the bilinear form is equal to the rank of the quadratic form.
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LEMMA 3.4. A bilinear form can be written by means of the trace-function as:
B(:, r/)= T,(/LB(:)), where LB is an endomorphism of V. en: rank(B)=
m dim (Ker (L,)).

For a proof of this lemma we refer to [3].
Now we are ready to give the first construction. Let be the BCH-code over

GF(q), with designed distance qm_q-l_q<-)/2_ 1 and generator polynomial
g(x) 1.c.m. (m(x),..., m_l(X)), where m is the minimal polynomial of a, 1 j

Let be the extended code ( extended with an overall parity check).
THEOREM 3.5.
(1) GRM(q, m) GRM(q, m), GRMI(q, m) GRM2(q, m).
(2) e dimension of is 2m + 1.
(3) has nonzeros" {alh Co C_ C_<q(m- 1)+)}.
(4) e qquadratic forms which correspond to the qm different cosets of

GRM q, m) in , form a maximal m-set.

Proof
(1) Let h{1,2,..., q-q-l-q<-)/2-2} (i.e. ah is a zero of ). Then by

Lemma 3.3" 0< w(h) < m(q- 1)- 1 (since otherwise h (q- 1)q-- 1 >
(q --1)qm-l q<-)/2-- 2). According to Theorem 1.7 we now have that every zero of

is a zero of GRM(q,m) and thus that GRM(q,m) . Let h be such that
0< w(h) m(q-1)-2, and let (0(h), , _(h)) be the q-ary representation of h.
Then with some cyclic shift of this q-ary representation there corresponds an h* for
which h* < (q-2)qm-- 1 (from Lemma 3.3). Since h* is in the same cyclotomic coset
as h, and h*<qm-qm-l-qm-l-l<qm-qm--q(m-1)/2-2, a h is a zero of , and
therefore we have that every zero of GRM(q, m) is a zero of and thus that
GRM(q,m). From Remark 1.5, it now follows that GRM(q,m)c
GRM2(q, m ).

(2), (3) The q-ary representation of -1 is:

[d,_l, , do]: (q-2, q- 1,. , q- 1, q-2, q- 1, , q- 1,, q-2).
(m-3) -(m-3)

The nonzeros of c are the a h such that h has a q-ary representation
[Sm-l(h),’", 8o(h)] for which every cyclic shift is lexicographically greater than
[dm-l," ", do]. So h has a q-ary representation which is a cyclic shift of one of the
following sequences:

(q 1, , q 1), giving one possibility for h" h Co;

(q- 1, , q- 1, q- 2), giving m possibilities for h" h C_1;

(q-1,. .,q-l,q-2, q-1,. ., q-l, q-2),

giving m possibilities for h" h

(4) From (3) the idempotent of the code c is 0o+ 0*+ 0, where k=q(m-)/2+ 1
(cf. [5, p. 221,222]), so the code consists of the codewords coo+ a(x)O*l + b(x)O*. The
Mattson-Solomon polynomial ofsuch a word is (cf. [5, p.248])" c +Tm(flz) +
(where// and f12 are elements of GF(q") depending on a(x) and b(x)).

From the remark preceding Lemma 3.4 the corresponding bilinear form is equal
to"
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n(, n)=l {(c+ 7L(t3,[+ ,])+ 7L(t[+
n

-(c+ 7L(3,O +. Tm(/3))
-(c+ 7L(3,n) + 7L(/,7))+(c+ 7L(0) + 7L(0))}

1
(Tz(t[(;+ ,)--n

where/32 e GF(q)* if b(x) # O.
Remembering that k q(,,,-1)/2+ 1, we find (after some calculations) that

where

B(, r/)=1
n

Ls( rl 2rl q("-’v2+ (m+l)/2,l.lq(m+,)/2.
We now have B(s, r/) in the form of Lemma 3.4, and the rank of B is equal to

m-dim (Ker (Ls)). But Ker (Ls) {0}, since: Ls(n) =0 iff

(’+’"n +n)(-’’’ 0,
i.e. iff

Suppose is a solution of the last equation. If # 0, then a for some u ,
since a is a primitive element of the field GF(q’). Also 2 a* for some g , for
the same reason.

Since 0, it follows (after substitution of (=a") and fl2(=ag)) that a"q-)
-agq+’/=-q). Therefore we have the congruence u(q--1)g(qm+l/2--q)+
(q-- 1) mod (q- 1).

Let u’ Z be such that
(re+l)/2

u=u,+g q -q.
q-1

Then this u’ must satisfy the congruence (q 1)u’ (q" 1) mod (qZ 1). Therefore
we have that (q-1)u’=(q’-1)+j(q’-1) for some jZ. This yields the equation:

qm--1 q’--1
2u’-2j-.

q-1 q-1

The left-hand side of this equation is obviously an even number, while the right-hand
side of this equation is odd (since m is odd). This yields a contradiction.

Conclusion. Ker (Ls)= {0}, and so" the rank of the form is m.
Construction 2. For m 2 we define the following maximal m-set:

S, := (Xl, x) e GF(q)
x2 Tx

where is a nonsquare element of GF(q).
THEOgEM 3.6. S is a maximal 2-set.
Proof S forms an additive group. ]S] q2. If (Xl, x2)# (0, 0) then

x x



588 H.J. TIERSMA

THEOREM 3.7.

# type 3 matrices in Sv) type 4 matrices in Sv) 1/2(q2 1).

Proof The determinant of a type 3 matrix is -r2, for some re GF(q)*. The
determinant of a type 4 matrix is --),rE, for some re GF(q)* (where), is a nonsquare).

If (x, x2) runs through GF(q)2\{(O, 0)}, ),x-x takes equally often as values a
square and a nonsquare (see [6]).

Construction 3. (Wilbrink’s construction.) We shall now give a general construc-
tion method for maximal m-sets, which is due to H. A. Wilbrink.

Let a(x) be an irreducible polynomial of degree m,

a(x) ao + alX +" + amxm, am 1.

Now: GF(q)[x]/(a(x)) GF(qm), say with isomorphism . Let C be an m m matrix
which has a(x) as minimal polynomial. (For instance we can take for C the companion
matrix of a (x).)

LEMMA 3.8. Iff(x) G GF(q)[x]/(a(x)), f#0, then f(C) is a nonsingular matrix.

Proof Letf(x) GF(q)[x]/(a(x)),f# O. Then d/(f(x)) 0 and therefore O(f(x))
has an inverse. Define g(x) to be: g(x):= o-l(o(f(x))-l). Then: g(x)f(x) -f(x)g(x)
o-l(o(f(x))O(f(x))-l)=b-l(1)= 1. So f(C)g(C)= I=g(C)f(C) and f(C) is non-
singular.

Now it is possible to find matrices M such that:
(A) MT-- M.
(B) MC CTM.
Since these two equations are in fact (’)+(7)= m2-m linear homogeneous

equations in the m2 variables (M)a, in fact there are at least q" solutions for M.
THEOREM 3.9. IfM is a solution of (A) and (B) then M 0 or M is nonsingular.
Proof Suppose that M is singular and let x e N(M), x#0, where N(M)=

{xlMx 0). Since MC C’M it follows that MC= CM (by induction), and there-
fore Mf(C) =f(C)TM for every polynomial f Now Mf(C)x =f(C)TMx 0; So
f(C)x N(M) for every f(x) GF(q)[x]/(a(x)). We conclude that dim (N(M)) m
and therefore that M 0. [3

Let Mo be a solution of (A) and (B), Mo # 0.
DEFiNiTION 3.10.

S, := {Mof( C)[f(x) GF(q)[x]/(a(x))}.

THEOREM 3.11. Sa is a maximal m-set.

Proof O Sa. The matrices Mof(C) are symmetric:

(Mof( C)) T f( C) TMff f( C)rMo Mof( C).

The matrices of S are nonsingular: Mo is nonsingular, f(C) is nonsingular for every
f(x)6 GF(q)[x]/(a(x)) unequal to 0, so Mof(C) is nonsingular.

The difference of two matrices of S is an element of S, and therefore nonsingular.
SI qm, SO Sa is maximal. [3

LEMMA 3.12. S is the set of solutions of equations (A) and (B).
Proof The matrices Mof(C) are symmetric: Mof(C)=(Mof(C)) T. So equation

(A) is satisfied.

(Mof(C))C= Mo(f(C)C)=(f(C)C)TMo Cr(f(C)TMo) CT(MoF(C)).
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So equation (B) is satisfied.
Since the solutions are nonsingular or 0 and form an m-set the number of solutions

is less than or equal to qm, SO the number of solutions is qm_ [Sa[. [3

COROLLARY 3.13. IfM1 and M2 are both solutions of the equations (A) and (B),
then there is a polynomial fl such that ME Mlfl(C).

LEMMA 3.14. There exists a polynomial g(x)GF(q)[x]/(a(x)), such that
det (g(C)) is a nonsquare element of GF(q).

Proof. The set of matrices { f(C)lf GF(q)[x]/(a(x))} is a field, which is isomorphic
to GF(qm), with isomorphism: p(f(C))= @(f). (Where p is defined as before.)

Let sc be a primitive element of the field GF(q"). Let b(x) be the minimal
polynomial of : i.e.:

b(x) (x )(x q) (x q-’) bo+ blX +’" + bmXm.

Let g(x):-- I-1(:), and define D to be: D:=g(C). Then b(x) is the minimal
polynomial of D, since:

1) 0= q-1(0)= 0-1(b())= b(q-l(:))= b(D).
2) If c(x) is a polynomial such that c(D)=0, then

O= q(O)- (p(c(D))= c((p(D))= c((g(C)))= c(q(g)) c(),

and so we have that b(x)lc(x). Now

det (D)= bo q. q’-’= (qm-1)/(q-1)

Since sc is a primitive element of GF(q"*), (qm-1)/(q-1) is a primitive element of GF(q),
and therefore is a nonsquare element of GF(q). [3

THEOREM 3.15. Let Mi denote the set of type solutions of the equations (A) and
(B), i= 1, 2, 3, 4. Ifm is even then M1 M2 , [M3[ M41. Ifm is oaa then M3 M4

Proof. Suppose that m is even. Then obviously there are no type 1, 2 solutions.
So the set M of solutions can be written as {0} U M3 O M4.

Let T1 and T2 be two solutions of the equations (A) and (B). Then

(T1) det (T2)
fnonsquaredet
square

if type (T1) type (T_),
if type (T) type (T2).

Let g(x) GF(q)[xJ/(a(x)) be such that det (g(C)) is a nonsquare. (Such a g(x)
exists, see Lemma 3.19.) Consider M; { Tg(C)I T e M3}, M { Tg(C)I T M4}. Since
det (r) det (Tg(C))= det (r)2 det (g(C)) is a nonsquare, we have that: M; c M4, and
M M3.

Therefore we have that IM31 IM;I -< IM4I IM;I--< IM3I, from which we conclude
that M31 M41. If m is odd one can show in an analogous way that M3 M4 ,

Construction 4. Another general construction method for maximal m-sets is due
to G. Seroussi and A. Lempel.

THEOREM 3.16. Everyfinite extension GF(q") of a finite field GF(q)(m eN), has
a symmetric representation (i.e., there exists a set of symmetric matrices of order m, over
GF(q) which is isomorphic to the field GF(qm)).

The proof of this theorem can be found in [4]. Now such a set forms a maximal
m-set.
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4. Parameters and weight distribution of the corresponding codes, some
remarks. Using the results about the weight distribution of cosets of rank r and type
(cf. [7]), one can calculate the weight distribution of the codes corresponding to the
maximal m-sets.

The extended BCH-code of construction 1 has parameters [qm, 2m+ 1, qm_
qm-l_q(m-1)/2], and weight distribution:

wt 0 q,,, q- q(m-1)/2

1/2(q-1)(qm-1)q

qm _qm-1

(qm-1)(qm+q)

qm qm-I + q(m-1)/2

1/2(q--1)(qm--1)q

qm

The codes corresponding with the sets Sv of Construction 2 have parameters" q2, 5, q2
2q + 1]; and weight distribution:

wt 0 q2_2q +

4 1/2(q2 )q2

q2 q q2 q q2 q +

1/2(q )q2(q2 q3 q 1/2q2(q 1)(q2

q2--1

1/2(q2

q2

The codes corresponding with Sa of Construction 3 and the codes corresponding to
the symmetric representation of GF(qm) over GF(q) have the same parameters and
weight distribution.

These codes have:
1) the same parameters and weight distribution as the extended BCH-codes of

Construction 1, when m is odd.
2) parameters: [qm, 2m + 1, qm qm- _(q_ 1)qm/2-1]; and weight distribution:

qm--qm---(q--1)qm/2-

1/2(qm-1)qm

qm_qm-l_qm/2-1

1/2(qm-1)(q-1)q

qm _qm-I qm qm-l + qm/2-1

1/2(qm-1)(q--1)qm

Wt qm-qm-l+(q-1)qm/2-1

1/2(qm-1)qm

qm

when m is even.
Remarks.
1. The codes of Construction 3 when m is odd are in general not equivalent to

the extended BCH-codes of construction 1. If we take for example q 3 and m 3
and we look at the maximal 3-set which corresponds to the extended BCH-code c,
then we find:

Xl x2 Xl- x2+ x3 --Xl
)S x x2+ x x x2

--X X2 X3
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The only matrices C such that for all M S: MC CrM, are of the form c/,
where I is the identity matrix. Since these matrices do not have an irreducible minimal
polynomial, the set S can not come from Construction 3 and therefore the codes are
inequivalent. From this example it also can be seen that the codes of Construction 4
are in general not equivalent to those of Construction 1, since S is not closed w.r.t.
matrix multiplication.

2. Take m-2, q an odd prime power and y GF(q), a nonsquare. Define
f(x) := x2- 2x + 1 ,)/-1 (x 1)2- ,)/--1. Then f is irreducible (y-1 is a nonsquare).

Take

Then f is the minimal polynomial of C.
Take

Then MC is a symmetric matrix. Now from Construction 3" {M(aC+bI)l(a, b)
GF(q)2} is a maximal 2-set. Since

M(aC + bI)
a

a+b a+b),a
the above maximal 2-set is equal to

(Xl, x2)e GF(q)2} Sr

if we take a
From this we conclude that Construction 3 is a generalization of Construction 2.
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VOLTERRA MULTIPLIERS I*

RAY REDHEFFERf

Abstract. If p is a real square matrix, a Volterra multiplier is a positive diagonal matrix a such that, in
the sense of quadratic forms, ap <= O. Ever since the pioneering work of Volterra over half a century ago, it
has been known that these multipliers are a significant aid in the study of stability. However, the utility of
the method is diminished by the difficulty of deciding whether the multiplier exists. Here we give a number
of new criteria for existence, usually under the hypothesis that p is combinatorially symmetric; that is, Po 0
implies Pji 0. This is much weaker than the condition "PoPJ < 0 unless P0 P 0" which has been used
by Volterra and others, and greatly increases the scope of the results. Although the primary emphasis is on
sufficient conditions that are easy to use, we give necessary and sufficient conditions for several cases of
practical interest.

AMS(MOS) subject classifications. 15A45, 15A48

1. Introduction. An important class of interactive systems can be described by
differential equations of the form

(1) ii u e + pou 1, 2,. , m
j=l

where ui(0)> 0 and all variables are real. This system was introduced by Lotka and
Volterra around 1930 and has been extensively studied ever since. Together with its
analogues and extensions it occurs in such diverse problems as pest control, the
management of fish populations, the propagation of genetic traits, the spread of
epidemics, and the kinetics of chemical reactions. In most applications one wants to
know the long-term behavior: Does each ui eventually settle down to a limiting value?
If so, is the value independent of the initial conditions? If not, is there a periodic or
an almost periodic solution? Do any of the populations (if it is a question of ecology)
ever become extinct?

Conditions on the matrix p (P0) necessary and sufficient to guarantee any one
of the above behaviors are not known. However, a significant and useful hypothesis,
due to Volterra, is that there exist positive multipliers ai such that, in the sense of
quadratic forms, (aip0)<= O. Volterra’s hypothesis is verified in many cases of practical
interest and it leads to a great deal of added insight. The usefulness of this hypothesis
is not confined to the system (1) but extends to systems of the form

(2) ii N(u)f(ui) ei + pog(u)

and to other generalizations of (1), some of which involve time delay or diffusion. A
sample of such investigations can be found in [12], [13], [15], [20], [33], [34], [35], [36],
[37], [39], [41].

The problem of obtaining usable criteria for the existence of Volterra’s multipliers
ai has been open ever since the hypothesis (ap0) <- 0 was introduced by Volterra about
a half century ago. Not until 1978 were satisfactory necessary and sufficient conditions
known even for the case m 3, and the discovery of such conditions by Cross [7]
marks what is perhaps the most significant advance until that time. The result of Cross

* Received by the editors May 24, 1983, and in revised form May 15, 1984.
f Department of Mathematics, University of California, Los Angeles, California 90024.
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is used effectively in [41] but the lack of simple sufficient conditions in the general
case remains an obstacle to further progress.

Such conditions are obtained in [38] but only under the supplementary hypothesis
that PoPji < 0 whenever Pij(i -j) 0. This inequality agrees with the Volterra hypothesis
for the prey-predator case in (1) but is not needed for the study of (2) and its
generalizations as outlined above; the differential equations aspect of the theory goes
through equally well with no hypothesis on the sign of pop,i, provided the multipliers
ai are known to exist. For this reason it seems desirable to extend the theory of [38],
[39] by dropping the condition PoP < 0 and such is a principal goal of Part I. The
main result [38] is summarized in 18 and is generalized in 19-22. An extension of
the theorem of Cross to matrices of arbitrary order is given in Part II (this issue,
pp. 590-598) together with a number of illustrative examples.

To avoid unnecessary clutter in the statement of our theorems we agree once and
for all that p is a real m by m matrix with m >_-2. Since m is regarded as fixed, we do
not carry m as a separate parameter.

2. The classes Ao and A1. The following definition is important in the sequel:
DEFINITION 1. It is said that p Ao or p A1 if there exists a positive diagonal

matrix a such that, in the sense of quadratic forms, ap <= 0 or ap < 0, respectively.
When our results pertain to both classes A we generally formulate the proofs for

one class only, leaving the other case to the reader. At first glance the condition ap <- 0
associated with Ao seems more restrictive than bpc <- 0 where b and c, like a, are positive
diagonal matrices. However the identity

x c bpx y bpcy, x cy,

shows that in fact bpc<-O implies ap <-_0 with a- c-lb and hence it implies p Ao.
Taking b- I, the identity matrix, we see that the definition of the class Ao could be
based on the inequality pa <-0 rather than ap <-O. This in turn shows that p Ao if,
and only if, pt Ao. Similar remarks apply to A. These well-known observations are
used below.

3. The classes Po, P1 and P. Some further classes of matrices with which we shall
be concerned are defined as follows:

DEFINITION 2. It is said that p Po if all the principal minors are nonnegative,
p P if all the principal minors are positive, and p P if the leading principal minors
are positive.

The distinction between the classes P and P1 is important in applications, because
to test for p P one would have to examine

m)
determinants, while for p P1 we need examine only m determinants. If p is symmetric
the Hurwitz criterion shows P P1, since p P and p P1 are both necessary and
sufficient for p > 0. However, no such result is true in general and the distinction
between P and P must be carefully observed. We shall return to this matter in 25.

There is an extensive literature pertaining to the relation among classes such as
P, A and several others [1], [4], [5], [6], [7], [9], [17], [28], [32]; cf. also [11], [12], [14],
[16], [18], [27]. In 4, 5, 6 we summarize those results that are most germane to the
present investigation. Although some of the proofs are different from those in the
references cited, the results are known, and this part of the paper should be regarded
as expository.
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4. Triangular matrices. If p is a triangular matrix with Pii < 0 for i= 1, 2,. -, m,
then p c A automatically [1], [17]. To see this, let p be upper triangular, so that all
elements below the diagonal are 0. Let us then form the matrix r =ap +pta together
with its principal diagonal determinants

DI rll, D2=det ( rll r12)
r2 r22/

The hypothesis Pll < 0 gives O < 0. The term a2 occurs in D2 only in r22 and is readily
checked that DE > 0 if a22 is large enough. Likewise a occurs in D only in the element

r33 and we have D 0 if a is large enough. Continuing in this way, we see that we
can choose first a --1, then a2, then an, and so on, in such a way that the Hurwitz
criterion for r is satisfied. This shows r < 0 and hence ap < 0 also. The argument is not
quite as obvious if p is lower triangular, but p c A1 <:>pt c A1 as seen above.

5. A necessary condition. That pc A1 implies -pc P is deduced in [7] from a

well-known theorem of Lyapunov, to the effect that the matrix equation ap+pta <0
has a positive definite symmetric solution a if, and only if the characteristic values of
p have negative real parts. It was pointed out by one of the referees that the result
also follows from a theorem of Ostrowsky and Taussky [30] which is quoted without
proof in [2]; namely, if A-B / C, where B is symmetric, C is skew symmetric and
B> 0, then det A> det B. This theorem not only gives the desired result virtually
by inspection, but also sheds light on other aspects of the problems considered
here.

Although the two proofs sketched above are both short and illuminating, the
theorems upon which they are based are not quite elementary. Actually the desired
result, p c A implies -p c P, can be deduced from the fact that if any matrix A satisfies
A > 0, then det A > 0. An extremely simple proof of this for symmetric matrices is
given by Beckenbach and Bellman [2] and their proof applies to general matrices A
without change. In the case at hand we get first det (-ap)> 0, then det (-p)> 0, and
finally a similar result for each principal submatrix by the well-known method of
specializing the quadratic form. (Take some of the variables to be 0.) This gives -p c P
and completes the proof. Applying the result to p- eI and letting e --> 0+, we see that
p c Ao implies -p c Po.

The condition p c P is far from sufficient for p c A1 or even for p c Ao, but if the
off-diagonal elements have the same sign, it is sufficient for a condition of "quasi
diagonal dominance" that has been used with success, chiefly by Ladde, in the study
of stability [22]-[26]. Examples of other conditions leading to stability are in [8], [10],
[14], [29], [34]; we do not want to give the impression that every stability study involves
the Volterra hypothesis.

6. Symmetric matrices. Let p be symmetric and p c Ao. Then -p c Po, as seen
above, and hence p <-0 by the Hurwitz criterion. In other words, a symmetric matrix
cannot be improved by any multiplier a. (As pointed out by one of the referees, this
also follows from the theorem of Ostrowsky and Taussky cited above.) Since the result
is important in the sequel, we give two additional proofs. The first was obtained jointly
with Ernst Straus; the second is due to Robert Steinberg.

Let p be symmetric and suppose px Ax where A > 0 and x # 0. Then for any
positive diagonal matrix we have xtapx-Axtax>O and hence p does not belong to

Ao. Thus p c Ao implies that all characteristic values A _-< 0, and this in turn implies
p-<_ 0 since p is symmetric.
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Steinberg’s proof is as follows" If p p and ap <= 0, where a is diagonal, then

E P(a,+a)y,Y <=0
i,j=l

for all Yi. Under the further hypothesis that a > 0 let yi xt’’, multiply by dr! t, and
integrate from 0 to 1. The resulting inequality x’px <= 0 shows p <-0.

The first of the two arguments given above can be generalized. Let px bx where
b is diagonal, b=>0, and bx # O. Then x’apx x’abx>O for every positive diagonal
matrix a and hence p does not belong to Ao. A similar condition is given in [1].
Naturally, the above results extend to A1.

7. The labeled graph and the class V. As in [16], [37] the matrix p is described
by a labeled graph G(p) having m vertices, as follows: The vertices and j are joined
if pj # 0 or pj # 0, i# j, and vertex has a black dot if p, < 0, an open circle if p, 0.
The case p, > 0 does not arise since it excludes the possibility that p e Ao.

Although the individual signs of Pi and pi for # j do not matter, the sign of the
product popi is crucial. For want of a better terminology we describe the two possibilities
as follows:

PoPi < 0, prey-predator, symbol pp,

ppj > 0, competitive-symbiotic, symbol cs.

Thus, in addition to the labeling introduced above, we have a further labeling of the
edges of the graph as pp or cs.

The terminology "prey-predator" is classical and needs no apology. The case

pj < 0, p < 0 in (1) suggests competition and p > 0, p > 0 suggests symbiosis. Without
affirming that either case is actually important in ecology, we have preferred to stay
within the terminology of that discipline because it is in the field of ecology that the
study of (1) has its origin.

Any given system can have pp links, cs links, and also the case of no coupling,
p pj 0. A fourth possibility is the partial coupling described by pi 0, pj # 0. In
this case the vertices (i,j) in G(p) are still adjacent, but [i,j] is referred to as a "partial
link". For reasons which will become clear in the course of the work, most results in
Part I are formulated for the class V of the following definition:

DEFINITION 3. We denote by Vo the class of matrices p such that p, _<-0 for all
and by V the subclass of matrices p e Vo such that p)= 0:>p) 0 for all i,j.

The letter V is in honor of Volterra. It may be mentioned that matrices such that
pi 0:>pi- 0 are termed combinatorially symmetric [27].

8. A sufficient condition when the graph is a tree. We shall establish:
THEOREM 1. Let p V, let the graph ofp be a tree, and let n( i) denote the number

of cs edges incident on vertex in this graph. Suppose the inequality

P.Pj
PijPji n(i)n(j)

holds whenever j, n n (j >= 1. Then p Ao.
It might be thought that strict inequality in Theorem 1 would ensure p A1 but

this is false even when rn 2. For example, the matrix
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satisfies the hypothesis with strict inequality if a 0, but does not belong to A for
any a. Actually the strict inequality gives p A where the class A, discussed in 26,
is more revelant to applications than either Ao or A1. A similar remark applies to the
analogues and extensions of Theorem 1 which are given in 19-22.

9. Proof of Theorem 1. Let and j be adjacent vertices, and consider the quadratic
form

aipiix2i d- aiPij + ajpji xixj + ap..x}
obtained from xtapx when all Xk except those for k or j are 0. If r2= a/a, the
above expression is -<0 for all x, x if, and only if,

rpo + r-Pi)2 <__ 4piiP.

If (i,j) is a pp link, the left side is minimum when r2= -p/p and in this case the
condition holds automatically, since the left side is then 0. If (i, j) is a cs link, the left
side is minimum when r2-- p/p and the condition holds if, and only if,

(3) popj, <- p,,pjj.

In either case the optimum choice of ak satisfies an equation which was first used by
Volterra for pp links and was used in the general case in [3], namely,

(4) a= pj___2

a Pi

Since the graph is a tree it is readily checked that one can start with a 1 and determine
the a recursively in such a way that (4) holds on every edge.

The only remaining problem is that the same vertex i, with coefficient p,, may be
involved in several links of cs type. This problem is dealt with in [38]. Namely, let the
coefficient p, be parceled out as

Pii Pii Pii
Pii n-+n-+’’" +n-- (to n(i) terms)

and similarly for p. This has the effect of replacing p, by p,/n(i) and pj by p../n(j)
in (3), and Theorem 1 follows. It is not necessary to allow any part of p, for a pp link,
since the cross product xx is absent.

If there are no cs edges, the hypothesis of Theorem 1 is vacuously fulfilled and
we conclude that p Ao automatically. This fact was first established by Volterra [39].
In the following section we give a necessary and sufficient condition for p Ao, in the
case of a tree graph, which again generalizes the theorem of Volterra.

10. A necessary and sufficient condition. If we set cro sign PiP., the condition (4)
to determine the a is

(5) aiPij ajpjio’ij.

When all edges are of type cs, this asserts that the matrix ap is symmetric. As seen in
6, a symmetric matrix cannot be improved by any multiplier; in other words, we

cannot have bap <-0 for any multiplier b unless already ap <-0. Since an arbitrary
multiplier c could be written as c-ba, this shows that the choice given by (5) is
optimum. Thus we are led to the following necessary and sufficient condition:

THEOREM 2. Let p V have a tree graph and let q denote the matrix obtainedfrom
p when every element Pij satisfying PoPi < 0 is replaced by O. Then p Ao or A1 if, and
only if, -q Po or P1, respectively.
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The matrix q can also be described as follows: Let G(p) be the graph of p and
let H(p) be the graph obtained from G(p) when all pp links are removed. Then q is
the corresponding matrix, where the word "corresponding" means not only that
G(q) H, but that qij Pij for all elements p that were not altered in the passage from
GtoH.

As an illustration let p be a 3 by 3 matrix with P13---P31--0 and with PoP > 0 for
the remaining coefficients, iS j. Then all links are of cs type, the graph is a tree, and
Theorem 2 shows p Ao if and only if p, < 0 for 1, 2, 3 and

(6) P12P2._......_._ + P23P32 < 1.
P11P22 P.:zP33

To see that the condition of Theorem 2 is sufficient, let a be defined by (4), with
a 1, and let r ap. Then r0 ri whenever ppj > 0 and hence the symmetric part of
r is aq. This shows that r -< 0 if the Hurwitz criterion holds for aq, and only then. Since
det (aq) det (a) det (q), and since a similar relation holds for all the principal sub-
determinants of q, the determinants which figure in the Hurwitz criterion for aq have
the same sign as those that figure in the criterion for q. This completes the proof of
sufficiency.

If all links in p are of type cs, the matrix ap aq is symmetric; hence the choice
of a given by (4) cannot be improved, and this shows that the condition in Theorem
2 is necessary. The following lemma gives necessity also when p has some pp links.

LEMMA 1. Let Pl and P2 be two matrices in V whose graphs have no vertices in
common, and let a new graph be formed by joining a vertex ofpl to a vertex j ofp_ by
means of a pp edge. Ifp is the matrix corresponding to that new graph, we have p Ao
if, and only if, p Ao and p2 Ao.

By definition, the matrix p in the lemma is p p + P2+ P3, where P3 has the two
new elements Pi, P and the remaining elements 0. For proof, if p Ao, it is evident
that p Ao and P2 Ao, since some of the x in xtapx could be chosen to be 0.
Conversely, ifp Ao and P2 Ao, let multipliers ai be obtained for both matrices. Next
multiply all ai associated with P2 by a positive constant h so chosen that

hap + apo 0

at the particular i, j pertaining to the new edge. Then this new edge has no effect and
the lemma follows.

Returning to Theorem 2, suppose the graph of p has at least one pp edge and at
least one cs edge; this is the only case that needs consideration. Remove the pp edges
to get a set of disjoint trees each of which has cs edges only. If p are the matrices
corresponding to those disjoint trees, repeated use of Lemma 1 shows that p Ao if,
and only if, each Pi Ao. But the choice of a used in the proof of Theorem 2 makes
each p symmetric. Hence a cannot be improved, and the necessity follows.

11. Disconnected graphs. A graph free of loops is a collection of disjoint trees
and is called a forest [3]. For the most part we assume G(p) connected, so that we
consider a tree rather than a forest, though the results apply without change in the
latter case. The reason for assuming connectedness is that if G(p) has several com-
ponents, one can always simplify the analysis by considering each component separ-
ately. (Although we have introduced zeros to make all matrices of the same order, m,
in the theoretical development, this is not necessary when the results are used for
computation.) Even if G(p) is connected, the graph G(q) in Theorem 2 need not be.
Introduction of q often allows us to separate the graph by removal of all pp links.
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As an illustration suppose G(p) is as follows, where the edges not labeled are of
type cs"

6 7 8 9

2 3 4 5

To test whether p Ao it suffices to examine matrices corresponding to the graphs

8 96 7

O O

2 4 5

The relevant coefficients are the same as those in p, but the orders are 2 by 2, 3 by 3,
and 4 by 4, respectively.

Although there is no loss of generality in assuming G(p) connected for the primary
results, as we have seen., there is some loss when these results are used in the proof
of further theorems. The reason is that a principal submatrix of p need not have a
connected graph even when G(p) is connected. This difficulty arises in connection
with Lemma 2 below and in some other cases. Let us state, therefore, that Theorem 2
(and other results of a similar format) apply to a forest as well as to a tree, and they
will be so used without further comment. Lemma 2 below is explicitly formulated for
a forest, but this is only because the assumption that G(p) is a tree leads to trouble
in the inductive proof.

12. The theorem of Berman and Herschkowitz. Theorem 2 is related to an interesting
theorem of Berman and Herschkowitz [3] which appeared after this paper was submitted
for publication. Their result states that, when G(p) is a forest, the condition -p P
is necessary and sufficient for p A1. Replacement of p by q often separates the graph,
leading to simpler calculations, but that is not the main difference in the two theorems.
The main difference is that Theorem 2 is based upon the class P1 rather than P. That
the distinction is essential is shown by the example

p 0 -1 q 0 -1 1

-a 2 0 2 -1

Here -p P1 whenever lal> 1 but -p does not belong to P for any a and hence p
does not belong to A for any a. (This agrees with Theorem 2, since -q is not in P.)
The practical significance of the distinction is seen when we take a value such as
m 20, which is entirely realistic in the context of differential equations. With rn 20
one would have to check over a million determinants for the criterion -p P, but only
20 determinants (some of which may be simpler than those in p) for the criterion
-qe P.

There is one respect, however, in which the theorem of Berman and Herschkowitz
is superior to Theorem 2. Namely, we have assumed p e I/, while no such assumption
is needed in [3]. (The ingenious proof is based on a result of Berman, Varga and Ward
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[4], [5] to the effect that p A if, and only if, for every nonzero symmetric positive
definite matrix s, the matrix sp has a negative diagonal element.) It will be seen that
their result, together with our Theorem 2, yields the extension embodied in Theorem 3
below. We also sketch a proof which is independent of [3].

13. Omission of the hypothesis p V. We shall establish:
THEOREM 3. Let G(p) be a tree and let q beformedfrom p by replacing all elements

Pij with PoPji <-- 0 by 0. Then q P1 ==P A1 == q P.
In other words, a partial link can be treated like a pp link when Theorem 2 is

used as a criterion for p A1. It should be observed that Theorem 3 says nothing about
the classes Po or Ao. The example

P- 0
q=

0

has -q Po while p is not in Ao. Hence, Theorem 3 would be false if extended to Po
and Ao after the fashion of Theorem 2.

14. A lemma. Theorem 3 is based upon the following lemma, which is of indepen-
dent interest"

LEMMA 2. Let G(p) be a forest and let s pi, t-p where #j and where s and
are regarded as variables. Then det p Ast + D where A and D are independent of s and
t. Hence, if one of the variables s or is 0, the determinant is independent of the other
variable.

Regardless of the nature of the graph, it is readily checked that the determinant
has the form

det p Ast + Bs + Ct + D

where the coefficients A, B, C, D are independent of s and t. The lemma asserts that
the linear terms are absent if G(p) has no loops.

Lemma 2 can be deduced from Theorem 2 stated for a forest. If there is a
counterexample, that is, a matrix p with G(p) a forest and B or C different from 0,
we can make a small perturbation and ensure p V. Considering p- A/, where A is a
large constant, we can also make the matrix q associated with p for s 0 satisfy
the condition -q P1 of Theorem 2. (Here we use the fact that the nonzero coefficient
is a polynomial in A, which, being nonzero for h 0, must also be nonzero for large
h.) In short: If there is a counterexample, there is one that satisfies the hypothesis of
Theorem 2 when s 0. Theorem 2 then shows that p A1 whenever st < 0, hence
det p has one and the same sign when st < 0, and this is impossible in the presence of
linear terms.

The above proof is brief and arises naturally out of the subject of this paper, but
it uses analysis to get a result which is obviously algebraic. A simple algebraic proof
was found by Prof. Robert Steinberg and, with permission, his proof is presented next.
Since G(p) is a forest, it has a free end. Without loss of generality let the free end
have the label 1 and the single vertex adjacent thereto the label 2; if no vertex is
adjacent, then P12--P21- 0. In any case Pl; Pjl 0 for j _--> 3 and the matrix p has the
form

Pll P12 0 0

P21 P22 P23 P24
0 P32 P33 P34
0 P42 P43 P44
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We assume that the lemma is known for all matrices of order less than m with a
loop-free graph and we use mathematical induction. There are two cases.

Case I. s =P12, t--P21. In this case expansion on the first row followed by
expansion of the second determinant so obtained on the first column gives a result of
the form det p- D+ stA by inspection.

Case II. s, are in the submatrix obtained when the first row and first column of
p are deleted. Here expansion as above leads to two determinants, of orders rn- 1 and
rn- 2, respectively, to which the induction hypothesis applies. The result is, an obvious
notation,

det p pl(AlSt d- D) -pEP21(A2st d- D2).

Since this has the form Ast + D, Lemma 2 follows by induction.

15. Proof of Theorem 3. To obtain Theorem 3, let us form a matrix/ intermediate
between p and q, as follows" in/, every pp link is left unchanged, but every partial
link is removed. Thus,/- 0 whenever PoPji- 0 and otherwise/0 Po. In an obvious
notation

-qc P-cPcAl-cP-pcPpc AI
where the implications are justified, in order, by" t q, Theorem 2, 5, Lemma 2, and
[3]. To see that pc A-qc P, let us form a matrix/ close to p by making each
partial link into a link of pp type. Then/ c V and

pcAcA-lC P-q c P

where the justification now is"/ close to p, Theorem 2, and t]--q.
It is of some interest that the first of the above results can be deduced in the form

-q c Pl-q c Ppc A1 without any use of Lemma 2 or [3], and the method gives
a new approach to the result from [3] used above. The first of these implications follows
from Theorem 2 and 5 applied to q instead of p. To get the second, we assume
existence of at least one partial link [i, j] and we use induction. Removing the link

i, j] separates the graph and produces two matrices which, by the induction hypothesis,
both belong to A. This remains true if we replace Pii by (1- e)p, and p by (1- e)pg
where e > 0 is sufficiently small. Restoring the link then leads to the additional quadratic
form

aiePiiXi q- aiPij q- ajpji xixj -b ajepx
and the proof is completed much as in the proof of Lemma 1.

16. Tridiagonal matrices. Perhaps the simplest tree graph is a single strand, that
is, a graph in which every node except the two ends has the order 2. Such a graph
corresponds to a tridiagonal matrix. We assume all links of cs type since in the contrary
case the graph breaks up into the graphs of smaller tridiagonal matrices as explained
above. The case rn 2 is trivial and rn 3 leads to (6). If rn 4 and all links are of cs
type, it is readily checked that p, < 0 is necessary for i= 1, 2, 3, 4 and hence we can
introduce the expressions

(7) ij PoP,
P,Pj

for i, j 1, 2, 3, 4, each of which is positive. Theorem 2 with q p gives the following
condition which, with p, < 0, is necessary and sufficient for p c Ao:
(8) B2 < 1, B34 < 1, B23 1 B12)(1 B34).
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It should be observed that (8) implies J12 + B23 < 1 and B23 -- B34 < 1. This agrees with
(6) applied to the principal 3 by 3 submatrices of p.

The technique used in the proof of Theorem 1 leads to (8) without any use of
determinants, as seen next. Let us set

(9) Pii cip, + (1 ci)Pii, 0 C 1,

noting that Theorem 1 is obtained by taking each c 0, 1/2 or 1. Using (3) as in the
proof of Theorem 1, we get the sufficient condition

(10) B12 1, B23 (1- Cl)2, B-34=< (1- c)
under the hypothesis p, < 0, which is always needed. A moment’s thought shows that
the optimum choice of c is obtained by requiring equality in all relations (10) except
the last [38]. This leads again to (8).

A similar procedure applies to the general m by m tridiagonal matrix and leads
to the same necessary and sufficient condition as that given by Theorem 2. For numerical
calculation, it is best not to solve for the c algebraically but to determine them
recursively starting with cl. Theorem gives the sufficient condition

B12 <1/2,-- B23 <-,"’’= Bm--2m--1 <1=4, Bm--1 =<1/2
whereas introduction of the c gives a refinement which is necessary and sufficient.

When the above technique using ci is applied to a matrix with a more general
tree graph, difficulty is encountered at each node of order >_-3. The optimum determina-
tion of the ci cannot be accomplished recursively, but depends on the solution of a
system of simultaneous equations. For a necessary and sufficient condition, the criterion
of Theorem 2 is simpler. However a tolerably simple sufficient condition, sharper than
that of Theorem 1, can be obtained as follows’ At any node of order k-> 3 write
Pii--k(Pii/k) and use the value p,/k instead of p, on each branch which terminates
at i. On each branch the c are then determined recursively as above. Although a formal
statement will not be given here, it can be said that the resulting criterion is intermediate
between that of Theorem 1 and that of Theorem 2, both in sharpness and in computa-
tional complexity.

17. Balanced matrices. The distinct vertices 1, 2,. ., k of G(p) form a loop if
and i+ 1 are adjacent for i= 1, 2,..., k-1 and k, 1 are also adjacent. The loop is
denoted by [1, 2,..., k]. It is said that the loop is balanced if

IP12P23 Pkk-lPkl IP21P32 Pk-1 kPlk l"
A similar definition applies to any loop, with a more elaborate use of subscripts, and
the matrix p is said to be balanced if every loop in G(p) is balanced. Further discussion
of the history and use of this condition can be found in [38], where it is also shown
that, if two loops are balanced, so is the loop formed by their union. Thus, the criterion
need be verified only for some basic set of loops in G(p).

The above formulation involving products has been taken as primary partly because
of its historical origin in the work of Volterra and partly because it provides a specific
decision procedure. But a simple and illuminating interpretation of this condition was
given by one of the referees for this paper; namely, p is admissible if, and only if, the
matrix / (Ipi:l) is diagonally similar to a symmetric matrix. To see this, suppose
b-:b s where b is a nonsingular diagonal matrix and s is symmetric. The equation
s s gives a[pl a[pi[ with ai (b)-. Hence p is balanced. Conversely, if p is
balanced, we can determine a>O as above and the choice b=(a)-1/ gives the
matrix b.
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We shall establish the following:
THEOREM 4. Ifp V is balanced, the sufficient conditions of Theorem 1 for p Ao

and of Theorem 2 for p Ao or p A1 remain sufficient even when G(p) is not a tree.
If, in addition, all links are of cs type, the conditions in Theorem 2 with p =q are both
necessary and sufficient.

The proof is essentially unchanged, since the hypothesis of being balanced is
equivalent to the hypothesis that positive multipliers satisfying (4) can be found. In
the special case of a tree there are no loops and the matrix is balanced vacuously.
Thus Theorem 4 contains the sufficiency part of Theorems 1 and 2.

The proof of necessity breaks down, because there is no analogue of Lemma 1
when G(p) has loops. (The trouble is that pp links can be removed without separating
the graph.) As an illustration, let p be the balanced matrix Po or Pl where

Po= 2 -2 Pl 7 -8
-16 1 -64 4

Replacing the elements 16, -16, 64, -64 by 0 gives the matrices qo and ql, respectively,
and it is readily checked that det qi > 0, so that the condition -q Po (and of course
-q P1) of Theorem 2 fails. Nevertheless the multiplier

a diag (15, 15, 17)

gives r ap + p’a in the form

60 /-32 -240 210 -128
ro= 60 -60 32 rl= 210 -240 128/

-32 32 -68// -128 128 -272/
respectively. By a short calculation -to Po and -rl P1, so that Po Ao and Pl A
by the Hurwitz criterion.

The genesis of these examples is as follows. The matrix Po together with its
multiplier a was constructed by use of Theorem 8 below. Then Pl was obtained by a
slight modification of 4po. We need p to see that p A is possible for a balanced
matrix even if the corresponding matrix q does not satisfy -q Po. No such example
can be obtained from Theorem 8 directly, since the theorem pertains to the class Ao.

18. A class of sufficient conditions. A connected graph G(p) can always be reduced
to a tree by removing a suitable set of links i, j] Lij. A sufficient condition for p Ao
is that the matrix/ corresponding to that tree shall satisfy/ Ao, with enough slack
so that we do not leave the class ,4o when restoring the links Lj. This point of view
leads to a number of conditions for p ,40 which were introduced in [38].

Since we propose to generalize the main result of [38], a brief summary is given
here. If the set {L0} of links is removed to reduce G(p) to a tree, let N(i) denote the
number of times the index appears as a subscript in an enumeration of the elements
L0. Then a sufficient condition for p ,40 is

4Bj
for each LiAij

N(i) N(j)

where Ao and Bj are certain numerical quantities which are easily computed from
knowledge of p. Precise definitions of these quantities are given later; at the moment,
we wish only to give the general flavor of the theorem.
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The analysis in [38] makes essential use of the hypothesis that all links are of type
pp. When this condition is dropped, we encounter several new problems, the most
important of which is that the matrix/ belonging to the tree need not satisfy/ Ao
automatically. (It is, in part, in anticipation of this problem that we have presented
the analysis leading to Theorems 1, 2, 3.) The extension of the main theorem [38] to
allow cs links is discussed next. We begin with the case in which G(p) is a loop, since
that case forms the basis for further developments.

19. A single loop. Let the graph of p consist of the single loop [1, 2,..., m]. If
p V, as now assumed we can determine ai by ai and

a___! p____! a P32 a_ p,.,._

a2 P12 a3 P23 am Pro-Ira

If only x and Xm are different from 0, the condition xtapx <= 0 is equivalent to

(alp,.. + apl)<=4alampp,.

Dividing both sides by aalPlmPml, we get the equivalent condition

1 PlPmm(11) R +--+ 2o" _<-- 4
R

where R=(a/a,)(lp,/p,[) and tr =sign (p.p,.); clearly

P2P32 P,,, PR--
Pl2P23 Pm-I mPml

Let us denote the left side of (11) by A and the right side by 4B. Thus

A=R+-2 or A=R+R+2
according as [1, m] is a link of type pp or cs. The former value of A vanishes when
the loop is balanced, since R 1 in that case, and is referred to in [38] as the measure

of asymmetry of the loop. By contrast, the latter value is 4, and not 0, when the loop
is balanced. Nevertheless, it is minimum when R 1, and is referred to again as a
measure of asymmetry. The measure changes its value, according as the link [1, m] is
of type pp or of type cs.

The quantity B agrees with that in [38] and is referred to as the measure ofstrength
of the link [1, m]. We mention in passing that B here and Bij introduced later are
reciprocals of the quantities Bij introduced in 16.

Let us now discuss the condition A-<_ 4B of (11) in more detail. If the two links
[1, 2] and [m 1, m] adjacent to [1, m] are both of type pp, the above choice of the
makes the associated cross product terms disappear and the link [1, m] is effectively
isolated. Thus, a sufficient condition for pc Ao is that A<=4B, and that the graph
obtained when P11, P,m, Plm, Pml are all replaced by 0 shall belong to Ao. The latter is
a tree, in fact a tree corresponding to a tridiagonal matrix, and is covered by the
preceding discussion. The condition is both necessary and sufficient if the only possible
choice of the ai, to make the tree belong to Ao, is that used in the derivation of (11).

If one or both of the links adjacent to [1, m] are of type cs, some part of p,
or both must be used with the tree if the tree is to belong to Ao. As above we write

Pll=ClPl+(1--Cl)PI, Pmm=CmPmm+(1--Cm)Pmm
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with 0=< cj =< 1, and we require

(12) A=4B(1-Cl)(1-c,,,)

instead of A_-< 4B. Here we prescribe rather than =< because it is permissible, and is
optimum for the rest of the calculation involving the tree. The tree is now obtained
by replacing P11, P,,,,, Plm, P,I respectively by Pll, mPmm, 0 and 0. If this tree belongs
to Ao, then (12) is sufficient for p Ao.

When only one of the links adjacent to [1, m] is of type s, the value cj for the
other link can be taken to be 0, and the above procedure is both specific and easy to
implement. If both links are of type s, however, there is a difficulty in making an
optimum choice of the c, since only the product (1- cl)(1- Cm) is determined by (12).
A simple sufficient condition is obtained by the choice c c,, 1/2, corresponding to
the choice used in Theorem 1.

20. Generalization. We now discuss what is involved when the theory developed
in [38] is extended to allow cs links. Since the main features were illustrated in the
discussion of 19, we shall be brief.

For any loop having i,j as adjacent vertices we define a ratio of products Ri
analogous to R of 19 (see [38]) and the measure of asymmetry is then

1
A Ri + + 2 sign (ppj).

Although R does not depend on the particular choice of adjacent vertices, the quantity
A does depend on this choice, in general, having one value if [i,j] is a pp link and
another if [i, j] is a cs link. The first major change is that this more elaborate measure

of asymmetry must be used instead of the A in [38]. The latter was defined for a pp
link only. On the other hand the measure of strength

P,Pj

like the definition of R0, remains unchanged.
As in [38] we remove links Lo from the graph G(p) until the resulting graph is

a tree, T. If T has some cs links, the matrix q associated with T does not belong to
Ao automatically, and q Ao must be imposed as a separate condition. This is the
second major change from the theory as presented in [38].

Finally, if some of the links adjacent to the L0 are of type cs, we must borrow
from the coefficients p, and p as in the previous discussion, so that the measure of
strength B0 is replaced by

Bo(1- c,)(1- cj).

This is the third major change.
When all these matters are taken into account, one gets a generalization of the

results [38] to allow cs links. We shall give a formal statement only when the above
constants Ck can be taken to be 0, and to this end we introduce the following definition:

DEFINITION 3. A link or set of links is said to be isolated if all other links adjacent
thereto are of type pp.

Here two links are considered to be adjacent if they have a vertex in common.
THEOREM 5. Let p Vand let { Lo} be a set ofdisjoint, isolated links whose removal

changes G(p) to a tree. Let q be the matrix corresponding to this tree. Then p Ao if
q Ao and if the inequality Ao<-4Bo holds for each link Lo in the set {L0}.
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If occurs as a subscript on an L in the set {L0}, then we take qii--0. This choice
does not affect the question whether q Ao. The quantities A0 are determined from
the tree graph, as follows: Let the single link Lij be restored to the tree graph, so that
L0 is now part of a unique loop. Then A0 is found by the procedure of 19 applied
to this loop.

21. A necessary and sufficient condition. For a broad class of matrices the condition
of Theorem 5 is necessary as well as sufficient. Description of this class depends on
the following:

DEFINITION 4. A pp link L0 is critical if ppgg =0, and a cs link is critical if
PPJg PoPgi. The matrix q V is critical if every link in G(q) is critical and all the cs
links are isolated.

A moment’s thought shows that a critical matrix belongs to Ao if, and only if, all
its loops are balanced. In particular, a critical matrix with a tree graph always belongs
to Ao.

We shall establish the following:
THEOREM 6. Under the hypothesis of Theorem 5 suppose the matrix q is critical.

Then the condition Ao <= 4Bo there given is both necessary and sufficient for p Ao.
For proof, consideration of adjacent vertices [i,j] in G(q) shows that (4) is

necessary for p Ao, and hence a must agree with the multiplier used in 19. The fact
that a is essentially unique, and is determined over the tree by (4), has two effects.
First, it shows that the coefficients apo and agpgi associated with the link L0 have the
values that lead to the A0. Second, it shows that the cross-product term associated
with any pp link in the tree for ap is missing. Since each L0 is connected to the tree
only by pp links, it is effectively isolated from the tree. The L0 are disjoint from each
other by hypothesis. Thus, if we set xk 0 for k or j, the resulting quadratic form
is precisely the form that led to the condition A0 _-< 4B0. If ap <= O, this form is -<0, and
the necessity follows.

22. Adjacent links. So far, it has been assumed that the links L are disjoint. If
this is not the case, we can account for the overlapping as in [38, Thm. 1]. Namely,
let the links in the set L0 be arranged in a list, each link appearing just once, and let
N(i) denote the number of times the index occurs in this list as a subscript on L.
Then Theorem 5 continues to hold ifthe measure of strength Big is divided by N(i)N(j).
A particularly neat version is obtained if the tree graph for q is analyzed by Theorem 1
instead of by the necessary and sufficient condition given in Theorem 2. For the reader’s
convenience the definition of n(i) in Theorem 1 is repeated here, namely, n(i) is the
number of cs edges incident on the vertex i. We then have the following:

THEOREM 7. Letp Vand let {L} be an isolated set oflinks whose removal changes
G( p) to a tree. Then p Ao if the inequalities

4Bj 4BAO<=N(i)N(j)’ 4<--n(i)n(j)
hold for the links Lj in the set Lij and for the cs links of G(p) which are not among the
Lo, respectively.

Theorems 5 and 7 give conditions under which a stable system with matrix q,
where G(q) is a tree, remains stable when links are added to form loops. The results
are easy to apply, even when p is large, provided G(p) has few loops and plenty of
pp links. But when these conditions are not fulfilled it is better to bypass the theorems
and go back to the underlying idea. Namely, reduce G(p) to a tree, determine aj for
the tree as in 9, and see if the original matrix p with this multiplier satisfies
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ap+p’a P1. The choice of a is motivated by Theorems 2, 3, 6 and by 9, and is not
wholly random. But it takes account of the 2 by 2 submatrices only and is far from
coming to grips with the main problems.

To put these remarks into perspective consider the matrices

2 3 0 1 2 3 0 1

-P 1 3
-q

0 1 3

0 1 -1 0 0

where q is obtained by dropping the links [4, 2] and [3, 4]. By Theorem 2 we have
q A1 if c > 0 and we ask: How large must c be if p A? The above procedure leads
quickly to the multiplier a =diag (1, 3, 3, 1) and to the sufficient condition c >-13.7.
The much more laborious methods of Part II show that c > 11 is necessary, c-> 11.7
is sufficient, and the multiplier is a diag (1, 2.6, 5, 2.8).

23. Matrices with a critical link. If a matrix p V has a critical link [i, j] then, in
general, the problem of deciding whether p Ao can be effectively solved, and the
solution is of about the same difficulty as direct application of the Hurwitz criterion
to decide whether merely p-<_ 0. Here the phrase "in general" means that the elements
of p do not satisfy any other special equality beyond the condition of criticality
occurring in the hypothesis. The precise nature of the excluded equalities will be clear
from the following discussion.

Let us recall first that if E is the elementary matrix such that premultiplication
by E interchanges two rows of p, then postmultiplication by E interchanges the
corresponding two columns, and furthermore, E Et= E -1. When two rows and also
the corresponding two columns are interchanged, p is changed to q EpE and a to
b EaE. The identity

ap+pta E(bq+ qtb)E

shows that q Ao if, and only if, p Ao. Thus we can make such a simultaneous
interchange of rows and columns as often as we like, and move any principal matrix
of p into the upper left-hand corner. Hence, without loss of generality, the critical link
in the hypothesis can be taken to be [1, 2].

The case in which this link is of pp type is trivial but is presented for completeness.
Since PIP22 0 for such a link, we can interchange two rows and two columns again,
if necessary, and assume Pll =0. The matrix r ap+ pta then has rl =0, and consider-
ation of appropriate 2 by 2 submatrices of r gives rj 0 if r-< 0. If no pair (pj, p)
reduces to (0, 0) for 2 =<j -< m, then necessarily Pl.PI < 0 and a is uniquely determined
by a.=-p/p, aside from the scale factor a= 1. Thus pAo if, and only if, r=<0
with this choice of a. Since the first row and column of r are 0, r can be replaced by
the m- 1 by rn- 1 matrix q obtained when the first row and column of r are deleted.
Since q is symmetric, it can be tested by the Hurwitz criterion, and hence the above
remarks give a complete solution to the problem of deciding whether p Ao when p
has a critical pp link.

24. Matrices with a critical link, continued. Let us assume next that [1, 2] is a
critical link of cs type, so that pp22 P2P21 > 0. If r =ap +pta as above, then r<= 0
implies ap2 a,_p_ and hence rr22 r12r2. This shows that the rows of

rl rl2
r2 r22/
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are linearly dependent, so that rll + ArE1 0 and r12+ A/’22--0 for some scalar h. If we
add h times the second row of r to the first row, and h times the second column of
that matrix to the first column, the result is a matrix of form

0 0 C C4

0 /’22 /’23 r24
P c3 /’32 /’33 /.34

C4 r42 r43 r44

where cj rj + Ar_. If E is the elementary matrix such that premultiplication by E
adds A times the second row to the first then, P ErE and hence r <= 0 if, and only
if P <-0. Consideration of suitable 2 by 2 submatrices gives c./= 0, if P <-0, hence also
if r =< 0. This is, therefore, a necessary condition.

By a short calculation h =-Pll/Pl2 and the fact that aPl2 "-a2P21 gives

pc a2(PlPj pp2j) + a(p2p pp).
Thus we have established the following:

THEOREM 8. Letp Vo, let m >- 3, and letplp9_2 PlP-I > O. Suppose the expressions

e Pl lP:zj PElPlj, fjj PIP PlzPjl

do not vanish simultaneously for any j, 3 <-j <- m. Then p Ao if, and only if, ef < 0 for
3 <-j <-_ m and the m -1 by m -1 matrix

q q23 q"

q32 q33 qam

\ qm2 qm3 qm"

satisfies q <-0 where q2.i P:zg and qo =-(ei/f)Po, >-- 3. The choice of a making ap <-0 is
uniquely determined by al p2/P2, a2 1, aj -eg/f for j >= 3.

Theorem 8 leads to a sufficient condition for p Ao even without the hypothesis
PlP:2 P2P2. If p Ao and this hypothesis fails, the only possibility is that PllP22 >
P2P2. This follows from the fact that p must satisfy the Hurwitz condition, as noted
in 5, but also follows from the more elementary remark 12] that, in the 2-by-2 case,
the Hurwitz inequalities are both necessary and sufficient for p Ao. Let us therefore
replace Pll by cp11 and P22 by [3p22 where aflp lP22 P12P21, 0 < O 1, 0 </3 <- 1. Theorem
8 applies to the new matrix/; so obtained and gives a sufficient condition forp Ao, since

x’apx xtax +(1 a)aplx21+ (1 fl )a2p.:zx.
The use of two parameters a and/3, rather than one, is sometimes helpful to ensure
that and f do not vanish simultaneously for/.

25. A closure property. In these concluding sections we give two properties of the
class V that bear on the appropriateness of the restriction p V in practical problems.
The first pertains to a distinction which we have already emphasized; namely, p P
requires examination of 2"-1 determinants, in general, while only m determinants
are needed for p P1. If p is symmetric or satisfies the hypothesis of Kotelanskii’s
theorem [9], 11], the problem disappears, but these are very special cases. Furthermore,
even these cases lead to no simplification of the weak inequalities associated with Po.
Thus, to test for p Ao by the criterion -q Po of Theorem 2 requires examination of
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2 1 determinants, and to test for p Ao by the criterion -(q + q’) Po of Theorem 8
requires examination of 2m-l- 1 determinants.

The question arises whether we could test p-el for membership in A1 and then
deduce membership in Ao by letting e 0+. If so, the way is open to base the analysis
upon the class P1 rather than Po. A significant advantage of the hypothesis p V is
that it does, in fact, allow such a procedure:

THEOREM 9. Any limit point of Ao which is in V is also in Ao.
The precise meaning is that if Pn Ao and lim Pn P V, then p Ao. Convergence

is thought to be based on any of the usual topologies, or equivalently, the limit can
be considered elementwise.

The hypothesis p V is essential. For example, if p is a triangular matrix with
zero diagonal, then p el A for all e > 0, as seen in 4, but p is not in Ao unless p 0.

If the graph G(p) is not connected, one can associate a matrix/ to any component
of G(p) in an obvious way and construct a sequence/n /,/n Ao from the given
sequence Pn P. Hence, without loss of generality, we assume G(p) connected. Under
this assumption, Theorem 9 follows from:

LEMMA 3. Let P Vand let G(p) be spanned by a connectedpath 3". Let A min IPjl
and B max Ip,l over adjacent vertices i, j of y, and let C max Ip,,I over all i. Suppose
ap <-0 where a is a positive diagonal matrix normalized by al 1. Then A -"<- ai <- A
with A (2B2+4C2)/A2.

For proof, let i,j be adjacent vertices of A. The necessary condition obtained in
9 can be written

rE(pi)2 + r-E(p,) _-< 4p,p 2pop,

where r2= a,/aj. Since and j are adjacent we have Ip,l -> A, Ip,l--> A and hence both
r2 and 1/r2 are bounded by A. The result follows from the fact that at most m steps
of this kind are needed to get from al to any a along the path 3’.

To deduce Theorem 9 let us notice that the same path 3’ as that for p will do for

Pn if n is large enough, and the ratio A for p, is arbitrarily close to that for p when n
is large. Hence the corresponding vectors an for Pn are bounded by an inequality like
that in Lemma 3, as n , and an easy compactness argument gives Theorem 9.

26. The class A. In many respects the most appropriate class for the study of
stability is neither Ao nor A, but a class A defined as follows: An admissibleperturbation
of p is a matrix/ of the same size such that/0 0 if, and only if, pj 0. Then p A
if every admissible perturbation/, which is sufficiently close to p, is in Ao. It is readily
checked that Ao A A and that both inclusions are strict. Stability theory based on
the class A has a rich and satisfying structure, which sheds much light on the role of
the "self-limiting condition" p, < 0 [35], [36], [37].

In general, a set of inequalities which give p Ao will give p A ifthose inequalities
which involve nonzero elements of p in an essential way are required to be strict. This
applies, for example, to the criteria in Theorems 1, 5 and 7. Other conditions of this
sort are readily obtained by examining the effect of an admissible perturbation and
will not be emphasized here. Our objective in mentioning the class A is to establish
the following theorem:

THEOREM 10. Let A* be defined as A is defined, except that for A* the term
"admissible perturbation" allows perturbation both ofthe nonzero coefficients and ofthose
coefficients p 0 for which pi O. Then A* A, and hence A fq V is dense in A.

The concluding statement would tend to justify the restriction p V in applied
problems in which the coefficients are known only with limited precision.
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The proof is complicated by the fact that we must allow an arbitrary perturbation
of the nonzero elements, as well as the perturbation of zero elements which is of
primary interest. Without loss of generality we assume that the graph G(p) is connected
and that I’1 denotes the sup norm, Ipl=max ]P0i. Throughout the proof, the term
"admissible perturbation" is used in the sense of the class A rather than A*. Since it
is trivial that A A*, it suffices to show A* A. To this end, we assume p A and we
seek to show p A*.

We distinguish three cases. If all Pii 0, then p A implies p V (it implies also
that G(p) is a tree) and the problem associated with Theorem 10 does not arise.
Suppose next that all p. <0. Replacing each p. by p.+2e is then an admissible
perturbation. We take e > 0 but so small that there exists a multiplier a* such. that
a’p* <=0 for the corresponding matrix p*= p+ 2eI. This is possible, since p A, and
it gives a*p <=-2ea*. Since the left-hand side is a continuous function of the P0, there
exists > 0 such that a*. <- -ea* whenever ]p -/1 < & This goes beyond the assertion
of Theorem 10 in several respects. First, we are allowed to perturb all the elements of
p, and not just those elements Pig for which Pi 0. Second, we can choose one and
the same multiplier ti= a* for all the perturbations/, Ip-t;I < . Third, we got not
only ti/ =< 0, as required by the definition of A, but even ti/ <= r/I where r/> 0 is fixed.

The only other case requiring consideration is that in which some p, are 0 and
others are not. By interchanging rows and columns we can assume p, <0 for i=
1, 2, , k and p, 0 for k < =< m. Let M denote the set of Pig in the k by k matrix
(Po), 1 <= i,j <= k, so that p is decomposed into M and the remaining L-shaped region,
L, containing those Pig for which i> k or j > k. Some properties of M and L are listed
next.

(a) If Pig L and Pig 0, then PoPgi < 0 and any .multiplier a making ap <=0 must
satisfy aiPo + ajpgi 0 for i> k. This follows from the hypothesis p, 0 for i> k.

(b) If all Pig M for ij are replaced by 0, this has the effect of removing all
links (i, j) from G(p) in which -<_ k and j <- k, the end points being, however, retained.
The resulting graph must be free of loops and hence is a finite collection of disjoint
trees, T1, T_,. ., T. This follows because every loop in G(p) must have a strong link
[28]; that is, a link [i, j] with p,p > 0. Here we use the hypothesis p A.

(c) Each tree T in (b) must have at least one vertex hi with hi=< k, since the
original graph G(p) was connected.

(d) Let J be the rn by m matrix with diagonal elements J, 1 for 1-<_i-< k and
all other elements 0. Then there exists a positive multiplier a* such that a*p <=-3eJ
where e > 0. This follows by making a perturbation of the nonzero elements p, and
using the hypothesis p A.

After these preliminaries the proof of Theorem 10 is easily completed. Let the
nonzero elements Pij L be perturbed to/0 so that p0-/01 < where 6 > 0 is fixed.
Start with ah --(a*)h at the distinguished vertex h hi of the tree T, and determine
ai over T1 by use of the relation ag0 + a/i 0 for adjacent vertices i, j. None of these
vertices is involved in any other tree Tk since the trees are disjoint. Hence we can
determine ti in a similar way over each of the trees, so that the desired relations hold
on all trees simultaneously. If/ p, the value ti obtained by this process will not agree
with a*, and the disagreement affects M, in general, as well as L. Nothing can be done
about this, since the relation tii/o + tij/i 0 in L is essential, and must take precedence
over any relations associated with M.

Nevertheless, if 6 is sufficiently small, it is easily seen that la*-al < n in this
process, where r/ is as small as may be desired. Since a/ is a continuous function of
a, we have tiff-<-2eJ if rt is sufficiently small, hence also if 6 is sufficiently small.
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Keeping the same multiplier ti, we now perturb the elements of M (whether zero
or not) to get a new matrix/ where again IP-/1 < & Since tip is a continuous function
of p, we shall have ti/-<-eJ if is sufficiently small, and Theorem 10 follows.

The foregoing proof gives considerable insight into the structure of matrices p A
in which some, but not all, of the p, are zero. It also gives the following: Let p A
and let lp -/1 < e where/ is an admissible perturbation in the extended sense associated
with A*. Let the multiplier ti giving tiff_-< 0 be normalized by requiring that min tii 1,
and that max tii be as small as possible. Then if e is sufficiently small, the class of
normalized multipliers so obtained is uniformly bounded independently of/. In other
words, if the multipliers are chosen judiciously, a result like Lemma 3 holds when the
explicit condition there given is replaced by the more subtle hypothesis p A.
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VOLTERRA MULTIPLIERS II*

RAY REDHEFFER"

Abstract. if p is a real m by m matrix, a Volterra multiplier is a positive diagonal matrix a such that,
in this sense of quadratic forms, ap <-O. The usefulness of this condition has been well-known since it was
introduced by Volterra around 1930, but the usefulness is diminished by the difficulty of deciding whether
the multiplier exists. In 1978 the case m- 3 was fully solved by Cross, but the case m_>-4 has remained
open except under simplifying assumptions; e.g., that the matrix p is in some suitable graph-theoretic sense
sparse. Results under such assumptions were given in Part (SIAM J. Alg. Disc. Meth., 6 (1985), pp. 570-589.
of this study, m being arbitrary. Here we present a general theorem, without supplementary hypotheses,
which reduces the problem for m to two simultaneous problems for m-1, in the spirit of the 1978 work
cited above. As a consequence we are able to give a complete theoretical solution when m 4 and an
effective computational procedure for larger values. In this sense, the Volterra problem can be regarded as
solved. The procedure is illustrated by examples which are accessible to previous methods only with difficulty,
if at all.

AMS(MOS) subject classifications. 15A45, 15A48

1. Introduction. As in Part I (this issue, pp. 570-589), p denotes a real rn by rn
matrix, a a positive m by rn diagonal matrix, and inequalities such as ap < 0 are
interpreted in the sense of quadratic forms. It is said that p c Ao or A1 if the Volterra
multiplier a can be chosen so that ap <= 0 or ap < 0, respectively. The class P denotes
the class of matrices p for which all 2 1 principal minors are positive and P1 denotes
the class for which the leading principal minors are positive. We have p +pto P if,
and only if, p +p’ c P1. When either condition holds, it is said that p +pt satisfies the
Hurwitz criterion. The determinant of a square matrix M is here denoted by MI. This
notation was avoided in Part I, because several of the results involved absolute values.

The history and importance of the classes Ao and A1 were set forth in Part I
together with a number of criteria for the existence of the Volterra multiplier.
In general, these criteria were of two types. Either the conditions were necessary and
sufficient, but were restricted to special matrices p; or the conditions were merely
sufficient, but applied to general matrices. Our object here is to give necessary and
sufficient conditions for the general case. Aside from an elementary remark of Goh
[3] to the ettect that pc A1 if, and only if, -pc P in the case m 2, the only such
conditions available up to now are given by the theorem of Cross [1] for m 3. This
theorem is as follows, Mij being the minor formed from the ith and jth rows and
columns:

THEOREM OF CROSS. The real 3 by 3 matrix p satisfies -p c A if, and only if,
p c P and the inequalities

(1) (pay+Pa1)E<4pPaaY, (bly+bE)E<4MEMEaY,

where bl =PlEPEa-PEEP13 and bE=PalPa2-PEEP3, are satisfied simultaneously.
The ingenious proof [1] depends on a direct, ad hoc verification of a certain

determinantal identity which is far from trivial even when m 3, and which gives no
clue as to the form (or even the existence) of such an identity in the general case. Here

* Received by the editors August 2, 1983, and in revised form May 15, 1984. This research was supported
in part by the National Science Foundation under grant MCS 79-03544.

t Department of Mathematics, University of California, Los Angeles, California 90024.
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we give a new proof which involves little computation and applies to matrices of any
size. The result is a corresponding extension of the theorem of Cross. Since the latter
underlies our investigation, it is re-examined from the point of view of this paper in

3 and 4. The analysis yields an extension to the class Ao which is not considered
in 1] and is here formulated as Theorem 1. Our main goal, however, is the generalization
embodied in Theorem 2. Throughout Part II we give conditions for -p A1 rather
than for p A1 as in Part I. The reason is that we shall have to consider matrices of
various orders, and the condition p P is easier to deal with than the condition -p P.
This reformulation was already used in the above statement of the theorem of Cross.

Before concluding these introductory remarks, we mention an interesting work of
Khalil [5] which treats the Volterra problem by an entirely different idea. The gist of
his method is to use an iterative procedure to construct the multiplier a. It is shown
that the process converges if the multiplier exists but no bound is given for the number
of iterations needed. Unfortunately all of Khalil’s examples are for the case m- 2, in
which case the answer can be found by inspection [3]. In fact, in view of the complete
solution found for m- 3 by Cross, the only interesting case is that in which m -4.
Preliminary calculation suggests that Khalil’s method can be usefully applied to such
matrices only when programmed on a high-speed computer, and comparison with our
examples (which were done by hand) would take us too far afield. It is hoped, however,
that such a comparison will be made in a sequel to this paper, in which both methods
are written up as a program.

2. The use of the inverse. If p A1 then, as is well known, p is nonsingular and
p-l A1" That p is nonsingular follows from the fact that, if IPl- 0, then lap[--0, and
hence apx-0 has a nontrivial solution x. Here we want to emphasize, not only that
p-1 belongs to A1, but that the same multiplier a works for p- as for p. This is clear
from the identity

(2) q’(ap+p’a)q aq +

where q p-1. As seen below, the fact that the same multiplier works for q as for p
quickly gives the necessity of the relations (1), and the proof goes through in higher
dimensions. This is the first use of the inverse.

The second use is to construct an appropriate form of the identity for m 3
mentioned above, when m is unrestricted. Without going into detail, the gist of the
matter is discussed next. Let r= ap+p’a, let R be obtained from r by dropping the
last row and column, and let a x, a variable. By a simple argument, given below, it
is seen that It[ is a quadratic in x with discriminant d, where d is divisible by IRI.
Naturally, a corresponding statement holds for g at + tta where t Iplq is the adjoint
of p; that is, the quadratic form has a discriminant g, which is divisible by Isl. It follows
from (2) that

p’(at + ’a)p Ipl( ap +p’a), ’(ap +p’a) Ip[(at + ’a)

and hence that = Ipl=-4d, m >-2. Therefore Ip12"-4d is divisible by both IR[ and I 1.
Further analysis shows that it is divisible by the product, so that IP/-d--IRIISlJ
where J is a rational function of degree 0. A rather difficult inductive proof gives J 1,
so that finally Ipl - d- IRII I. This reduces to the identity of Cross when m 3.

In the first version of this paper the above procedure was carried out in full, giving
Lemma 3 below. But a much simpler proof was found later by Professor Robert
Steinberg of UCLA, and it is this proof which is presented here. We have sketched



614 RAY REDHEFFER

the original argument nevertheless, because it shows where the result came from. The
method of Steinberg is not a derivation of the identity, but a verification of it.

We conclude by mentioning a third use of the inverse; namely, it leads to a
surprisingly simple proof of the known theorem that -p A1 :=> p P. We use mathe-
matical induction, noting that the case m 1 is trivial and that, if a matrix is in A1,
then its principal submatrices are also in A1 (with an appropriate m).

Suppose, then, that -p A and that the desired conclusion -p A =:> p P is
known for matrices of order =<m- 1. The principal minors of p therefore have the
correct sign, and it remains only to show IPl > 0. This follows, however, from the above
relation =lPlq. Since -q A1, we have ql>0 by the case rn 1. Since tl is a
principal minor of p of order m 1, we have t > 0 by the induction hypothesis. The
relation tl [plq,, now gives Ipl > 0, completing the proof.

3. The theorem of Cross. With m 3 let ap > 0 for some positive diagonal multi-
plier a and introduce the adjoint

(3)
P22P33 P23P32

=[P[P-=lP23P3--pEP33
\PEI P32 P:2P3

P13P32--P12P33

PlP33--P13P31

P2P31 --PllP32

P12P23--P13P22tP21P13--PllP23

PllP22--P12P21

By results of 2, we have [p[ > 0 and at > 0 with the same a. Let us then apply the
Hurwitz criterion to the principal minors, not only of ap+p’a, but also of ate+ tta. If
denotes a suitable ratio ai/aj, different in each case, the result is the three necessary

conditions

(4a)

(4b)

(4c)

(Pl-t- tP21)2 < 4pllP22/,

P23 + tp32): < 4p22P33 t,

(P3 + tp13)2 < 4p33PI1t,

(tl+ tt2)2 < 412t,

(t.3 + t32)2 < 4t22t33 t,

(31 -- till3)2 ( 4q33q t.

(The intent is that each pair of inequalities a, b, c must have a simultaneous solution,
but the value of need not be the same from one pair to the next.) Condition (4c) is
the same as (1) with y, and hence (1) is necessary.

If p satisfies the additional condition p P (which is necessary in any case), the
theorem of Cross shows that any one of the three inequality-pairs (4) is sufficient to
ensure -p A1. An alternative proof of this sufficiency, involving little calculation,
can be obtained by specializing the proof of Theorem 2 to the case m 3.

It is of considerable interest that the extra hypothesis p P could be replaced by

(5a) p,>0, q,>0, i=1,2,3

or by

(5b) p,>O, t,>0, i=1,2,3.

To see this, let us assume, without loss of generality, that (4a) holds. If the first
inequality (4a) has a solution, then t33 > 0 and the equation t33 [plq3 gives IP[ > 0.
Together with (5a) this in turn gives p P. Similarly, if the second inequality (4a) has
a solution we get the inequality in

(6) 0 < ,,22- ,22, Iplp33.

Hence Ipl> 0, and pc P follows from (5b). (The bearing of the well-known equality
(6) on this problem was pointed out by Prof. Robert Steinberg.)
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In the presence of either condition (5), then, any one of the conditions (4) is
sufficient for -p A, and all five conditions (4), (5) are necessary. Since each condition
(4) can be obtained from any one of them by cyclic permutation of the indices 1, 2, 3,
and since the relations involve p and p-1 symmetrically, the above formulation has
the invariance properties which were alluded to in the concluding paragraph of [1].

4. Extension to the class Ao. As stated in Part I, a matrix p is said to be combinatori-
cally symmetric if pg- 0 :> pg- 0. We shall establish the following.

THEOREM 1. Let p be combinatorially symmetric, let rn- 3, and let

(7) Pii >-0, l, >-0, i=1,2,3

where fit is the matrix on the right of (3). Let denote the three inequality-pairs (4) with
replaced by <= throughout. Then -p Ao if one of the pairs has a simultaneous

solution with O. Conversely, if -p Ao, then (7) holds and each of the pairs has a
simultaneous solution with O.

It is worth noting that Theorem 1 is false if p is not assumed to be combinatorially
symmetric. For example, suppose the sole nonzero element of p is Pin. Then all but
one of the six relevant inequalities hold for all t, and yet -p is not in Ao. If a pair
holds only for t- 0 the conclusion -p Ao also does not follow, but in this case p is
effectively a 2-by-2 matrix and the problem is trivial.

For proof let p + el where e > 0. Then -p Ao implies -/ A and this in
turn implies (4) for/ as seen above. It remains to show that the values ? associated
with/ do not tend to 0 or o as e 0. To show this, let us fix attention on (4a), which
is repeated for the reader’s convenience:

(8) (pl_ + tpl)<-4pllP2 t, (tl / tt21)2 _<- 412t.

(We have replaced < by _-< for later use.) If P2 0, then also P21 0, and hence ? is
confined to a compact subset of (0, ) as e- 0. This gives the desired value > 0 for
p. The same happens if 12 0 and t -0, but we can no longer say that one of these
inequalities implies the other.

Suppose, however, that PiE 0. Then P21 0 and tl2 Pin P32, t21 PEaP3 ..If 12 0,
then Pin -0 or P32--0. Hence, since p is combinatorially symmetric, we have t 0.
Thus both inequalities (8) are satisfied by any t, for instance, by t- 1. The only
remaining possibility is that neither tl nor t is 0, and this was dealt with above.
Hence pAo implies (8) with t>0. The same method applies to the other two
inequalities and gives the second statement in Theorem 1.

Suppose next that one relation holds with > 0. Without loss of generality, we
assume that the given relation is (8). Replacing p by/ has the effect of replacing p,
by p, + e, 1, 2, 3. In view of the hypothesis p, >_- 0, , >- 0 this in turn increases the
magnitude ofboth p, and t,. Thus (8) becomes a strict inequality for/, and the theorem
of Cross gives/ A1. That p Ao now follows from Theorem 9 of Part I.

5. Statement of the main theorem. With m _-> 2 as in Part I, the principal result of
this paper is as follows:

THEOREM 2. Let p be nonsingular, with inverse p-l= q, and let p*, q*, a* denote
the m- 1 by m- 1 matrices obtained from p, q, a, respectively, when the last row and
last column are deleted. Then:

(i) If ap > 0 we must have p,,, > O, a’p* > 0 and a’q* > O.
(ii) Ifp,,, > 0, a’p* > 0 and a*q* > 0 it is possible to choose a, > 0 in such a way

that ap > O.
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The theorem reduces the inequality ap > 0 for matrices of order rn to two other
inequalities of the same type for matrices of order m-1. The case m 3 gives the
theorem of Cross, as discussed in 3.

6. The discriminant. Let r0 aipi.i, w Prom, X am, and

(9) u (Pro1, PINE,’" ", Pm,m-), V (r,,, rEin,’" ", rm--l,m)
(10) R=(r+,), l<-_i,j<=m-1.

Thus, z and w are scalars, u and v are m 1 dimensional row vectors, and the symmetric
matrix R agrees with a’p* +(a’p*) in the notation of Theorem 2. Hence

R v + xu
(11) D(x)= =lap+p’al

v + xu 2xw

where D(x) is defined by this equation. Expanding on the last column as a binomial,
we get

R v R xu
O(x) +

v + xu xw + xu xw

Further expansion on the last row as a binomial gives

D(x) do+ 2dlX + d2x2(12)

where

R vt[ R u’ R u’
(13) do

v 0 d dE
t W U 0

When R is nonsingular we can multiply the top row by vR-1 or uR-1, as the case
may be, and subtract from the second row. The result is

(14) do=-lRlvR-’v ’, d,=lRl(w-vR-lut), dE=-lRluR-lu t.

If IRI- 0, we can reduce the first row of R to 0 by elementary operations and a

corresponding sequence of column operations reduces the first column to 0. Applying
these operations to the determinants (13) we find d21 dod2, and from this one can
conclude that the discriminant d-dodE is divisible by ]R]. However, it was pointed
out by Professor Alfred Hales that Sylvester’s identity [4] gives a much stronger result,
as follows:

LEMMA 1. If d d-dodE is the discriminant of the quadratic D(x), then

R v u

d--IRI 0 w,

u w 0

For those unfamiliar with Sylvester’s identity a direct proof can be given with
ease. Assuming without loss of generality that R is nonsingular, simplify the determinant
on the far right by subtracting vR-1 or uR- times the first row from the second and
third rows, respectively. The resulting determinant can be expanded by inspection and
is seen to agree with -d/lRI as computed from (14).

LEMMA 2. If R > O, then do <= 0 and d2 <= O. If, in addition, d >= 0 and w > O, then
dl>0.

The hypothesis R>0 implies IRI>0. Hence, do=<0 and dE=<0 follow from (14)
and the inequalities are strict unless u is 0. To show that d > 0 holds when, in addition,
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w > 0 and d >-0, assume for contradiction that dl < 0. Then

(15) -IRIvR-lu’ < dl <=0

by (6). On the other hand since R-1 > 0 the formula (u, v) vR-lu describes a positive
definite inner product and the Cauchy-Schwarz inequality for that product leads to

(16) (t)R-lut)2 < (vR-’ vt)(uR-’u’).

Multiplying by [RI and using (7), we get d < dod:, which contradicts the hypothesis
d_>0.

7. The inverse. If p is nonsingular, with q p-l, then, as stated in 2, we have
aq > 0 if and only if ap > 0. Let us now set

q=(qij), sij aq, and S s + s l <= i, j <= m -1,

corresponding to the matrix R introduced previously. Lemma 3 enables us to determine
the sign of the discriminant d"

LEMMA 3. If rn >= 2 and p is nonsingular, then d IPl=lRI
The following elegant proof, which is much simpler than the proof first obtained,

is due to Professor Robert Steinberg. Referring to Lemma 1, let

t uitR v
v 0

U W

Multiply the last row by am and add to the next-to-last row, and then do the same for
columns, to get

(17) IT[=
ap+pta b’

b 0

where b (u, w) is the bottom row of p. If q p-l, a short calculation using block
multiplication gives

(18) (qt O1)(ap+pta +qta qt).0 b )(qo )=(aqbq
Since pq I, the expression bq must be the bottom row of I, that is,

This in turn gives

bq (0, 0,...,0, 1) (m coordinates).

(19)
aq + qta qtb’ -IS[

bq 0

as seen when we expand on the bottom row and then expand the result on the right-hand
column. Taking determinants in (18) and using (17) and (19), we get

IqllTl[ql -[sl
or zl---Ipl=lsl, since qp I. Lemma 3 now follows from Lemma 1.

8. Proof of Theorem 2. If ap > 0, then p,,, > 0 and aq > 0 where q p-. Since
the principal minors of a positive matrix are positive, we see that a’p* > 0 and a*q* > 0.
This gives (i).
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To get (ii) let us define

where a* is the given positive multiplier such that a’p* > 0, a’p* > 0, and let us reason
as in [1]. The Hurwitz criterion gives IRI>O and ISI>O and, since p is nonsingular,
d > 0 follows from Lemma 3. Lemma 2 shows then that the inequality D(x)> 0 has
a positive solution x. This condition together with R > 0 ensures that ap +pa satisfies
the Hurwitz criterion, and hence ap > O.

9. The case m =3. When rn 3, q =p-1 and a (1, t, x) we have

R=( 2pll P12 + tp21) S--( 2qll qll+tq21)PiE + tp21 2tp22 ]’ q12 + tq21 2tq22

The conditions R > 0 and S > 0 hold if, and only if, Pll > 0, qll > 0, and

(20) 4tpllP22> (P12 + tp21)2, 4tqllq22> (q12 + tq21)2.

Thus, existence of a simultaneous solution > 0 of (20), together with Pll > 0, qll > 0
and P33 > 0, is necessary and sufficient for existence of a > 0 such that ap > 0. This is
equivalent to the result of Cross, in which the conditions supplementary to (20) are
that p shall satisfy the Hurwitz criterion.

10. The case m =4. If ap >0, then pi,>0 and q,>0, where q =p-l, and this
obviously necessary condition is assumed in the sequel. A similar remark applies to
all the submatrices introduced in the analysis; if any ofthem has a nonpositive diagonal
element, the investigation stops at that point.

Let rn 4 and for any 4 by 4 matrix M let M* denote the 3 by 3 matrix which
is obtained from M when the last row and column are deleted. If ap > 0, then p is
nonsingular and aq > 0 where q =p-1. From this follows a’p* > O, a*(p*)-1 > O,
a’t/*> 0, and a*(q*)-l> 0. Let a=(1, t,s,x) and consider the leading 2 by 2 minor
of each of these four matrices. Since the minor must be positive definite in each
instance, we are led to four quadratic inequalities involving alone, namely, to (20)
and to two others of the same form for (p.)-i and (q.)-l. Each of these inequalities
must define a nonempty open interval of the positive real axis; otherwise the multiplier
a does not exist. Furthermore, the four intervals must have a nonempty intersection.
If the intervals are (a,/3), this means that a </3, where a max (a) and/3 min (fli).
Finally must satisfy a < </3.

For each (a,/3) the quadratic inequality

(21) do+2dls+ d2s2> 0

determines a nonempty open interval of the real axis, where do, dl and d2 are given
by (5) as

2pl P12 q- t21
P12 + tp:zl 2tp22 tp23

P13 tp23 0

2pll

P12 + tp21

P31

2pll P12 + tp21 P31

P12 + tp21 2tp22 P32

PI3 tp23 P33

P12 +/P21
2/P22
P32

P31

P32
0
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respectively. Likewise, for each (a, 13) the inequality

(22) eo + 2els + eEs2> 0

determines a nonempty open interval of the real axis, where ei is obtained from di by
writing q in place of p in the defining determinants. This follows from Theorem 1 with
m 3 or from the theorem of Cross applied to p* and to q*, the role of x in the
theorem being taken by s.

If (p,)-i (qj) then, aside from the positive factor 21p* 1,

(23)
dl t2p23q23 / tpl3t13, d2 tp3 q3 + P32q32,

2d, P2I q21 t2 / (Ip*l + Pll ql, / P22t22 / P33 t33) / Pl2t12
These formulas are useful in numerical work because (p*)- (qj) must be found in
the course of the computation in any case.

Since s is the same in both (21) and (22), a second necessary condition is that it
must be possible to choose (a,/3) in such a way that (21) and (22) have a simul-
taneous solution. When this holds, x can be chosen so that ap > 0; in other words, the
necessary conditions enumerated above are also sufficient. This last remark, which
embodies the main mathematical content of the whole development, is Theorem 2
applied in the case m=4. Note that R=a*p*+(a*p*) and S=a*q*+(a*q*) t, and
that R > 0 and S > 0 are ensured by choice of and s.

If every (a,/3) leads to a simultaneous solution, then we can make any particular
choice, say (a +/3)/2, and the problem is solved. The only other case in which the
multiplier a exists is that in which some values work, but not all do. In this case as
traverses its interval (a,/3) we must reach a point where the two s-intervals are just

abutting. The quadratic equations defining the end points have a common root, and
hence at the point in question must satisfy the quartic equation

d2 e2
2 d2 e2 dl el"-4(24)

do eo dl e, do eo

Thus we are led to a specific decision procedure. First, find the interval (a, fl), verifying
that it is nonempty. Second, see if (a + fl)/2 allows a simultaneous solution of (21),
(22). Third (if this fails) see if the quartic (24) has a root in (a, fl). If the latter condition
fails too, then the multiplier does not exist. If it succeeds, then (except in infinitely
rare cases) the multiplier does exist. The only reservation is that the s-intervals could
just barely abut, as traverses its interval, and then move apart again without ever
overlapping. This entails an algebraic relation among the elements p which is not
likely in any practical application. To rule it out, however, one would have to try
values near the root of the quartic and see whether the intervals overlap.

11. Remarks on the general case. An important difference between the cases m 3
and rn 4 is that in the former case there is no free parameter in the inequalities
leading to the multiplier a, while in the latter there is the free parameter a2, the
value a being normalized as 1. This difficulty was overcome, in part, by the consider-
ations leading to (24). However, for larger values of rn the presence of free parameters
becomes increasingly burdensome and an alternative, less precise procedure is sug-
gested here.

Namely, instead of trying to optimize the choice of in a (1, t, s,. .) just take
a + ]3 )/2, where (a,/3) is the defining interval; ifthis interval is empty, the multiplier
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a does not exist. Theorem 1 then reduces the problem to two others, with no free
parameter, for matrices of order m 1. We take s to be at the mid-point of the defining
s-interval given by these two problems, and so on. If the method does not abort, it
will produce a multiplier a, and if no multiplier exists, the method will necessarily
abort. It is not infallible, but is shown by examples to be surprisingly effective.

The reason for this effectiveness is, in part, the large number of independent
inequalities for each variable, and in part the fact that these inequalities take account
of the full structure of p. In general there are 2’’-2 inequalities for the first variable,
t, half as many for s, and so on, down to a single inequality (which need not be written
down) for the last variable x an. This is seen from the structure of Theorem 2, which
reduces the problem with rn to two similar problems with m- 1.

Another aspect ofthe general case is that one must make far fewer matrix inversions
than one might think from the number of inequalities. The reason is that all principal
subdeterminants encountered must be positive; otherwise the procedure comes to a
halt. Thus, if q p-1 is computed by the usual method, operating simultaneously on
p and on /, the diagonalization of p can be achieved by row operations alone, and
furthermore, it will not be necessary to interchange any two rows. The calculation can
be arranged, therefore, so that it automatically inverts the leading submatrices of orders
2, 3,..., rn-1, as well as p itself. The same applies to other inversions, e.g., to the
computation of (p,)-I and (q,)-l.

These general remarks are now illustrated in a specific example.

12. A numerical example. Let us consider the matrix

2 3 2 1

P= 2 2

1 1

The problem is" For what values of the constant c is there a multiplier a such that
ap > 0? It will be seen that no such multiplier exists when c <= 12, and that the multiplier
always exists if c >- 12.6. It should be noticed that this matrix does not have favorable
properties of the kind usually assumed in such problems. There is no condition of
diagonal dominance, the off-diagonal elements are not of one sign, nor do they satisfy
the Volterra condition PijPji < 0. The graph has no special simplicity, being the complete
graph on four vertices. Furthermore, the multiplier a I does not work for any c,
since IP + P’I 112 independently of c.

If p is followed by the 4-by-4 identity matrix I and the diagonalization is begun
by use of the first three rows to simplify the first three columns only, the result is

(25)

1 0 0 -7 2 -2 -1 0
0 1 0 5 -1 2 0 0

0 0 1 0 0 -1 1 0
0 0 0 b 3 -3 -2 1

where b c- 12. It was not necessary to divide any row by a constant, because p was
chosen so that the leading 2 by 2 and 3 by 3 minors are 1. The left-hand matrix (25)
shows that Ipl- b and hence b > 0 is necessary for existance of the multiplier a. This
gives c> 12. The leading 3 by 3 submatrix on the right gives the inverse of the
corresponding submatrix in p; that is, it gives (p.)-l.
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For simplicity we now take b-1, corresponding to c= 13. Continuing the
diagonalization in (17) gives I on the left, q--p- on the right, and

23 -23 15 27 38

(26) q*= -16 17 0 13(q*)-= 16 23 10

0 -1 16 23 23

Here the second result is obtained from the first by determinants or by diagonalization,
as preferred. Together with the two matrices (26) we consider

t2 3 it t 2-2

(27) p*= 1 2 (p.)-l=-1 2

1 2 0 -1

the latter being obtained from (25). By Theorem 1, we can find a so that ap > 0 if,
and only if, each of the four matrices (26), (27) satisfies the corresponding condition
with a*.

Let us set a* =diag (1, t, s). The leading 2-by-2 minors in (27) and (26) give,
respectively,

(3 + t)2 < 16t, (2 + t)2 < 16t, (23 + 16t)2 < 1564t, (38 + 16t)2 < 2484t.

The corresponding t-intervals are

(1,9), (0.34,11.66), (0.88,2.36), (1.77,3.18).

Hence, 1.77 < < 2.36 is a necessary and sufficient condition for all four inequalities
to be satisfied.

Instead of carrying as a parameter, let us now take 2. By (23) applied first
to (27) and then to (26) the inequalities for s are

s2-6s+2<0, 2382-198s+350<0

with corresponding intervals

(0.35, 5.65), (2.59,6.12).

Since these have a nonempty intersection, the multiplier a can be found. In fact, one
can take a* diag (1, 2, 3), (1, 2, 4), or (1, 2, 5), if integral components are desired.
That 44 X can be suitably chosen follows from Theorem 2.

As a check, one can readily verify, by the Hurwitz criterion, that a’q*> 0 and
a’p*> 0 in (26), (27); this verification is much easier than is determination of the
unknown multiplier a*. A more elaborate verification allows us to narrow down the
bounds on . Let a (1, 2, 4, x) and compute ap+p’a, keeping c arbitrary. It is seen
that the Hurwitz criterion holds if, and only if, lap+p’al>O, and this in turn is
equivalent to

(28) -79x2 + 2x(24c- 122) -412 > 0.

The discriminant is positive for c> 12.58. Hence the multiplier a can be found if
c => 12.6. As a further check note that, when c 13, the value IS] la*q* + q*’a*] can
be read off from (26) and the discriminant is

d (190)- (412)(79) 3552 (1)2(24)(148) Ipl21RI Isl
in agreement with Lemma 3. It may be mentioned incidentally that whenever x exists,
we can take 2x x + x, where x and x2 are the roots of the corresponding quadratic
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equation. This gives x =-dl/ d2 in the notation of 3; hence

24c- 122
X

79

in the present case. When c- 12.6, this gives x 2.28, so that a possible multiplier is

a diag (1, 2, 4, 2.28).

13. Semidefinite matrices. Much of the utility of Volterra multipliers stems from
the fact that one can have ap >-0 in realistic cases even when some p, =0. In the
context of differential equations, this means that the self-limiting term is absent from
the ith equation. For such indices the nonzero off-diagonal elements must satisfy the
Volterra condition pijpji < 0 and the ratio a/aj is uniquely determined by ap + ap O.
Nevertheless, it is often possible to allow small perturbation of the nonzero elements,
so that -p A in the notation [6]. Indeed, the presence of elements p, 0 is rather a
help than a hindrance, because it allows us to determine some of the ratios a/ak a
priori. For systematic discussion one can interchange rows and columns, so that all
zero p, are at the lower end of the diagonal.

As an illustration let us consider the matrix

2 3 2 zl
2 1 3 z2
2 2 3 z3

1 1 c z4

\ Yl Y2 Y3 Y4 0

with the multiplier a diag (1, t, s, x, y). A necessary condition is yz <- 0 and

YYl + Z1 O, YY2 + tz2 0, YY3 -- SZ3 O, YY4 -" XZ4 O.

Another necessary condition is that the values 1, t, s, x shall yield a multiplier for the
matrix considered in the preceding section. These two conditions together are sufficient.

For example let ylz <0 and y2z<O, the remaining variables being 0. Then
y=-zl/Yl and t=y2zl/(yz2). It is necessary that this shall satisfy the inequality
obtained in 12,

1.77 <
y2z

< 2.36.
YlZ2

If the value =yz/(YlZ2) leads to a value of s in the remainder of the discussion,
then a exists to make ap >= O, and otherwise not. In particular, when c 13 the condition

(29) Y2Zl 2ylz2

is sufficient, since it was verified that the choice 2 is satisfactory. The new feature
is that the extra coefficient y, zi, with P55 0, tend to take up the slack; the choice of

is no longer subject to discretion.
Pursuing this example further, let us suppose that (29) holds and that Y3Z3 < O,

the condition Y4 24--0 being retained. Then the value s -YY3/z3 must be compatible
with the analysis of 9, and we get the necessary and sufficient condition

2.59 < zlY3 < 5.65
YlZ3
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when c 13. Under the hypothesis c 13 and (29) if the above double inequality holds,
then a can be found, and otherwise not.

Continuing the discussion, let Y4Z4 < 0 and let

(30) zly3 4ylz3

as well as (29), so that 2 and s-4. Then we have the situation leading to (28).
Since x =-YY4/z4, a necessary and sufficient condition is

Xl <
zly___4 < X2
YlZ4

where x and x2 are the zeros of the quadratic (28). If C 24c-122, the bounds for
C are, asymptotically,

206 zly4 2C 206
C yz4 79 C

For example, when c= 20, the exact and approximate intervals are, respectively,
(0.62, 8.45) and (0.58, 8.48). Since the multiplier a (1, t, s, x) has a certain leeway in
the analysis of 9, the above conditions give -p A and not only -p A0, in the
notation [6]. This is true even though (29) and (30) are exact equalities. A slight
deviation in the yi and zi can be compensated by adjusting the multiplier a.
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THE ASYMPTOTIC BEHAVIOR OF TOEPLITZ DETERMINANTS
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Abstract. By combining known results on the asymptotic behavior of Hankel and Toeplitz determinants
we obtain expressions for det (f,,+i-j)i",j--0 as n and m 0, =t= 1, +2,. The fk are Laurent coefficients
of a meromorphic function. These expressions contain the zeros of the meromorphic function and are
therefore interesting in proving results on the convergence properties of Laurent-Pad6 approximants.

Key word.. Toeplitz determinants
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1. Introduction. The qd-algorithm of Rutishauser [11] or the 7r’-algorithm [5] are
known to construct a table of numbers, given the Taylor series of a meromorphic
function. By considering the column limits of these tables, we can compute the poles
of that function. The main tool in the proof ofthese results is the study ofthe asymptotic
behavior of Hankel determinants constructed with the Taylor series coefficients. By
using a symmetry property of the tables constructed by the above algorithms for a
Taylor series and its inverse one finds that row limits of these tables allow zeros of
that function to be computed. If the meromorphic function is given by a Laurent series
in a certain annular region, centered around the origin, it is possible to construct by
the same algorithms a bi-infinite table of numbers [6, p. 62]. As in the case of a Taylor
series one can prove that the downward limits can be used to compute the poles of
the function around infinity. The upward limits of the columns can be used to find
the poles around the origin. In [8] this was shown in the context of two point Pad6
approximants for an algorithm developed by McCabe and Murphy 10]. This algorithm
is of the same type and closely related to the qd- and r’-algorithms. We call it the
FG-algorithm, referring to the notation used in [9]. The method of proof is based on
an additive splitting of the Laurent series,

f(z) fkZ" fkZ" + Ef_kz-k.

The downward column limits depend only on the coefficients in the first sum. The
upward column limits depend only on the coefficients in the second sum. Consequently
the theory developed for a Taylor series can again be used. It is to be expected that
the row limits will give information about the zeros. This is indeed the case [2-1, [3].
These row limits depend, however, on the complete Laurent series and there is no
obvious symmetry property that can derive the results from the previous theory. It
turns out that instead of the asymptotic behavior of the Hankel determinant
det [fm+i+j]i=o as m--> o we now have to investigate its behavior as n--> o, or what is
the same, the behavior of Toeplitz determinants det [fm/i-j]i=o as n --> . The latter is
the subject of this paper. It will be clear at the end that the theory for a Taylor series
can still be used but now for a multiplicative splitting of f: f(z) f/(z)f_(z), where

* Received by the editors January 11, 1984, and in final revised form June 5, 1984.

" Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3030
Leuven, Belgium.
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f/ is analytic around the origin and f_(z) is analytic around infinity. Several expressions
for the asymptotics of Toeplitz determinants exist in the literature. Usually they are
constructed from the Fourier coefficients of a function that has certain properties. We
shall use these and adapt them to our situation. In view ofthe application it is important
that the zeros of the function are introduced in the expressions. It should be noted
that for rational functions and under certain restricting conditions an explicit expression
for Toeplitz determinants was given in [4].

We do not include the proofs on the row limits of the tables constructed by the
rhombus rules because these were given elsewhere and because we think the expressions
may be interesting in their own right.

2. Notation and main results. Let f(z) be meromorphic in Co C\{0} and suppose
there exist r and R such that

(2.1) f(z) Y fkZk

is a Laurent series of f(z), convergent in the annulus r < z] < R.
We suppose further that

(2.2)

with

and

(2.3)

and

(2.4)

f(z) Go(f)f+(z)f_(z)z

f(z)=z-"f(z)

logf(pe dO r<p<R,

where the zeros and poles are numbered such that

(2.6)
I1 I;I r < R <_-Iffl I;I ’’’,

+ +--< I1--< 171 -< r < R -<--1’7/’1 If 1"/7"2 If
We suppose that sr, k Z+, are all finite and we set sr[ oe if k > #Z+ and similarly

+for 7rk. Also st{ 0 for k Z- and ’{ =0 for k > #Z- and similarly for 7rk.

f/ and f_ are supposed to be irreducible. K of (2.2) is the winding number

1
eio(2.7) K p =indp (f)=--[argf(p )]g’.

Note that indo (f/)= indo (f_)= ind,, (37) =0. For a rational function f, indo (f)=the
number of zeros in Izl< p-the number of poles in Iz[< p. With the series (2.1) we
associate the Toeplitz determinants

T,m)(f) det (fro+i-j)7a=o, m, n =0, +1, +2,. ..



626 ADHEMAR BULTHEEL

Then for n--> , we have the following asymptotic expansions:
THEOREM 1. With the notation just introduced we have for n--> :

T(,m)(f) c[Gp(f)]"+l{1 +o(1)} if m K,

T)(f) c[Gp()]n+l[(--)(--) (--+m_)]

{1+ O(l’+m_/o’l")}

if 0 < m < #Z+ + 1 and if r satisfying I+,,,_] < r < I+,,_+11 exists.

T(,m}(T) c[G,(f)]"+l[(-sr-)(-’)... (-sr-_=)]"

(1 +

if 0 < m < Z- + I and if cr satisfying [--,.+iI < cr < I--,.[ exists.
Hcrc and in the following c is a constant not depending on n. It is sccn from this

that the asymptotic behavior of T,")(f) is up to a factor completely defined by f+ or
f_. Wc have thus the following theorem.

THEOREM 2.

T(,,’)(f) T(,"-")(f+)[ Cp(f)]n+l

where m >- , f(z)= z-Kf(z), and

T(.")(f)- T(nK-m)(f_)[Gp()]n+l

where m <= , f_(z)=f_(1/z), f(z)= z-f(z).
As a special case we reformulate Theorem 1 for a rational function f(z).
THEOREM 3. Suppose f(z) is a rational function with irreducible form

(z- ,)(z-) (z-)f(z) K" zt"
(z-,)(z-9.’. (z- )"

kLet f(z) Y,_fkZ in r < Izl < R and f(z) # 0 on Izl p with r < p < R. We order poles
and zeros as follows

M- P is the number of nonzero poles in z[ < p. Then for 0 <- k- m <-_ N, where
k N-M+ P+ I, we have

T’(f) cK"[(-srl)(-’)... (--k_m)]n[(--/Tl)(--q’$’2) (--TYp)]

n --- x),
where it is understood that o and ’N+I are arbitrary and defined by

0 < N+I < I{N[ and I{ll < 0< O0

and on condition cr exists satisfying [’k-m+,l < cr < Ik-ml"
We prove Theorem 1 by taking results on the asymptotic behavior of Toeplitz

determinants from the literature. By combining them and using some elementary
transformations we get the desired results.
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3. Proof of Theorem 1. We shall start by eliminating the geometric mean Go(f)
from the formula. To do this use the simple observation given in

LEMMA 1.

T.")(c f) c"+’ T.">(f).
This allows us to set for the moment Go(f)= 1 without loss of generality. The

next step is to solve the problem for 0 and for p 1, so that thef may be considered
to be the Fourier coefficients off(z).

We first quote the following theorem which was proved in a more general context
in [1]. For our case it reads as follows.

THEOREM 4. Let p 1, Go(f)= 1 and indp (f)= 0. Then, as n oo, we have

T(.)(f) c{1 + o(1)},

T.")(f)=c(-1)"+")"{T+_)(fT+’)+o(1)}, m>0,

T.-m>(f) c(-1 )(n+m)m{ (--n--1T,.,_, >(f+/f_) + o(1)}, m > 0.

In this case c is even specified to be

)exp Y (k(logf)_k(lOgf)k)
k=l

with {(logf)k}=-o the Fourier coefficients of logfi
We shall now derive expressions for T_+)(ff+ 1) and T-"_l)(f+/f_). This will be

done via known asymptotic expressions for finite Toeplitz determinants. The basic
result is classical and given in [7, p. 596]. Similar results are obtained in [5, p. 45].

THEOREM 5. Let f(z)-o fkzk be the Taylor series of a meromorphic function,
analytic at the origin, with poles 7rk, ordered as

Let rrN+ oo and fk 0 for k < O. Then

T(mn)-l(f)-- c(7’1 "r/’m)-n[1 +

/f O<m< N+ and tr exists satisfying
To extend this result to Toeplitz determinants of a Laurent series we use the

following corollary.
COROLLARY 1. Let f(z) and its Laurent series be as in (2.1)-(2.6). Then

T(n) + + +7rm/O"--,.-l(f) c(rr, "D’m) "[1 + 0([ )], n

/fO<m<#P++l and [Tr+ml<Cr<[ +rm+ll, and
(-n)T,,,-l(f)=c(rr-(rr r7,,)"[1 + o(I,:,/r;,,I )],

if O<m<e-+l and
Proof. Split f(z) as f(z)= g(z)+ (z) with

g(z) Y, fkZk and (z) ,f_kz-k.
o

Clearly g(z) defines a function with poles "n’, k P+, arranged as

p <lcr-I-<_lg-I-<_

Because --m-r(") (f) for n > 0 depends only on the coefficientsfo,f we have T{m")__(f)
T)__(g). Thus Theorem 5 applies, and this proves the first part of the corollary.
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Set h(z)= (1/z). This function has poles (./.-)-1, k P-, ordered like

m-l,f) depends only on f-1 f-2 if n > m. Since -r(--) T(.),’ --m_l(f) T"__)m(h) m_l(h),
we can again apply Theorem 5 which gives the second part of the statement. [3

With this corollary we can prove that Theorem I is true for p 1 and r indo (f)
0. The general case can be shown by using the trivial transformations given in the
following lemma.

LEMMA 2. With the notation of 2, set

f(z) z-"f(z) and g(z)=f(pz)= , gkZk

for r’ < Iz] < R’ with gk pkfk+K, r’= rip < 1 and R’= RIp > 1. Then we have"
(1) Go(f)= Gl(g),
(2) T’)(f) T’-K)(f) p-(’-)" T(-)(g),
(3) If " is a pole (zero) off, then r/p is a pole (zero) of g(z), with a possible

exception for " 0 or r oo.

4. Proof of Theorem 3. Note that f(z) can be written in the form (2.1) if we take

’1, ’2, "’, ’Z ’Z++1, ", ’N,

II II II II II
+ t’- t’?, z-Z Z+-I

with ITI > for i= 1, 2,..., z+ and IffvI < p for i= 1, 2,..., z-.
Similarly for the poles.

’7/" ’T/’2

+
TTP TTP+-1,

(#P+= P and #P-= M-P).
Clearly #Z-- P-+ l, and

Go(f)= K.

"/Tp, "rJ’p+ 1, "ffM,

7’/" 7T1 7T4P-

(-)... (-;z+)

Theorem 3 now directly follows from Theorem 1 if you observe that 0 < m K <
/ + 1 is equivalent with 0 <= k m < #Z/, 0 < K m < #Z- + 1 is equivalent with
/ < k- m =< N and k- m #Z/ is equivalent with m .
5. Conclusion. With the multiplicative splitting for f defined in (2.2)-(2.6), it is

shown that the asymptotic behavior of the Toeplitz determinants T.m)(f) are mainly
defined by T.’-)(f+) or T.-m)(f_) depending on m being larger or smaller than
With these formulas it is possible to extend the results for a rational function given
in [2] to the general meromorphic case.
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MULTI-SPLITTINGS OF MATRICES AND PARALLEL SOLUTION
OF LINEAR SYSTEMS*
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Abstract. We present two classes of matrix splittings and give applications to the parallel iterative
solution of systems of linear equations. These splittings generalize regular splittings and P-regular splittings,
resulting in algorithms which can be implemented efficiently on parallel computing systems. Convergence
is established, rate of convergence is discussed, and numerical examples are given.

Key words, matrix splittings, iterative methods for linear systems, parallel computation, regular splittings
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1. Introduction. Consider the solution of a large linear system of equations

Ax b

on a parallel computer. We assume that several processors are available and that they
can execute different instruction sequences on their local data and can communicate
with physically adjacent processors.

In this paper we consider the problem of solving linear systems for which the
matrix A can either be split into many pieces or split into two pieces in many ways.
An example of the first case is the assembly of a finite element matrix by elements. In
that case A can be decomposed as

K

A=Ak
k=l

where each matrix Ak has small rank. The second case arises from having several
candidate iterative methods

BkX/l CkX + b, O, l, ,
where for k= 1,2,..., K, A= Bk--Ck.

We discuss ways of using these two kinds of decompositions of A in order to
construct convergent iterative methods which are structured so that most operations
can be performed in parallel. We base such iterative methods on multi-splittings of the
matrix A.

In 2 we define multi-splittings and prove some convergence results for these iterative
methods. Section3 provides a discussion of parallelism in the iterative methods,
examples of problems for which multi-splittings can be used, and motivation for the
definitions and results of 2. Section 4 provides results of some numerical experiments
on multi-splittings. It is possible to read 3 and 4 before 2 if a reader is so inclined.

2. Multi-splittings: definitions and theory. We begin with a definition of a multi-
splitting of a matrix A, discuss its use in an iterative method for solving linear systems,
and prove some convergence results. For notational convenience we omit the lower
and upper limits 1 and K on all sums and the indices k 1,. ., K on ordered triples
(Bk, Ck, Dk).

* Received by the editors January 24, 1984, and in revised form April 19, 1984.
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DEFINITION. Let A, Bk, Ck, and Dk be n x n matrices. Then (Bk, Ck, Dk) is called
a multi-splitting ofA if

i) A Bk-Ck, k 1,’’., K, where each Bk is invertible.
ii) k Ok I where the matrices Dk are diagonal and Dk >--_0.

We will use the notation

H DkB-ICk and G Y DkB- 1.
k k

We are interested in the convergence of an iterative method based on H and G for
solving Ax b. Using (i) above, Ax- b may be written as

or

BkX CkX + b, k 1, , K

x B- CkX + B- b, k=l,’",K.

We use the weighting matrices Dk to combine these K equations as

DkX Y’, DkB- CkX + DkB- b,
k k k

which, by (ii) and the definitions of H and G yields the following algorithm.

ALGORITHM 1
Choose Xo arbitrarily.
For 0, 1, 2, , until convergence

Xi+ Hxi +Gb.

The parallelism in a variant of this algorithm will be discussed in 3.
It would be convenient if it were true that whenever the iterative methods based

on each of the splittings A Bk -Ck converged, then Algorithm I produced a conver-
gent sequence, too. Unfortunately, the situation is more complicated than that, as the
following trivial example shows.

Example. Let K- 2, n- 2, and consider

where

and

=B-C=B2-C2,

B=
.5 -1

C=
-.25 -1

1 4 1 3.25

-1 .5 -1 -.25

Then

B-1C= .25 .875 -.25 0

The spectral radius p for both matrices is .7965, so iterations based on both splittings
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are convergent. But, with the choice

D= 0

the resulting iteration matrix is

.25 .875

for which the spectral radius is 1.125, and therefore Algorithm 1 would not be
convergent. Other choices of D and D2 will change this situation, of course. For
example, if the definitions of D1 and D2 above are interchanged, the resulting matrix
H has spectral radius equal to 1/4.

Recall that (B, C) is a weak regular splitting of A if A B-C, B-l>= O, and
H-- B-IC>=O. Similarly, (B, C) is called a P-regular splitting of A if B is nonsingular
and the symmetric part of B + C is positive definite. From standard results in the
theory of iterative methods (see, for example, [1] and [6]),

(1) If (B, C) is a weak regular splitting of a matrix A satisfying A-1 >=0, and
H B-1 C, then p(H) < 1.

(2) If (B, C) is a P-regular splitting of a symmetric positive definite matrix A,
and H B- C, then p(H) < 1.

(3) If IIHII <1 for any matrix norm, then p(H)< 1.
We seek conditions on the multi-splitting (Bk, Ck, Dk) which will ensure that

analogous results apply to the splitting resulting in H. Consequently, these conditions
will ensure that Algorithm 1 is convergent. The example above shows that the second
result does not have a direct analogue: it is not enough that each splitting in the
multisplitting is a P-regular splitting of a symmetric positive definite matrix. The other
two results do generalize without additional hypotheses.

THEOREM 1. (a) If, for k 1, 2,..., K, (Bk, Ck) is a weak regular splitting of a
matrix A satisfying A-> O, then Algorithm 1 is convergent.

(b) If, for k 1, 2,..., K, (Bk, Ck) is a P-regular splitting of a symmetric positive
definite matrix A and Dk --OlkI then Algorithm 1 is convergent.

(c) If, for k= 1,2,..., K, IIBZCII 1, then Algorithm 1 is convergent.
Proof. (a) The proof parallels the proof for convergence of weak regular splittings

found, for example, in Ortega [6]. From the definitions of H and weak regular splitting
we have the following three facts:

1. H ->_ 0 and therefore H >_- 0, j 0, 1, .
2. I H ,k DkB-IA.
3. (/+H+’’’ +n")(I-n)= I-n"+.

Now, using these facts in order,

0<_-(I+H+ + H") E DkB-’
k

=(I+H+...+Hm)(I-H)A-1

=(I_Hm+)A-<__A-.
Therefore, the elements of H must remain bounded, and therefore H is convergent.

(b) Again, the proof parallels a standard proof of convergence, that for P-regular
splittings [6]. It is sufficient to show that A-HTAH is positive definite; then the result
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that p(H)< 1 follows from a theorem of Stein [9]. We use the notation B-r= (Br)-1=
(B-’) T.

=Z ADkB-IA+Z AB-TDkA Z AB-7DkADjBf1A
k k k,j

AB-T[BDk + DkBk DkADk]B-’A
k , AB-rDkADjBfA
kj

ABT[B[Dk + DkA+ DkCk DkADk]B-A
k

AB-rDkADBIA
k,j
kj

AB7"[B[Dk + DkCk -}- DkADj]B-lA
k

jk, AB-rDkADB;A
k,j
kj

E AB-T[B[Dk + DkCk]B-1A
k

+ ABTDkAD[B-’A -Bf’A]
k,j
kj

--$1+$2.

Let sym (P)= (P+ PT)/2 denote the symmetric part of the matrix P. Then

sym (S,) Z akAB-T sym (Bk + Ck)B-’A,
k

and each of these terms is positive definite. Now

2 sym (S) Z aka)[(ABT- AB/T)AB’A + AB-TA(B-’A
k,j
kOj

Z akai[AB-rAB-’A AB;rAB-’A AB/rAB-’A + AB-TAB-f’A]
k,j
kj

E akaI[(AB-T-ABr)A(B;’A-B-f’A)].
kj

Thus sym (S2) is positive definite and the result is established.
(c) The infinity norm of a matrix is the maximum absolute row sum, and the

absolute row sums of H are bounded by convex combinations of the absolute row
sums of B Ck. Thus IIHII < 1, and convergence is established.

This theorem says that if we have a collection of convergent splittings of a matrix,
then under certain conditions we can construct a convergent multi-splitting. There is
another way to construct convergent multi-splittings. We break the matrix into simple
pieces Ak and add diagonal matrices Ek to ensure that each Bk -= Ak + Ek is invertible.
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DEFINITION. Let Ak, Bk, and Dk be n x n matrices. Then (Ak, Ek, Dk) is called a
dissolution ofA if

i) A-k Ak.
ii) Ek and Dk are diagonal matrices.
iii) (Bk, Ck, Dk) is a multi-splitting of A, where Bk Ak + Ek and Ck Ek --jk

We call (Ak, Ek, Ok) a convergent dissolution of A if it is a dissolution for which the
multi-splitting (Bk, Ck, Ok) leads to a convergent algorithm.

The next theorem gives explicit conditions on the matrices A, Ak, and Ek such
that (Ak, Ek, Ok) will be a convergent dissolution of a matrix A.

THEOREM 2. Let A Ek Ak be an M-matrix and let the matrices Ek be nonnegative
diagonal matrices with diagonal components equal to elk. Then if the matrices Ak --(am)
satisfy

(a) 0 <-- -am <- -arm, # m,
(b) etk + a> -m, am,
(C) elk + al >: au,

thenfor all nonnegative diagonal matrices Dk with k Dk I, (Ak, Ek, Dk) is a convergent
dissolution of A.

Proof. Let us examine the elements of Ck. For # m,

Cm’-’-- E am--akim--alm >-0
j#k

using assumption (a) and the fact that A= ,k Ak. By (c), c! ek + a--au>= O. Now
Bk Ak + Ek satisfies bm akm <= O, # m, by (a), and b ai + elk > 0 by (c). Further,
by (b), Bk is a strictly row diagonally dominant matrix. Therefore, Bk is an M-matrix
[7] and B -->0. Thus A= Bk--Ck is a weak regular splitting for each k, and, by
Theorem l a, the multi-splitting is convergent.

THEOREM 3. Let A ’. k Ak be a symmetric positive definite matrix, and let Ak + Ek
be nonsingular and 2(Ak + Ek) A bepositive definite, k 1, 2, , K. Thenfor nonnega-
tire diagonal matrices Dk akI, (Ak, Ek, Dk) is a convergent dissolution of A.

Proof. The conditions in the theorem assure that Bk Ak + Ek is invertible and

Bk + Ck A +2E E At 2(A + Ek) A
jOk

is positive definite. Convergence follows from Theorem lb. F1

3. Examples of multi-splittings. In this section we construct some examples of
convergent multi-splittings of matrices. We also discuss the use of multi-splittings on
parallel computers. Many other approaches to parallel iterative methods have been
developed; see, for example, [2],[4],[8]. We consider the following algorithm for
solving Ax b. It is equivalent to Algorithm 1 when to 1.

ALGORITHM 2
Choose Xo arbitrarily; choose a parameter
For i= 1, 2,... until convergence

Let
For k= 1,2,. ., K
Find DkYk where Yk satisfies

(3.1) BkYk Ck -" b.
Form xi+ (1-to)xi+ to ,k DkYk.

We use the term "dissolution" in the sense of "the breaking up of an assembly or organization"
(Random House Dictionary, 1980).
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As before, Dk is a diagonal matrix and A Bk-
Parallelism in Algorithm 2 could be exploited in several ways, depending on the

precise machine architecture and the choice of the multi-splitting (Bk, Ck, Dk). First,
the computations in (3.1) for various k are independent, and could be performed in
parallel. (Note that if a main diagonal element of Dk is zero, the corresponding
component of Yk need not be computed at all.) Second, the n components of a single
vector Yk (or xi/) could be computed in parallel. Third, the accumulation of the sum
of K + 1 terms which forms a component of xi/l could be formed in O(log2 (K)) time
using parallel computation.

Our first two examples illustrate the use of convergent multi-splittings to solve
algebraic systems resulting from applying the finite difference and finite element
methods to partial differential equations. In both examples, the original matrix is
decomposed into a sum of matrices which are considerably "simpler" than the original
one and which reflect significant contributions to A from given subsets of nodes. Thus
it is natural to use these decompositions of A as the basis for a dissolution as defined
in2.

Example 1. Decomposition by blocks ofunknowns. Consider the partial differential
equation

--1,1xx- Uyy --f on 12, u g on Ofl.

Let 11 be a square and use the second order accurate 5-point finite difference method
to discretize the equation with rn equally spaced interior mesh points in each direction.
This gives the algebraic equation Au f where A is an m2 m2 matrix, f is a m2 1
column vector whose components reflect f, g, and the dimension m, and u=
(ul,. , Um," ", U,,""", Um,) r. The matrix may be written as

-I
where

-1

-1

and is of dimension m m. This linear system can be solved, for example, by the
alternating direction implicit (ADI) iterative method. One version of this method is,
first, solve m sets of equations, one set for each row of mesh points, and second, solve
another rn sets of equations, one set for each column. That is, A is decomposed as a

sum of 2 matrices:

T T

A= +p pT

T T
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where
2 -1

-1 2 -1

and P is the permutation matrix which would reorder the vector u as Pu=
(u,..., u,,,..., Ulm,"’, Um,) r. This can further be broken into the sum of 2m
matrices Ak, each one corresponding to one ofthe matrices T. We introduce nonnegative
diagonal matrices Ek such that the matrices Bk Ak + Ek are invertible, and construct
a set of nonnegative diagonal matrices Dk which sum to I. Since it is natural to let a
diagonal component of Ok be zero if the component corresponds to a mesh point or
element not in block k, most of the linear systems in Equation (3.1) of Algorithm 2
do not require the computation of a full n-dimensional problem but one whose size
is much smaller--dimension m. The matrix Ek can be taken as 0 when Ak is nonzero
and as arbitrary positive diagonal elsewhere. The solution of each linear system is
independent of the others and can be performed in parallel if sufficient processors are
available. Under natural assignments of unknowns to processors, nearby mesh points
will be computed in nearby processors, so communication in step (3.1) will be local.
Theorem l a applies to this multisplitting and assures convergence.

Example 2. Decomposition by finite elements. Consider the Galerkin formulation
of the finite element method applied to the ordinary diiterential equation

-u,x =f, u(O) Uo, u(1) u.
When linear shape functions are used on an equally spaced mesh of size 1/(m + 1),
this method gives a system of equations Au =f, where A is the matrix T defined in
Example 1 above. This matrix may be "assembled" by using the element matrices. The
domain, [0, 1], is a union of m+ 1 elements [xi, xi+ Ax], where m 23. The element
matrices have the form

Then A may be written as

A1

where

Am--1

m-1

A=Y. Ak,
k=l

-1

1

0

0

0
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and Ak, k 1, m- 1 has the element matrix as a diagonal block starting in row and
column k and zeros elsewhere. This splitting of finite element matrices has also been
used as the basis of an iterative method by Hayes and Devloo [3]. Let Bk -Ak d-Ek
where Ek is any diagonal matrix which makes B ->_0. (For example, it is sufficient
that all diagonal elements of Bk be equal to 2.) Then Theorem la ensures that Algorithm
2 will converge. Again, under natural assignment of nodes to processors, high parallel-
ism can be achieved.

We have chosen trivial problems in Examples 1 and 2 to make the descriptions
easier, but the methods are equally applicable to irregular meshes in several space
dimensions.

We now give an example of a convergent multi-splitting which is not derived from
a dissolution.

Example 3. Decomposition by block iterative methods. Let A be a sparse M-matrix
(The matrices of the first two examples satisfy this hypothesis). Assume that each
unknown has been assigned to a processor on a parallel computer. Choose some subset
of K unknowns, and direct the corresponding processors to "grow" a block of
unknowns from those local to it and in nearby processors in order to identify a principal
submatrix of A for which linear systems are easy to solve. Note that an unknown may
appear in several blocks, and the idea is to let the blocks grow to some point such
that each unknown appears in at least one block and the work among processors is
nearly balanced. Then, for k 1, 2,. ., K, we have partitioned a permuted version of
A as

where G is the principal submatrix grown by the kth unknown. Then let

where each diagonal element of (Dk)- equals the number of blocks in which the
corresponding unknown appears. We have a set of regular splittings of the M-matrix
(because each corresponds to a block Jacobi method), and Theorem la assures
convergence. Note that the blocks corresponding to the second row of Bk and Ck are
never used since the corresponding elements of Dk are 0.

Although convergence is assured in each of these examples, it may be too slow
in practice. The practical use of these algorithms in the parallel solution of sparse
linear systems may be as highly parallel preconditionings of some faster iterative
method such as conjugate gradients or block conjugate gradients [5].

4. Numerical examples. In the following examples we apply Algorithm 2 to two
problems and study the convergence of the algorithm as the block size, the choice of
Ek, and the choice of to are changed. The second example arises from an elliptic
boundary value problem and is more realistic than the first in the size and character
of the resulting matrix.

Numerical example 1. Consider the ordinary differential equation

-Uxx=f(x) 10, u(0)= 1 u(1).

Let the interval [0, 1] be divided into 18 equal elements of length h , and consider
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the Galerkin formulation of the finite element method with linear shape functions.
The resulting algebraic system is

1 h
(--Ui+ "1- 2U Ui_I) "" (f/+l + 4f/’’f/--1), i= 1, 2,..-, 17,

with Uo 1 u18. We construct K 16 matrices AkK as in Example 2 of 3, and further
consider examples in which K 8, K 4, and K 2. In these later examples, AK is

A(2K) and A(2K) (Theformed by grouping together the elements which contributed to 2j-1 2j

case K 1 reduces to one iteration in which a tridiagonal problem is solved for 17
unknowns.) We choose the weighting matrices Dk to have either zero, 1/2, or 1 as diagonal
components:

0 if node does not belong to finite elements in the kth set,
1/2 if node is on the boundary of the kth set of elements,

if node is in the interior of the kth set of elements.
The first choice of Ek has the form Ek (d/h)L In the last set of experiments, we
used Ek defined by

0 if node is in the interior of block k,
Ek ii 1/h otherwise.

This choice means that the diagonals of the iteration matrix Bk Ak + Ek match those
of A for all components in element block k.

Tables 1-4 indicate the number of iterations required to reach convergence, defined
when the relative error for each node was less than 10-4 The initial guess was taken
to be the vector of all one’s. The values of d in Table 2 and to in Table 3 are near optimal.

TABLE
Algorithm performance on Example

varying K

Number of
K to d iterations

2 1.00 0.35 72
4 1.00 0.35 74
8 1.00 0.35 75
16 1.00 0.35

TABLE 2
Algorithm performance on Example with

to and near optimal E d/ h I

2
4
8
16

to d

1.00 0.05
1.00 0.20
1.00 0.35
1.00 0.70

Number of
iterations

18
47
75
127
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TABLE 3
Algorithm performance on Example with

d and near optimal to 1.32

K to d

2 1.32 1.00
4 1.32 1.00
8 1.32 1.00
16 1.32 1.00

Number of
iterations

138
137
136
135

TABLE 4
Algorithm performance on

Example for the second choice of E

Number of
K to iterations

2 1.00 33
4 1.00 55
8 1.00 96
16 1.00 169

Numerical example 2. Consider the elliptic partial differential equation

-(c, ux),,-(C2Uy)y=g onD,=(O, 1)x(O, 1)-[],]x[,-],

U X
2 -- y2 on Of,

where

C 1 + X
2 + y2,

C2 1 + e + ey,
g -2(2 + 3x2 + y2 + e + 1 + y)eY).

The data have been chosen so that the solution is u x2 + y2. This problem is discretized
by the second order accurate finite difference method with mesh spacings in both
directions equal to h=l/(m+l) where m=9, m=19 or m=29. We consider a
multi-splitting as in Example 1 of 3. Thus each Ak corresponds to some row or
column of mesh points. When m =9, K 24 and the number of unknowns is N
92-32= 72. When m 19, K =48 and N= 192-52= 336; when m =29, K =72 and

TABLE 5
Algorithm performance on

Example 2

72
336
792

.30

.30

.30

Number of
iterations

17
91
234
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N 292- 72-- 792. Since each mesh point is involved in exactly two matrices Ak, We

take the ith diagonal element of Dk equal to 1/2 if mesh point is in block k and 0
otherwise. Let Ek be that matrix which makes the diagonal elements of Bk--Ak 4-Ek
equal to the diagonal elements of A whose rows correspond to nodes in block k.
(Numerical experiments showed that this choice led to fewer iterations than a choice
of the form Ek --(d/h2)I.) Convergence was defined by the 2 norm of the discrete
error vector being less than hE The initial guess was the zero vector. By numerical
experiments, to- 1.3 was determined to be near optimal. Results appear in Table 5.
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HOMOLOGY AS A TOOL IN INTEGER PROGRAMMING*

SAUL STAHLf

Abstract. Several years ago Lovfisz [J. Combin. Theory (A), 25 (1978), pp. 319-324] pointed out that
homotopy theory has very deep applications to graph colorings. These ideas are extended a little further
here to show that homology theory, whose groups are easily computable, can be used to obtain bounds on
the solutions of certain integer programs. Some graph coloring techniques which are closely related to those
of Lovfisz are also shown to have similar applications.

AMS(MOS) subject classifications. 90C10, 55M20

As part of his startling resolution of the Kneser conjecture, Lovfisz 1] associated
a simplicial complex N(G) with every graph G and proved the following theorem.

THEOREM 1. Ifthe homotopy groups ro(N( G))," ", rk(N( G)) are all trivial, then
the chromatic number of the graph G is at least k + 3.

A homological version of this theorem has recently been proved independently
by J. W. Walker [4] and by A. H. Wright [5]. This may be restated as follows, where
the homology groups are reduced with coefficients in Z2.,

THEOREM 1’. Ifthe homology groups Ho(N(G)), Hk(N(G)) are all trivial, then
the chromatic number of the graph G is at least k / 3.

The main advantage of this version is that the homology groups are computable
whereas the homotopy groups are not. Consequently, if G is a graph with at least one
edge, then the largest k which satisfies the hypothesis of Theorem 1’ is also effectively
computable. We denote this value by X (G). Thus, Theorem 1’ might be simply restated
as x(G)>=x(G)+3.

It is, of course, widely known that the evaluation of the chromatic number of a

graph can be expressed as an integer program. Specifically, if I1,’", Iq are the
independent sets of vertices of the graph G, and Vl,"" ", vp are its vertices, then the
matrix M m(G) is the associated p q incidence matrix whose columns correspond
to the independent sets and whose rows correspond to the vertices of G. The chromatic
number of G then equals min {x. lq[Mx>= lp, X E zq+} where zq+ denotes the set of all
vectors in R q with nonnegative integer components and lp and lq denote vectors of
all whose components are 1. This formulation indicates that Theorem 1 might also be
applicable to other integer programs as wellmas is indeed the case.

The graph G can be recovered from m(G) by noting that two vertices are adjacent
in G if and only if their corresponding rows in m((3) are orthogonal. This motivates
the following definition. Let M be a p x q matrix all of whose entries are either 0 or
1. We define a graph G g(M) whose vertices are the rows of M. Two vertices of G
are adjacent if and only if they are orthogonal as rows of M.

THEOREM 2. Let M be a p x q matrix with O, 1 entries and distinct columns. If
G g(M), then

min {x. llMx> lp, x E zq+} >- Xa ((3) + 3.

Proof Let M’ m(G) be a p x q’ matrix. Then each column of M is also a column
of M’. For suppose c= (Cl, c2,’’ ", cp) is a column of M with ci 1 if and only if
i=il, i2,’", ik, and ci=0 otherwise. By the definition of adjacency in (3,

* Received by the editors September 6, 1983, and in revised form June 5, 1984.
"t" Department of Mathematics, University of Kansas, Lawrence, Kansas 66045.
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{vi,, vi,,. ., vk} is an independent set of vertices of G and hence c is also a column
of M’. Reorder the columns of M’ so that its first q columns agree with the q columns
of M. If Xo is a vector of Rq+ such that xo’lq min {x. lqlMx >- lp, X E zq+} let Xo* be
the vector in Rq+ obtained by tagging (q’- q) zero components on to Xo. The following
string of inequalities is then easily verified.

min {x, lqlMx >- lp, x E Zq+}

=Xo" lq =Xo*. lq,

>- min {x. lq,I M’x ->_ lp, x zq+’} X(G) _>- Xa (G) + 3.

Should the matrix M happen to have duplicate columns, it should be replaced by the
matrix M obtained from M by deleting all such duplicates. It is easily verified that
by adding the appropri,ate components of any vector x satisfying Mx => lp, one obtains
a vector satisfying M_> lp. since the object function is x.lp, an optimizing vector
for the integer program determined by M is immediately converted to one for the
integer program determined by M.

Given an arbitrary integer program min {x. clMx-> I, x Z’} there are standard
procedures for converting it to one in which all the entries of M, b, and c are 0 or 1.
This is done at the cost of increasing the number of variables. We therefore point out
the following procedure which can provide useful information without adding variables.
The proof depends on concepts and results from [2], [3]. For any positive integer k,
a k-tuple coloring of G assigns to each vertex of G a set of k colors so that adjacent
vertices receive disjoint sets. The kth chromatic number Xk(G) is the minimum number
of colors needed to provide G with a k-tuple coloring. It is known [2], [3] that if G
has at least one edge then Xk( G) >= 2 + Xk-I( G) and hence Xk( G) >= 2k 2 + x( G).

THEOREM 3. Suppose b (bl, b2, ", bp), k min {bl, bp} >= 1. Let M be a O, 1
p q matrix some two of whose rows are orthogonal, and having all distinct columns.
Then, if G g(M),

min {x. lq[Mx >- b, x ZP+} >- 2k + 1 + Xa G).

Proof. Let k be the vector all of whose components are k. Then

min {x" lqlMx-> b, x Z+}
>- min {x. lqlMx => k, x ZP+}

Xk(G) -> 2k- 2+x(G) ->_ 2k 2 + Xa (G) + 3.
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GRAPH THEORY AND FLUID DYNAMICS*

KARL GUSTAFSONf AND ROBERT HARTMAN*

Abstract. We describe recent applications of network-theoretic graph theory to the analysis of certain
discretizations of fluid flow. Also given are a natural extension to elliptic equations of divergence form and
a computation of a sparseness matrix previously inaccessible due to lack of a general basis method.
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1. Introduction. Consider a viscous incompressible liquid in a vessel [I in Euclidean
space. Let the velocity and pressure be given by u(x, t) and p(x, t), where a scale has
been chosen so that the density equals one. Then the Navier-Stokes equations describing
the motion of the liquid are (in three dimensions):

(1.1) ut yAu + ’. glkUxk -grad p + f, x f, > 0,
k=l

(1.2) div u 0, x fI, > 0,

(1.3) u(x, t)=0, xOfl, t>0,

(1.4) u(x, 0) a(x) x fl, 0.

Equations (1.1) and (1.2) are coupled partial differential equations called the momen-
tum equation and continuity equation. The boundary condition (1.3) is called the
noslip condition, (1.4) is the known initial condition, f represents known external
forces, /= 1/R is the viscosity, R is the Reynolds number.

It is generally accepted that for smooth known f and a the problem (1.1)-(1.4) is
well-posed for all >-0. This means that the equations possess a unique solution stable
under small changes of data and regular for all time. This has been shown for two
dimensions and has been a longstanding open problem, which we will not discuss, in
three dimensions. We shall instead look at the construction of approximate solutions
following [1], [2], [3], [4].

The French school, of which [2], [3] are a part, over the last ten years has pushed
ahead with a two- and three-dimensional finite element method (FEM). This has then
been employed in fluids problems, in potential flow methods for airframe design, and
elsewhere. They have concentrated on accuracy and flexibility to do arbitrary three-
dimensional configurations (e.g., airplane contours). For such irregular regions the
FEM has many advantages, especially when one has adequate computational resource
times. There appears to have been excellent cooperation between mathematicians,
engineers, and programmers, and between the Paris universities, the government, and
their aviation industry.

In 1979-81 we looked at [2] and found an important gap in an otherwise superb
treatment: finite element bases had been shown to exist, and found in some cases, but
generally their construction, in some cases even their dimension, was not known. In

* Received by the editors May 2, 1983, and in revised form May 15, 1984. A preliminary version of this

paper was presented at the SIAM Conference on Applied Linear Algebra, Raleigh, North Carolina, April
26-29, 1982. This research was partially supported by the National Science Foundation under grant NSF
MCS 80-12220-A2.

" Department of Mathematics, University of Colorado, Boulder, Colorado 80309.
t Department of Mathematics, Texas Tech. University, Lubbock, Texas 79409.
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644 KARL GUSTAFSON AND ROBERT HARTMAN

[1], [4] we resolved those questions, employing graph theory to provide a unified
treatment.

Briefly:
1. Equation (1.2), the divergence-free condition of mass conservation, is seen to

be of fundamental importance.
2. Temam [2] analyzes six finite element schemes satisfying discrete forms of

equation (1.2) and boundary condition (1.3):
APXI" Finite differences in Rn,
APX2: Finite elements, quadratic polynomials, R2,
APX2" APX2+ cubic perturbations, RE,
APX3: Finite elements, cubic polynomials, R3,
APX4: Stream-function approximated by quintics, RE.
APX5: Nonconforming piecewise linear fits, for R n.
3. The momentum equation (1.1) and initial condition (1.4) are then solved

numerically within the approximating subspaces APXi.
In this paper we describe the problem of finding the dimensions and bases of the

APXi of Step 2 above. Because their construction and properties are somewhat
complicated, occupying for example a good part of [2], we shall use freely the details
of [1], [2] when needed. In particular, this paper may be viewed as augmenting and
extending [1], with the following two goals:

(a) Describe, in 2, the next section, the recent applications of graph and network
theory to finite difference and finite element discretizations of fluid flow, with emphasis
on the analysis of the algebraic and combinatorial questions resulting from those
discretizations. Previous analytic treatments of the Navier-Stokes equations generally
bypassed such considerations. In numerical solution their resolution is essential. We
discuss not only our methods from [1] but also indicate and compare those arrived at
recently and independently, by Amit, Hall and Porsching [5], and Hecht [6].

(b) Present, in 3, the last section, further results:
(i) The application of these methods to equations of divergence form. This

possibility was mentioned in Remark 4.3 of [1]. The idea is that, given a partial
differential equation of the form Lu div (a(x) grad u)-0 with appropriate boundary
conditions, e.g. Dirichlet or Newmann boundary data, one may adapt the graph-
theoretic analysis of div v- 0 to the case v- a(x) grad u.

(ii) A calculation of the sparseness matrix for APX2. This responds to a point
raised by Temam [2, p. 138]. For the examples run the linear systems found were quite
sparse.

2. Graph theory and fluid dynamics.We will restrict attention to the schemes APX1,
APX2, APX5 from [2] treated in [1], [4], [6] and to the K-L scheme of [7] treated in
[5]. Other FEM schemes may be treated similarly, see [1], and indeed it would appear
that such graph-theoretic methods would have important application to two- and
three-dimensional finite element methods in general. This point, for finite difference
methods, has already been made in [5].

For a two-component vector field u (ul(xl, x2), u2(xl, x2)) on a given domain
the APX1 scheme approximates div u by forward differences on a grid superimposed
on 12. By forward we mean a right-up convention.

Example 2.1. APX1 approximation. Let u(x, x) (Xl, -x2) and Uh (Ulh(m, n),
u2h(rn, n)) be its APX1 step function approximant on a unit mesh (h= 1, k= 1)
square with center (m, n). The given vector field u is clearly divergence-free and we
wish its discrete approximant to also be discretely so. The discrete divergence operator
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at a point p is"
2

diVh Uh (ui(p-I- el)-- ui(p))
i=1

where the ei denote unit vectors so that divh is the sum of the forward differences. Let
n+l/2

Ulh(m, n)= ul(m--1/2, x:) dx:= m-1/2,
dn-1/2

re+l/2

U:h (m, n u:(xl, n 1/2) dxl n + 1/2.
din-l

That is, we define u to be facial averages of u. It is easily seen that uh represents a
step function approximation to u from below. Checking the discrete divergence, we note

71hUh(m, n)= (m +1/2)--(m --1/2) 1,

V:uz(m, n)=(-n-1/2)-(-n+1/2)=-l,
so that div u O.

For APX1 on a grid X= Z" (n-dimensional integers), let U(X) be the vector
space of vector functions U:Z"o R" such that u =0 outside of X and such that
div u 0 for every p Z". Interpret ui(p) as fluid flow through a tube from node p
to node p. The divergence-free condition at each node point p requires that flow
in flow out. This corresponds to Kirehhoff’s second law for currents subject to no
sources.

Let the set of nodes (graph theory" vertices), tubes (graph theory: edges), and
where tr(t,p)=-l, +1, 0 if flow in is directed out of p, into p, or not at all, be
interpreted as a directed graph (N(X), T(X), tr(X)). Let U(N, T, tr) be the vector
space of all functions u" T R such that

E u(t)tr(t,p)=O, pc N.
tT

It is well known from graph theory that the dimension of the flow space U(N, T, o-)
is T- N+ C, where T is the number oftubes (edges), N the number ofnodes (vertices),
C the number of components of the graph.

Example 2.2. APX1 dimension. Let X {(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2),
(0, 2), (0, 1)]. The vertices and directed arcs of the corresponding directed graph are
shown in Fig. 1 where "o" denotes a vertex from X and "o" denotes a virtual vertex
added to complete the differencing scheme APX1.

The equations corresponding to the divergence-free condition in the APX1 formu-
lation are

--U O, //7 "1- U9 Ull O,

ttg_ O, ttO t/l: O,

--U O, U8 q" UlO- U13 O,

--U4 O, --U14 0

U - U4 U U7 O, Ull -" U14- U15 O,

U2 -- U U6 O, /’/12 -" U15 U16 O,

U3 - U6- //8 0, U13 -- U16 0.

--/’/9 O,
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U14

O-

Ull

U9

U7

t/15 t/16

U5

FIG. 1. A flow network.

U6

U3

These may be reduced directly to two degrees of freedom. On the other hand, from
the graph theory, we see immediately that dim T-N+ C 16-15 + 1 2.

Example 2.3. APX1 basis. The values of (ul, u2) at each node from Fig. 1 are
indicated in Fig. 2. Note that the vector field basis vector shown in (a) corresponds
to a large cycle, the other in (b) to a small cycle in the graph. We will return to this
point later.

(0, -1) (-1,0) (-1, 1)

(0, -1). .(0, 1) (a)

(o,o) (,o) (1,o)

(o,o) (o,-) (-, )

(o, O)o ,(,o) (b)

(0,0) (0,0) (0,0)

FIG. 2. The basis vector field.

APX2, utilizing quadratic vector field fits on triangulations of the given domain
f, is a genuine FEM. We present some details of it next, in order to bring out the
fluid dynamics decompositions used in connection with the graph theoretic concepts
to enable the dimensions and basis of the divergence-free FEM subspaces.

First we want to make connection to the Helmholtz Decomposition Theorem:
Any smooth vector field F on a smooth domain f/ in R may be decomposed as
follows: F F +F2 -I- F where F is both divergence-free and curl-free, F: is divergence-
free but not curl-free, and F3 is curl-free but not divergence-free. In this way one may
write more generally (see, e.g. [2]):

(2.1) (LE(fl))" H10) HE0) Ha,

where the Hi are the subspaces corresponding to the F described above. The key to
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our analysis of APX2 will be to first so decompose it, and then to apply graph theory
to enable its dimension and basis construction.

To describe APX2 (for more details see [1], [2]), assume the given domain fl in
the plane is already triangulated. For example, suppose the boundary of ll is polygonal.
There are some conditions for an admissible triangulation (see [2]).

For each triangle z in the triangulation T of 12 let W denote the space of all
vector functions (b :11-* R2 such that (b (b, b2) where b and b2 are polynomials
of order less than or equal to 2 on each z in T, and such that (b- 0 on the boundary
01"l of 1. The latter condition is to enforce a Dirichlet boundary condition in the
schemes of [2]. Let V denote those (b in W which also satisfy the divergence-free
condition

divtb dA-O T

and the "conforming basis" condition that (b C(O) This (weakly) divergence-free
approximating space of quadratic polynomials is now decomposed into three subspaces

V corresponding to the H above. The decomposition is, roughly, performed on the
side, i.e., in one lower dimension than that of the original triangulation.

THEOREM 1].
V-- VI( V2( V

and

dim V 2 the number ofinterior vertices) + the number ofinterior midedges + the
number ofinterior vertices + the number ofinterior components ofR2 l’l
3/+ ’+ m,

where number of interior vertices, number of interior midedges, m number of
interior components of R

The theorem embodies the two steps we mentioned: decomposition, then graph
theory. How does the latter come in? The analysis of the subspaces V and V2 do not
really use it and may be described briefly as follows. In terms of barycentric coordinates
for a single element z as depicted in Fig. 3, and let us assume that z is an interior
element and therefore free of any specified boundary conditions, each component of
b is given by

b(x)= Y. (2A 2 A,)4,(A,) + 4 A,Ajb(Ao).
i<j

A3

AI3

A23

Ai2

A2

A!
FIG. 3. An element.



648 KARL GUSTAFSON AND ROBERT HARTMAN

The condition

O= IdivdA=Idp.vdl
leads to the sufficient condition b (Ai) + b(Aj) + 4b (Aij) 0 on each of the three edges
of Or. From this, one may specify b at interior vertices, requiring midedge values to
be minus one fourth of the sum of the two vertex values. Likewise for the second
component, b, and hence dim V is twice the number of interior vertices, values, of
0 being specified at boundary vertices to meet the Dirichlet boundary condition assumed
in [2] and here.

The subspace V is thus divergence free on sides of r. It may be seen to be curl-free
also. In a similar way one obtains V: by specifying : in terms of tangential values
at midedges. Both 2 and 3 are taken to be 0 at all vertices in order to not interfere
with the 1 specification. It turns out that 2 is divergence-free but not curl-free on
an edge. Getting on to 3, again defined in terms of edge curl-freeness but now in the
sum sense involving all three edges of ’, leads to the condition

(2.2) Ial- a2[d2+ Ia2-ald+ Ia ald31 0

for otherwise arbitrary values dig. It can be shown [1] that V is isomorphic to the flow
space U(T, overlay edges, arbitrary). That is, we construct an overlay graph on the
triangulation T of f by considering each - T as a vertex, from its barycenter we
construct an edge to the original midedge and on to the adjacent barycenter. See Fig. 4.

(a)

FIG. 4. Graph and dual.

(b)

In graph theoretic terms the overlay graph construction is that of the graph inner
dual. In this way it is seen that dim V =dim U(T, E’, tr’)=the number of interior
vertices + the number of interior components of R2-f + m. Note also that dim V
is given by the number of small cycles plus the big cycle in Fig. 4(b). In the triangulation
of Fig. 4 one has therefore

dim V=3.3+27+1=37.

For the APX5 scheme the first subspace V in the Helmholtz decomposition of
the above Theorem vanishes and V V:0)V3. For the example triangulation of Fig.
4, dim V 31 for the scheme APX5. Methods for basis construction for APX5 in two
dimensions were known, see the discussions in [1], [2], [3]. Parallel to our graph-
theoretic approach (cycle bases) for APX5 in any number of dimensions, Hecht [6]
analyzed APX5 for three dimensions by using graph-theoretic results for maximal
trees. These two approaches are equivalent although they would differ in implementa-
tion. Hecht [6] also gives an interesting application to Stokes flow in a cube. By cutting
the unit cube into 27 smaller cubes and triangulating each of the smaller cubes into 5
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tetrahedra, which gives 135 elements - with 324 faces and 64 vertices, Hecht [6] obtains
dim V 514. Our methods in 1] are in agreement: by the formula of 1, Example 3.4.2]
we have

dim V 25lmn 6(Im + mn + nl) + 1 514

by m n 3. Similar agreement between [6] and [1] for dim V 1313 when m
n 4 may be observed.

A full discussion of aspects of practical computational results is beyond these
pages. See for example the beautiful results for an air-intake configuration in
[3, Figs. 37-44], utilizing over 10,000 elements. These were obtained using a variant of
APX5 in two dimensions in which each triangular element for pressure approximation
is subdivided by midedge-joining into four subelements for velocity approximation.
With the permission of F. Thomassett we reproduce in Fig. 5 an example of these
complex results used in aerodynamic design.

FIG. 5. Discretized aerodynamic design. (Taken from [3], used by permission.)
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To complete this section, we turn to a third use of graph theory, independent of
ours and of the French school, namely, that of Amit, Hall, and Porsching [5]. Their
interest was quite different from that of [1] and [6] in that the latter were primarily
concerned with the "algebra" ofthe various finite difference and finite element discretiz-
ations ofthe incompressibility condition 1.2) whereas in 5] a particular finite difference
discretization of the momentum equation (1.1) was also under scrutiny, that of
Krzhivitski and Ladyzhenskaya [7]. For comparison a MAC (marker and cell) finite
difference scheme is also analyzed in [5], employing graph theoretic methods.

Referring the reader to [5] for full details, let us point out a few comparisions here.
Applying APX1 to the grid of[5, Fig. 1], (note that the original nodes are shown

by in [5] in reverse of our convention in [1]) as depicted in Fig. 6 below, one finds
from either 1 or [5] the dimension dim V 10- 9 + 1 2. Thus the K-L discretization
of (1.2) employs the same right-up convention of APX1 and as far as the incompressibil-
ity constraint goes, they may be regarded as essentially the same.

O

0

FIG. 6. A 2-cycle grid.

Secondly, the dual arguments of [5] go beyond those of [1] in the sense of
application to the momentum equation. We will return to this point in 3 in another
context. On the other hand, [5] does not treat finite element methods.

Thirdly, we would like to comment on the rather good qualitative agreement
between the two-dimensional cavity flow experiment of [5, see Fig. 9] as calculated in
the dual variable formulation, and other cavity flow calculations using other scheme
formulations. See for example the compendium of such result in [8, 8, Driven Cavity
Flow]. For the reader’s convenience we show in Fig. 7 a result from [9], for Reynolds
number 400 as in that of [5], from a MAC scheme. We would like to raise the question
of whether the graph-theoretic methods can provide better schemes for the study of
secondary and tertiary eddy development.

Finally, let us clarify the connection between the K-L discretization of the
momentum equation in particular the nonlinear term, see [5, eq. (5)]

2h
(S + I)(u o 1VVo )+ (Sy - I)(t)ij lvyvij

and Temam [2, Scheme 5.1, p. 334], in particular the nonlinear term

m--1bh(Uh Uh, Vh), Vh Vh.
Scheme 5.1, although cast in the weak solution formulation, and the K-L scheme are
essentially the same, are fully implicit and unconditionally stable. Thus the analysis of
[5] may be viewed as reducing by use of graph theory from O(3N) to O(N) the
number of equations to be solved in Scheme 5.1 at each time step.
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FIG. 7. Normalized cavity flow graphs.

3. Further results. In this section we:
(i) extend the analysis of div v=0 to that of div (a grad u)=0,
(ii) exhibit a sparseness matrix for the Scheme APX2.

These developments beyond [1] are to be regarded as preliminary, are included for
illustration, and are not meant to be conclusive. However, we would like to mention
a few particulars.

The graph-theoretic solutions of the finite difference problems in 3.1 generally
will yield positive definite symmetric sparse linear systems amenable to fast iterative
linear methods. On the other hand, the number of equations is relatively large and the
cycle base management could be costly. Finally, with all of the extensive recent and
current work on fast Poisson solvers, it would take considerable testing to determine
relative efficacy of these methods.

The sparseness matrix given in 3.2 responds to a question of Temam [2, p. 138]
and indicates good sparseness qualities for the linear systems resulting from APX2.
However, the sparseness could be heavily domain and cycle base dependent.
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3.1. Application to equations of divergence form. We restrict attention to Laplace’s
equation

(3.1.1) Au div (grad u) 0

but this approach can be extended to more general uniformly elliptic operators
Lu div (a grad u) and with modification to any equation of divergence form. We
mentioned this possibility in [1, Additional Remark 4.3]. It also is implicit, as we shall
indicate, in the treatment of the K-L scheme as analyzed in [5]. Rather than attempting
a general formulation for arbitrary domains and boundary conditions, we shall be
content to illustrate the approach with application to a Dirichlet Problem.

Consider the discretized Dirichlet problem on the rectangle ll =[0, 3] [0, 3]:

(3.1.2) Au=0 forpX, u=g forp0X,
where X is the stencil as shown in Fig. 8a, where X denotes its interior (4 points),
where g denotes the boundary values shown in Fig. 8(b), and where A denotes the
standard finite difference Laplacian of centered differences. Let (N, E, r) denote the
directed graph obtained from the stencil X in Figure 8a by drawing linear edges
directed up-right between the nodes of X, and let (N’, E, r’) be the directed graph
shown in Fig. 8(c) obtained from (N, E, or) by retaining interior nodes and directions
but identifying all boundary nodes of Fig. 8b. By this construction and our analysis

(a) (b)

FIG. 8. Stencils for Dirichlet problem.

(c)

of APX1 in [1] the flow space U(N’, E, r’) of divergence-free vector fields has cycle
basis

c,=(1, 1)(2, 1)(2,2)(1,2)(1, 1),

c2 (1, 0)(1, 1 )( 1, 2)(2, 2)(2, 1 )(2, 0),

c3 1, 0)(1, 1 )( 1, 2)(2, 2)(2, 1 )(3, 1 ),

c4 (1, 0)(1, 1)(1 2)(2, 2)(3, 2),
(3.1.3)

c5 (1, 0)(1, 1)(1, 2)(2, 2)(2, 3),

c6= (1, 0)(1, 1)(1, 2)(1, 3),

c7 1, 0)(1, 1 )( 1, 2)(0, 2),

cs (1, 0)(1, 1)(0, 1),

where (x, y) denotes the node coordinates of X.
Let U denote the set of mappings u: XU OX--> R for which the discretized

equation Au 0 is satisfied for all p X. Let 4’: U--> U(N’, E, o-’) according to the
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rule b(u(e))= u(p)-u(p-ei), if e is an arc of X from p-ei to p. Letting v= b(u)
we then have

(3.1.4)
, tr(e, p)v(e)= -Au(p)=0

for all p in X, from which it follows that v is indeed in U(N’, E, tr’).
The point here for further, more general treatment is that v is a discretized gradient

of u, and as we mentioned earlier, the divergence of v is zero. That is, eq. (3.1.4) is
an instance of div (v) div (grad u) 0.

The vector v may be expressed as a linear combination v =1 bjcj in terms of
the cycle basis of (3.13). Let (w, v) denote the inner product eE w(e)v(e) on
U(N’, E, tr’). Note that if c is a cycle in (N’, E, tr’) beginning at node Po and ending
at node Pk in X, then

k

(3.1.5) (c, v)= Y c(e)v(e) Y u(pj)- u(p_) U(pk)-- U(po).
eeE j=l

Thus we may solve for v from the matrix equation

(3.1.6) [(c,, c)]b =[(c, v), (c2, v),..., (c8, v)] r.
The matrix [(c, c)] will always be symmetric positive definite.

For a specific computation, consider the Dirichlet problem with boundary values
as shown in Fig. 9. Then (c, v)= 0, (c2, v)= 5- 3 2, (c3, v)= 3- 3 0, (c4, v)= 1- 3

-2, (c5, v) 3- 3 0, (c6, /))-- 1 -3 -2, (c7, v) -1 -3 -4, (c8, v) 1 -3 -2, and

It

3
0 0

Ol

03

FIG. 9. Boundary values.

the cycle coefficients for v may be found from

(3.1.7)

4 3 3 2 2 1 0

3 5 4 3 3 2 1

3 4 5 3 3 2 1

2 3 3 4 3 2 1

2 3 3 3 4 2 1

1 2 2 2 2 2 1

1 1 1 1 1 3 1

0 1 1 1 1 1 2

b2
b3
b4

b5
b6
b7
b8_

from which

(3.1.8) b=(-1,2,0,-1,1,0,-2,-1) r.

2

0

-2

0

-2
-4

-2
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From the definition of v as the gradient of the solution u we then obtain

u(1, 1)=u(1, O)+ Y b=2,
j=2

7

u(1,2)=u(1, 1)+ Y’, bj=l,
(3.1.9)

j=l

u(2, 2) u(1, 2) + Z b 2,
j=l

u(2, 1) u(2, 2) + Z b 3.
j=l

Neumann problems may be treated similarly. For the example above, one lets
v b(u) so that the problem is formulated as Au =div v=0. From v =Y=I bc in
terms ofthe cycle base and the Neumann boundary condition with the form v. n g(p)
for Neumann data g at boundary nodes p one obtains bj g(p) for all j 2,..., 8.
From the condition that (v, cl)=0 one then finds bl =-Zj=2 g(p)(Cl, cj)/(c1, Cl). One
then returns the solution u from the difference equations which define v as the gradient
of u.

Finally, we note that the grid of [5, Fig. 6] collapses to that of [5, Fig. 1], in a
manner similar to that of Fig. 8. In both our approach and that of [5] this is necessary
to accommodate the central differencing of second order operators.

For a more detailed presentation of the ideas in this subsection, see [10].

3.2. An APX2 sparseness calculation. A question beyond dimension and basis
determination is that of the algebraic properties of the resultant system for use in
Stokes or Navier-Stokes solvers. In particular, as pointed out by Temam [2, p. 138],
one desires a sufficiently sparse matrix.

In Fig. 11, we give the sparseness matrix for the scheme APX2 on the triangulated
fl in Fig. 10. Recall that one is treating a Stokes problem

(3.2.1) -Au -Vp+f

with zero boundary conditions by means of the variational formulation

(3.2.2) a(u, v)= (f, v)

for all v that are divergence-free in fl and vanish on the boundary of 12. Here a(u, v)
is the Dirichlet form a Vu. V v which for APX2 elements may be obtained piecewise
by summing the contributions over the triangulation.

FIG. 10. Triangulated 50-element domain.
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FIG. 11. Sparseness matrix, with Helmholtz components indicated.

The domain of Fig. 10 with 50 elements has from the analysis of[ 1] and our discussion
in 2 an APX2 approximating subspace V of form V= V10) V20) V with dimension

(3.2.3)
dim V dim V + dim V2 + dim V

=(2)(16)+(65)+(16+0)= 113.

In the sparseness matrix of Fig. 11, ao represents the Dirichlet form a(ci, cj) with

a 1 meaning a nonzero entry and ai 0 meaning zero entry. This was computed on
a Vax 11-780 and slight nonsymmetries are due to roundoff error. This and other
examples show that the linear systems resulting from the APX2 scheme, although of
relatively wide bandwidth, have good sparseness properties.
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EULERIAN ORIENTATIONS AND CIRCULATIONS*

GUAN MEIGUf AND WILLIAM PULLEYBLANK

Abstract. Let G V, E) be an (undirected) eulerian graph. An eulerian orientation G of G is a directed
graph obtained by giving each edge of G an orientation in such a way that t contains a directed eulerian
tour. If each edge [u, v] of G has real costs c(u, v) and c(v, u) associated with it, depending on which way
it is oriented, then the cost of an eulerian orientation G is the sum of the costs of its arcs.

We show how the problem of finding a minimum cost eulerian orientation can be transformed into a
minimum cost circulation problem. We also describe direct algorithms for the minimum cost eulerian
orientation problem which can be viewed as specializations of general network flow algorithms for the
transformed problem.

The orientation graph 0(G) has a node for every eulerian orientation, and the nodes corresponding to
t and 0 are adjacent in 0(G) if and only if t and 0 differ only for the edges belonging to a simple cycle
C of G. (Necessarily, the corresponding arcs will comprise directed cycles in t and t.) We show that
0(G) is either isomorphic to a d-dimensional hypercube for some d or else is hamilton connected (i.e. each
pair of nodes is joined by a hamiltonian path of 0(G)).

AMS(MOS) subject classifications. 05C45, 90B10

1. Introduction. Let G (V, E) be an eulerian graph. An orientation of G is any
directed graph G (V, A) where A is obtained by replacing each edge with one of the
two possible (directed) arcs joining the incident vertices. We say that an orientation
is eulerian if it contains a directed Euler tour.

For each edge [u, v] s E, the corresponding arcs (u, v) and (v, u) have real costs
c(u, v) and c(v, u), which will generally be different. The minimum cost eulerian
orientation problem is to find an eulerian orientation G of G for which the sum of the
arc costs is minimized.

This problem arose when studying heuristics for the so-called windy postman
problem. In this case we are given an arbitrary (connected) graph G and costs c(u, v)
and c(v, u) associated with the possible orientations of each edge u, v] of G. A postman
tour is a closed tour in G that traverses each edge at least once. The cost of the tour
is the sum of the costs of the orientations used of the edges in the tour. Then the
problem is to find a minimum cost postman tour.

This problem differs from the standard postman problem only in that the cost of
traversing an edge depends on the direction of traversal. Guan [4] showed that the
windy postman problem is NP-complete and proposed the following heuristic: first
solve an undirected Chinese postman problem in order to determine a minimum cost
subset of the edges to duplicate so as to obtain an eulerian graph, then solve the
resulting minimum cost eulerian orientation problem.

In the next section we describe the relationship between the minimum cost eulerian
orientation problem and a certain circulation problem. In 3 we describe two algorithms
for solving minimum cost eulerian orientation problems which can be viewed as
specializations of a primal simplex algorithm and the out-of-kilter algorithm for this
problem.

We define 0(G), the eulerian orientation graph of G, as follows: The node set of
0(G) consists of all the eulerian orientations of G. Two nodes of 0(G), i.e. two eulerian
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orientations and t, are adjacent in 0(G) if and only if one can be obtained from
the other by reversing the orientation of the arcs of a simple directed cycle. (Note that
if we reverse the arcs of a directed cycle in any eulerian orientation, we obtain another
eulerian orientation.) In 4 we show that 0(G) is either isomorphic to a d-dimensional
hypercube for some d or else it is hamilton connected i.e. every pair of distinct nodes
is the pair of end nodes of a hamiltonian path. Thus, in particular, unless G has only
two different eulerian orientations, i.e. unless G is a simple cycle, every edge of 0(G)
will belong to a hamilton cycle.

Results of this sort appear frequently in the literature. (See [6] for a survey.) They
establish classes of graphs which are relatively sparse and yet hamiltonian. They also
show that it is possible to generate all members of a set of combinatorial objects once
by starting with any object in the set and then applying a simple transition rule. In
our case, we can start with any eulerian orientation G and produce each other eulerian
orientation exactly once by a sequence of directed cycle reversals.

Frank [2] (see also [1]) considered a related problem. A k-strong orientation of
G (V, E) is an orientation for which each X V has at least k arcs directed in
and k directed out. He showed that the problem of finding a minimum cost k-strong
orientation could be solved as a special case ofthe more general problem of maximizing
a linear function subject to a set of constraints given by a crossing family of sets and
a submodular function. He also noted that some additional restrictions could be added
to the orientations, e.g. fixing the indegree of every node. Clearly an orientation is
eulerian if and only if it is a 1-strong orientation for which every node has indegree
equal to one-half the degree in G. Our reductions of 2 are similar to those of Frank
and our algorithms of 3 provide streamlined direct algorithms as alternatives to
Frank’s general approach.

In [3] Frank showed that each k-strong orientation of an undirected graph can
be obtained from any other k-strong orientation by sequentially reversing the orienta-
tions of arcs belonging to directed paths and circuits, in such a way that all graphs
produced are k-strong orientations. In other words, if ffk(G) is the graph whose nodes
are the k-strong orientations of G and for which two nodes are adjacent if and only
if the corresponding orientations differ only on the arcset of a directed path or cycle,
then k(G) is connected. This is weaker than our result for O(G) in 4. We do not
know whether or not it is possible to obtain hamiltonicity results for ffk(G).

2. Orientations and circulations. Throughout this section, G V, E) is an eulerian
graph.

For any directed graph (= (V, A), for any v V, we let 6+(v) be the set of all
arcs (u, v) and let 6-(v) be the set of all arcs (v, u). Then it is well known that

(2.1)
an orientation G of G is an eulerian orientation if and
only if 18+(v)1 16-(v)[ for all v V.

Let t (V, ) be a fixed eulerian orientation of G. We construct a circulation
problem on ( by letting each arc j have a capacity of 1. Thus a feasible circulation is
a vector (xj’j ) satisfying

(2.2)
0-<_xj<-I for alljA,

E (x’je 6+(v1)-2 (x’je 6-(v)) 0 for all v e V.

It is a fundamental result of network flow theory that if we let C(t), the circulation



EULERIAN ORIENTATIONS AND CIRCULATIONS 659

polytope, be the set of all solutions to (2.2), then

is a vertex of C(t) if and only if is a feasible
(2.3) circulation and {0, 1} for all j A.

LEMMA 2.1. Let J V, ,,) be any orientation ofG. Then is an eulerian orientation

if and only if the vector : ((u.v): (u, v) fi) defined by

0 if(u, v)A,
(u’)=

1 if(U, v):
is a vertex of C(), i.e., satisfies (2.2).

Proof. This follows easily from (2.1) and the observation that G is an eulerian
orientation if and only if for each v V the orientations G and G differ in the same
number of arcs of 8+(v) as of 8-(v). These arcs j for which the orientations differ are
precisely those for which

Recall that for each [u, v] E, c(u, v) and c(v, u) are the costs of the two possible
orientations of[u, v]. For each arc (u, v)/ we define d(u, v)=c(v, u)-c(u, v), and
for any orientation ( (V, A) of G we let c(t) =Y (c(u, v)" (u, v) /).

LEMMA 2.2. Let t V, ,) be an arbitrary eulerian orientation and let (" j ,)
be the corresponding circulation in defined in Lemma 2.1. Then

c()-c()=E ((u, v)d(u, v)" (u, v)).

Proof. Immediate. l-]

Therefore finding a minimum cost orientation reduces to the problem of finding
a minimum cost circulation. In the next section we show how this leads to the
development of an efficient direct algorithm for the minimum cost orientation problem.

3. Finding minimum cost orientations. Let G be any orientation of G and let C
be any directed cycle in (. We define c(C) to be the sum of the c(u, v) for the arcs
of C and let C be the directed cycle obtained from C by reversing the orientation of
all its arcs. The following provides a useful .optimality criterion.

THEOREM 3.1. An eulerian orientation G (V, ,) of G is of minimum cost if and
only if, for each directed cycle C of G, c( C)<-c(C).

Proof. The necessity is immediate, since reversing the orientation of all arcs of a
directed cycle of an eulerian orientation yields another eulerian orientation. In order
to prove the sufficiency,, let be the corresponding circulation in ( as defined in
Lemma 2.1. It is a standard result of network flow theory that the arcs j of G for which

-1 decompose into a set {C, C2,’", Ck} of arc disjoint directed cycles in (.
Therefore c(() c(t) yk k C(i=1 c(Ci)-i=l i=1 (c(C,)-c(i)). Therefore, if
c(t) < c(,t) there must be at least one Ci such that c(Ci) < c(). Since i is a directed
cycle in G, the sufficiency follows.

We can obtain a very simple algorithm for obtaining an eulerian orientation of
minimum cost using this theorem.

ALGORITHM 1.
Step 1. Construct any eulerian orientation G of G.
Step 2. If every directed cycle C in t satisfies c(C)<= c((;) then t is the
optimum orientation; halt. Else let C be a directed cycle for which c(C)>
c(C) and go to Step 3.

Step 3. Reverse the orientation of all arcs of C and go to Step 2.
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We can perform the test for a cycle C satisfying c(C)> c(C) as follows. Again,
define d (u, v)= c(v, u)- c(u, v) for all arcs (u, v) of G. Then such a C exists if and
only if G contains a directed cycle for which the sum of the d(u, v) for its arcs is
negative. This can be checked using a standard shortest path algorithm.

Each time we perform Step 3, the cost of the orientation strictly decreases.
Therefore this algorithm is finite, since it can never repeat an eulerian orientation and
the number of orientations is finite. However it may have to perform Step 3 a great
many times before an optimum solution is found. We now describe a slightly more
complicated algorithm which does, however, have an overall polynomial bound.

The correctness of our second algorithm is based upon the fact that the following
two transformations of the costs do not affect which eulerian orientation will have
minimum cost.

Transformation 1. For some edge [u, v] E, add a constant value 0 to both ofc(u, v)
and c(v, u), i.e. let

c(v,u):=c(v,u)+O,

c(u,v):=c(u,v)+O.

Transformation 2. Suppose X c V and X V\X are both nonempty. For some
constant 5, for all edges u, v] with u X, v X let

c(u, v):= c(u, v)+ ,
c(v,u):=c(v,u)-.

Note that in fact Transformation 2 does not even change the value of the optimum
solution.

By applying Transformation 1 we can ensure that c has the following properties"

(3.1) c(u, v)>=O for all (u, v),

(3.2) for each [u, v] E, one of c(u, v) and c(v, u) has value zero.

We call a cost function regular if (3.1) and (3.2) hold.
Henceforth we assume that we are dealing with a regular cost function c. The

algorithm starts with an arbitrary eulerian orientation t (V, A). If c(t)=0 then
(since c >= 0) ( is of minimum cost. Otherwise, there exists an arc (s, t) g for which
c(s, t)> 0. Since c is regular,

(3.3) c(t,s)=O.

Define A*={(u, v)/: c(v, u)=0}. Necessarily any arc (u, v) of/ for which
c(u, v)> 0 will belong to A*, but there may be others. Let X be the set of all nodes
v of G for which there exists a directed path 7r(v) in G from to v all of whose arcs
are in A*.

If s X then r(s) together with the arc (s, t) forms a directed cycle in (. If we
reverse the orientation of the arcs of C we obtain a new eulerian orientation G’ which
(by (3.3)) contains at least one more arc (u, v) for which c(u, v)= 0 than does t. If
c((’) 0 then we replace ( with t’ and repeat the process.

If s X then

(3.4) X, s V\X,

for all (u, v) such that u X, v V\X we have c(v, u)> 0 and hence(3.5) c(u, v) =0.
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Let 6=.5min{c(v,u)’(u,v),g,, uX, v V\X} and let (t, 0) be an arc for
which this minimum is attained. Apply Transformation 2, let c’ be the resulting costs.
Then apply Transformation 1 for each [u, v] E with u X, v V\X so as to obtain,
once again, a regular cost function c". Then

(3.6) for any (u, v) A such that c(u, v)= 0 we have c"(u, v)= 0.

Forif uX, v V\X then c(u, v)=0 (by (3.5)), c’(u, v)=6, c’(v, u)=c(v, u)-6>-6
and so c"(u, v)=0. If u V\X and veX then c’(u, v) =-6, c’(v, u)=c(v, u)+6 so
c"(u, v)=0. In all other cases c"(u, v)= c’(u, v)= c(u, v).

Moreover, for any (u,v). such that uX, v V\X we have c"(v,u)=
c(v, u) 23 so, in addition,

(3.7) c"(0, t) 0.

Finally, note that for (u, v) g with u V\X, v X such that c(u, v)> 0 we have
c"(u, v)< c(u, v). This applies, in particular, to the arc (s, t). If c"(s, t)=0 then we
have increased by at least one the number of arcs (u, v) of , having zero cost. Replace
c by c" and repeat the process for a new arc (s, t) with c(s, t) > 0, if such an arc exists.
If c"(s, t)> 0, and hence c"(t, s)=0, we can replace c by c" and (3.3) still holds. Both
the sets A* and X will be strictly larger than before, since (ti, t3) A*, t3 X, and we
now repeat the process.

We can summarize the algorithm as follows"

Step 0 [Initialization]. Let t (V, ,) be any eulerian orientation. Apply Trans-
formation 1 so as to make c regular.

Step 1 [Optimality test]. If c(u, v)=0 for all (u, v)A then t is optimal; halt. If
not, choose (s, t) A such that c(s, t)> 0. Let have the label "", let X {t}
and let S .

Step 2 [Labelling]. If S X then go to Step 4. Otherwise choose u X\S. For
every v V\X such that (u, v)., c(v,u)=O let X:=XU{v} and give v the
label "u". Let S := SU {u}. If s e X then go to Step 3. Otherwise, return to Step 2.

Step 3 [Cycle reversal]. By using the labels on the nodes we can trace the directed
path r(s) in t from to s such that c(v, u)= 0 for all arcs (u, v) of this path.
Reverse the orientation of all arcs of r(s) and of (s, t). Go to Step 1.

Step 4 [Cost transformation]. Compute .5 min {c(v, u)" u X, v V\X,
(,u, v) }, let (t, 3) be an arc giving the minimum. Apply Transformation 2
then apply Transformation 1 for each [u, v] E such that u X, v V\X to
obtain a regular cost function c". If c"(s, t)=0 then replace c with c" and go
to Step 1. If c"(s, t)> 0 then for each (u, v) A such that u X, v V\X and
c"(v, u)= 0, add v to X and give v the label "u". Then go to Step 2. (Since
c"(t3, t) 0 we will then have t3 X\S.)

The correctness of the algorithm is evident. Note that the set S is used as we
construct the set X to hold the "scanned" nodes. We obtain a bound on the complexity
as follows" Suppose that G has m(G) arcs (u, v) with c(u, v) positive (after regularizing
c). We only go to Step 1 after decreasing the number of positive cost arcs of t by at
least one, and we never increase this number. Hence Step 1 is performed at most
m() + 1 times. Each time we go to Step 2 we increase the size of X by 1. Hence this
step can be performed at most IvI times, for each execution of Step 1.
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The total time spent in Step 1 will be no greater than the time required to scan
the arcs of t once, i.e. O(IEI). Similarly, using a depth-first search technique, Step 0
can be performed in time O([EI). If we maintain a stack or queue of nodes in X\$,
then the time for each execution of Step 2 is constant. The time for Step 3 is O(1VI)
and for Step 4 is O([EI). Therefore the total time for the algorithm is
O(m(t). vI, IEI)- O(I vI, IEl=), Thus this algorithm is polynomial, as desired.

In fact this algorithm can be viewed as a translation of the out-of-kilter algorithm
(see Lawler [5]) specialized to the equivalent circulation problem described in 2.

4. Hamiltonicity of orientation graphs. A graph G (V, E) is hamilton connected
if, for every distinct u, v V, there exists a hamilton path in G whose end nodes are
u, v. There are two trivial hamilton connected graphs: K1 and K2mthe complete graphs
on one and two nodes respectively.

A hypercube can be defined inductively as follows: K1 is a hypercube of dimension
0. For d-> 1, a d-dimensional hypercube is obtained by taking two disjoint copies of
a (d- 1)-dimensional hypercube and then joining all corresponding pairs of nodes.
Hypercubes are bipartite and are "almost" hamilton connected in the sense that if u, v
are distinct nodes belonging to the opposite parts of a hypercube, then there exists a
hamilton path joining u and v. Hence, for d->2, every edge of a d-dimensional
hypercube belongs to a hamilton cycle.

In this section we show that for any eulerian graph G, either 0(G) is hypercube
or else 0(G) is hamilton connected. The basic result we use is a theorem of Naddef
and Pulleyblank [7] (see also [6]) concerning 0-1 polytopes. The graph (or skeleton)
G(P) of a polytope P is defined as follows: The nodes of G(P) are the vertices of P
and two nodes of G(P) are adjacent if and only if the corresponding vertices of P are
adjacent on P, i.e. belong to a 1-dimensional face of P. (See [6].) Recall that distinct
vertices u and v of P are adjacent if and only if, for every A satisfying 0 < A < 1, the
unique way that the point hu + (1- A)v can be expressed as a convex combination of
distinct vertices of P is as hu + (1 A)v.

TI-IEORV.M 4.1 (Naddef and Pulleyblank [7]). Let P be a polytope all of whose
vertices have O-1 valued coordinates. Then G(P) is a hypercube or is hamilton connected.

We obtain results about 0(G) from Theorem 4.1 by again exploiting the relation-
ship to circulations described in 2. Recall that C(G), the circulation polytope, was
defined to be the solution set to the linear system (2.2). As we noted in (2.3), C(t)
is also the convex hull of the 0-1 valued circulation of G.

We say that a vector y indexed by the arcs of G is a cycle vector if there exists
an undirected simple cycle C in G such that

i) yj 0 for all arcs j not in C;
ii) if we choose the appropriate one of the two possible directions of travel around

C, then yj > 0 for all arcs j traversed in the forward direction and y < 0 for
all arcs j traversed in the reverse direction.

In our present situation we are primarily interested in cycle vectors y having
y {0, 1,-1} for all arcs j. In this case, if we have a circulation x in t (taking all arc
capacities to be one) and a cycle vector y such that y 1 implies x 1 and yj =-1
implies x 0, then x-y will also be a circulation. Conversely, if y 1 implies x 0
and y =-1 implies xj 1, then x + y will be a circulation.

LEMMA 4.2. Let and be distinct vertices of C(). Then and are adjacent
on C(a) if and only if- , is a cycle vector of.

Proof. Suppose - is a cycle vector and for A satisfying 0< h < 1 let x(h)=
hg+(1-h):. Suppose there exists a finite set X of distinct vertices of C(t) and
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nonnegative reals (ax’x X) such that

E (,x" x x)= 1,

Z (OxX: x x) x(, ).
Let C be the undirected cycle containing those edges j for which j ;j 0. For every
arc j not in C, we have 2 ;2 x(A), therefore we must also have x x(A)j for all
x X. Therefore all vectors in X are identical, except for those components indexed
by arcs of C. But then it is easy to check that the only way we can assign values to
the components corresponding to arcs of C and obtain a 0-1 valued circulation is to
have these components set to agree with either g or . That is, they must all have value
1 for arcs oriented one direction and 0 for those oriented the other. Therefore X {, ;}
and so a and a (1- X) and so and ; are adjacent.

Conversely, suppose that ; -; is not a cycle vector. Since : we have 0
and since is the ditterence of circulations we necessarily have

(4.1) Y(/j3+(v))-,(:j6-(v))=O forall v V.

Choose any edge j for which 0, let u be one end of j and construct an undirected
path by performing the following process until some node is reached for a second
time" Choose either an edge k having the same type of end (a head or a tail) incident
with u as does j and for which k --j or else an edge k having the opposite type of
end incident with u as does j and for which k . (This is always possible by (4.1)
and because we stop as soon as the path is no longer simple.) Let j:= k and let u
become the other end of k.

Because G is finite, the above procedure will terminate with a path containing a
cycle C, and if we let x’ be the vector equal to ; on C, and zero elsewhere, then x’
is a cycle vector. Therefore - x’ and Y + x’ are both integer circulations distinct from
and Y, and hence vertices of C(G), and .5ff +.5Y .5(g-x’)+.5(Y + x’) so g and

are not adjacent on C(G). lq

It follows from Lemma 4.2 and Theorem 4.1 that the graph of C(G) is either a
hypercube or else hamilton connected. For present purposes however we are more
interested in the following relationship.

LEMMA 4.3. Let be a fixed eulerian orientation of G. Eulerian orientations and
G are adjacent in O(G) ifand only if the corresponding circulations and (with respect
to ) are adjacent on C ).

Proof Orientations G and G are.adjacent in 0(G) if and only if they differ only
in that a single directed cycle of G has the orientations of all its arcs reversed in
G. This holds if and only if and ff differ only in components corresponding to arcs
of and the difference -: satisfies -1 for all arcs j of C having the same
orientation in ( as in ( and j + 1 for all arcs j of having the opposite orientation.
This holds if and only if, where we let C be the (undirected) cycle of G corresponding
to t, when we traverse C in the direction given by we have x < 0 if the orientation
of j agrees with the direction of traversal and x > 0 if the orientation disagrees. This
holds if and only if -Y is a cycle vector which by Lemma 4.2 holds if and only if :
and Y are adjacent, lq

Now we can prove our final result.
THEOREM 4.4. Let G be an eulerian graph. Then its orientation graph O( G) is either

a hypercube or else is hamilton connected.
Proof It follows from (2.3) and Lemma 4.3 that for any eulerian orientation G

of G, the graph of C(t) is isomorphic to 0(G). The result then follows from Theorem
4.1. [3
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In fact it is easy to see that 0(G) is nonbipartite if and only if G contains two
distinct simple cycles C and C2 which have an edge in common. Consequently the
only eulerian graphs G for which 0(G) is a hypercube are those consisting of d edge
disjoint cycles (which may share cutnodes). In this case, O(G) is a d-dimensional
hypercube. In all other cases 0(G) is hamilton connected.
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PROFILE SCHEDULING OF
OPPOSING FORESTS AND LEVEL ORDERS*
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Abstract. The question of existence of a schedule of a given length for n unit length tasks on m identical

processors subject to precedence constraints is known to be NP-complete [Ullman, J. Comput. System Sci.,
10 (1976), pp. 384-393]. For afixed value of m we present polynomial algorithms to find an optimal schedule
for two families of precedence graphs: level orders and opposing forests. In the case of opposing fOrest our
algorithm is a considerable improvement over the algorithm presented in [Garey et al., SIAM J. Alg. Disc.
Meth., 4 (1983), pp. 72-93].

1. Introduction. The goal of deterministic scheduling is to obtain efficient
algorithms under the assumption that all the information about the tasks to be scheduled
is known in advance [Co76], [GL79]. One ofthe fundamental problems in deterministic
scheduling is to schedule a collection of n partially ordered, unit length tasks on a
number of identical processors. As in [GJ83], [DW84a], [DW84b] we allow the number
of identical processors to vary with time. This is described by a sequence of natural
numbers, called a profile specifying how many processors are available at each unit
of time (time slot). The breadth m, of a profile is an upper bound on the number of
processors available at any time. A profile is straight if the number of available
processors is the same at any time.

A schedule for a given profile is a partitioning of all the tasks into a sequence of
sets which does not violate the precedence constraints and the number of tasks in each
set does not exceed the number of available processors specified by the profile for the
corresponding time slot.

Various aspects of scheduling theory have been extensively studied in recent years
[GL79] and many scheduling problems are known to be NP-complete [GJ79]. The first
NP-completeness result on scheduling with precedence constraints was published by
Ullman [U175]. He showed that the existence of a schedule of a given length on a
straight profile for a collection of unit length tasks subjected to precedence constraints
is NP-complete in case where the breadth of the profile is a variable of the problem,
that is, the breadth of the profile is not bounded by a constant. This problem remains
NP-complete even for precedence graphs of special forms [GJ83], [Ma81], [Wa81].

Polynomial algorithms have been developed only for a few special cases of
scheduling unit length tasks with precedence constraints. The first polynomial algorithm
was developed by Hu [Hu61]. It produces an optimal schedule for a straight profile
of arbitrary breadth if the precedence graph is either an inforest or an outforest. Hu’s
algorithm produces a schedule according to the Highest Level First (HLF) strategy,
meaning tasks of higher level are chosen over tasks of lower level and among tasks of
the same level ties are broken arbitrarily. Restricted versions of HLF provide optimal
schedules if the precedence graph is an interval order [PY79], [Ga81], or if the number
of available processors is two [FK71], [CG72], [Ga82].

The major scheduling problem remaining open is whether the scheduling of an
arbitrary graph is NP-complete or polynomial for fixed number (rn -> 3) of processors.
In this paper we address two special cases of the above open problem. We utilize the
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t IBM Research Laboratory, San Jose, California 95193. Current address: Institute of Mathematics and

Computer Science, Hebrew University, Jerusalem, Israel.
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results presented in [Wa81], [DW84a] to obtain polynomial algorithms for two families
of precedence constraints (precedence graphs): level orders and opposing forests. A
graph is a level order if each connected component is partitioned into some k levels
Lo, , Lk-1 such that for every two tasks x Li and y Lj, where >j, x precedes y.
We present an algorithm for finding optimal schedules for this class that requires time
and space O(n"-l). An opposing forest [GJ83] is a graph composed of intrees and
outtrees only. It is a generalization of the cases solvable by Hu’s [Hu61] algorithm.
Garey, et al., [GJ83] presented a polynomial algorithm for finding an optimal schedule
in the case of opposing forest and straight profile of fixed breadth m -> 3. Their algorithm
costs O(n rn2+2m-5 log n) time and O(n) space. The algorithm we presented for this
case is bounded by O(n2m-2 log n) time and O(n"-) space. For the special case m 3
there exist a linear algorithms to find an optimal schedule [DW84a], [GJ83].

Our polynomial algorithms are based on the reduction theorem, which is proved
in 3. The reduction theorem is another form of the elite theorem [DW84a]. It reduces
the number of components we have to consider at each step of the algorithm to at
most m- 1 (the highest ones) and therefore enables us to obtain efficient algorithms.

Notice that if the breadth of the profile is a variable of the problem rather than
fixed, then scheduling a level order or an opposing forest becomes NP-complete [GJ83],
[Ma81], [Wa81]. Thus our algorithms are expected to have a high complexity (exponen-
tial in the breadth m). A similar case was published in [DW84b]. It was shown that
scheduling a precedence graph of bounded height on a profile of fixed breadth is
polynomial. For profiles of arbitrary breadth the problem is again NP-complete [LR78],
even if there is an arbitrary number of processors in only one time slot and one
processor in all other slots [Wa81], [DW84a].

In 2 we present the main notions used in the rest of the paper. Section 3 contains
the reduction theorem. In 4 and 5 we present the polynomial algorithm for level
orders and opposing forests, respectively.

2. Basic definitions and properties.
2.1. Graph definitions. A (precedence) graph G is a directed acyclic graph given

as a tuple (V, E), where V is the set of n vertices (or tasks) and E the set of edges of
G. A (directed) path 7r of length r in a precedence graph G (V, E) is a sequence of
vertices Xo, , x, such that the edge (xi, X+l), for 0-< -< r- 1, is in E. A precedence
graph G specifies the precedence constraints between the vertices (tasks) of G. We
assume that if a task x has to be executed before a task y, then there exists a (directed)
path of positive length from x to y in G, that is, x is a predecessor of y, and y is a
successor of x. In the case where the longest path from a vertex x to a vertex y is the
edge (x, y), x is an immediate predecessor of y and y is an immediate successor of x.
Vertices x and y are incomparable, if x is neither a predecessor nor a successor of y.
A set of vertices is incomparable if for any two vertices x and y of the set, x and y
are incomparable, that is, there is no path between any two distinct vertices of the set.

By h(G) we mean the height of G, which is the length of the longest path in G.
For a vertex x G (i.e., x V) we denote by h(x) the length of the longest path that
starts at x. A vertex with no successors has zero height. Vertices with identical height
are said to be at the same level. Observe that all vertices of the same level are
incomparable.

The graph G’ is a (closed) subgraph of G if every vertex of G’ has the same
successors in G’ as it has in G. A vertex of G, is initial if it has no predecessors. Note
that an initial vertex of G is not necessarily of maximum height in G. A set of highest
initial vertices of G is a subset of initial vertices containing the highest ones. Ties
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are resolved arbitrarily. If there are less than initial vertices then the set consists of
all of them.

Let R be a set of initial vertices of G; then G-R is the closed subgraph of G
obtained by removing all the vertices of R from G. Given two graphs G- (V, E) and
G’ V’, E’), then G [3 G’ denotes the graph V [3 V’, E E’). The graph G V, E)
is composed of {G1,. ", Gr} if these closed subgraphs (called components of G) are
a decomposition of G into its connected components, that is each closed subgraph is
a connected graph and there are no edges between vertices of different components;
therefore, G U iGi.

An inforest (respectively outforest) is a graph in which each vertex has at most
one immediate successor (respectively one immediate predecessor). Notice that out-
forest is composed of components, each of which has exactly one initial vertex and it
consists of this vertex and all its successors. A component of an outforest is called
outtree and similarly a component of an inforest is called intree.

In a level order graph each component has the following form: Every vertex of
level precedes all vertices of the component from all the levels below i. Note that all
vertices ofthe same component of a level order that are at the same level are isomorphic.
Thus, we can assume that such a component is given as a tuple specifying how many
vertices are in each level of the component.

2.2. Profile definitions. We partition the time scale into time slots of length one.
The time interval 1, i) for _-> 1 is the ith time slot. A profile is a sequence of positive
integers specifying the number of identical processors that are available in each time
slot. We shall interpret profile M- (m,..., md), where d is its length, to mean that
for each slot in [0, d) there are mi processors available.

The breadth of profile M is the upper bound on the number of processors that
are available at any time slot of M. The profile of Table 2.1 has breadth 4. Throughout
the paper we denote the breadth of the given profile with the letter m. We call a profile
M straight if mi m, for all 1 -<_ _-< d.

TABLE 2.1
A schedule for G fitting the profile M (2, 4, 2, 1, 1).

sLo

Pa

2 3 4 5

lal61

4

2.3. Schedule definition. A schedule S for a precedence graph G is a sequence
of sets (S),..., (S)k such that:

(i) the sets (S), for 1 _<-i_-< k, partition the vertices of G;
(ii) if x (S) and y (S)j, for <-_i<-_j <-k, then there is no path from y to x.
The length of a schedule A (S) is the index of the last nonempty set in the sequence.

A minimal length schedule is called optimal. The schedule S fits the profile M if the
length of S is not greater than the length of the profile and the cardinality of (S) is
not greater than m. The set of tasks (S)i get executed in the ith time slot, that is
of the m processors of slot each execute a task of (S) during the time interval
[i-1, i). Note that all the tasks have unit length, which corresponds to the length of
a time slot. An example is given in Fig. 2.1 and Table 2.1. The ith slot of S, 1 -< <- A (S),
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6 7 8 9

FIG. 2.1. A precedence graph G.

has mi I(S)il idle periods meaning that there are this many processors idle during time
slot of S.

Given a precedence graph G and profile M, the initial problem is to determine
if a schedule S exists for G and M. If a feasible schedule does exist, then we look for
the shortest schedule S for G that fits M. In the first issue we allow the possibility
that there does not exist a schedule for G that fits M. In the second we assume that
there exists a feasible schedule and we are only interested in an optimal schedule.

A schedule S is an HLF-schedule for G and M if (S)i, 1 _-< i-_< A (S), is a set of m
highest initial tasks of the closed subgraph of G induced by all tasks scheduled in slot
of S or later. HLF-schedules have the following property. Assume task x is scheduled

in slot and y is scheduled in slot j. If h(x)> h(y), then either i<-_j or there is a
predecessor of x in the jth slot. We say that HLF produces an optimal schedule if any
HLF-schedule is optimal; that is, if an optimal schedule can be constructed by choosing
higher initial tasks before lower ortes and choosing arbitrarily among initial tasks of
the same height. Note that the schedule of Table 2.1 is not a HLF-schedule; moreover,
no HLF-schedule is optimal for G (Fig. 2.1) and the profile of Table 2.1.

2.4. The median. The following definition relates the number of components of
a graph and the heights ofthe components with m where m is the breadth ofthe profile.

DEFINITION. The median of precedence graph G with respect to a given m,
denoted by/x(G), is one plus the height of some mth highest component of G. If the
graph has less than m components, then the median is 0.

For example, if the precedence graph is the one in Fig. 2.2 and the breadth of
the given profile is three, then the median is three because three is one plus the height
of the third highest component. For the graph described by Fig. 2.1 the median is 0
with respect to m 3.

We use the median to split the precedence graph G into two subgraphs. Let
G H(G)t_J L(G), where the high-graph H(G) contains all components of G that are
strictly higher than the median; the low-graph L(G) is the remaining subgraph of G.
Note that H(G) has at most m- 1 components. Fig. 2.2 presents such a splitting of a
precedence graph. We sometimes write/x (G, m), H(G, m) and L(G, m) to denote the
median, the high-graph and the low-graph, respectively, for a specific m.

medan

FIG. 2.2. The decomposition ofa graph G into H(G) and L(G); denote vertices ofH(G) and 0 vertices

of L( G).



PROFILE SCHEDULING: OPPOSING FORESTS AND LEVEL ORDERS 669

The following properties of the median are used in the current paper.
PROPERTIES OF THE MEDIAN.

MI: There are at most m- 1 components of G having height at least/(G).
M2: If/(G) > 0, then there are at least m components of G having height at

least/(G) 1.
M3: If G has at most m- 1 components of height at least h, then/(G)-< h.
M4: If G has at least m components of height at least h- 1, then/(G)-> h.
The above properties follow directly from the definition of the median. Further

properties of the median were given in [DW84a].

3. Reduction theorem. In this section we present our main result, the reduction
theorem. We also prove several related theorems that are needed in later sections. The
reduction theorem is a consequence of the MERGE Algorithm. The following lemma
implies the correctness of the MERGE Algorithm. A component of a graph G is called
principal if its height is at least h(G)-1.

LEMMA 3.1. Let G be a graph and let G’ be a subgraph ofG obtained by removing
a set of q highest initial tasks from G. Then G’ contains at least as many principal
components as the original graph G, unless h( G’)= O.

Proof. If the lemma holds for q 1, then it clearly holds for arbitrary q. Let x be
a highest vertex of G, I be the principal component of G that contains x and
G’- G-{x}. Assume h(G’)> 0. To show that G’ contains at least as many principal
components as G observe that h(I)= h(G)>0 and therefore I-{x} contains a prin-
cipal component of G’. Furthermore all principal components of G other than I are
also principal components of G’, because h(G’) -<_ h(G). We conclude that the number
of principal components does not decrease when x is removed. ]

The following algorithm shows how one can "merge" a schedule for a collection
of subgraphs with a collection of subgraphs of lower height to get a schedule for the
combined graph.

ALGORITHM 3.1. (the MERGE Algorithm)
Input: A graph L- _-1Li, such that h(Li)>-h(L)-l;

a graph H U q= Hi, such that h(Hi) > h(L), and q + r _>- rn;
a schedule S for H and M with p idle periods, where M is a profile
of breadth m.

Output: A schedule S’ for H U L and M such that S’ is not longer than the
schedule S in the case where p >-ILl; and otherwise, S’ is longer than
S but has idle periods only in its last slot.

1. k:=O
S’:=S

2. While h(L) > 0 do
2.1. k:=k+l
2.2. While (S’) is not full and not all initial vertices of H are scheduled in

(S’)k do
2.2.1. Transfer an initial vertex of H from a slot after k to (S’)k.

2.3. Fill (S’)k with mk--I(S’)kl highest initial vertices of L.
2.4. Remove the vertices of (S’)k from L, H and its subgraphs
2.5. While there is a subgraph Hi of H, such that h(Hi)= h(L) do

2.5.1. Transfer the graph Hi from H to L.
q:- q-l; r:= r+l

2.5.2. Remove the vertices of Hi from S’.
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3. While L is nonempty do
3.1. k:= k+l
3.2. While (S’)k is not full or L is not empty do

3.2.1. Add a vertex of L to slot k of S’ and remove it from L.

A high level description of the MERGE algorithm. The aim of the algorithm is to
"merge" the schedule S for H and M with the vertices of L producing a schedule S’
for H [.J L and M. The length of S’ depends on the relationship between p, the number
of idle periods in $ and the number of vertices in L. If p > ILl, then there is enough
"space" in S for all vertices of L and the resulting schedule S’ is at most as long as
S. Otherwise, S does not have enough idle periods and S’ is longer than S. In this
case, S’ only has idle periods in its last slot.

At Step 1 of the algorithm we initialize S’ with the schedule S for H and M.
During Steps 2 and 3 the vertices of L are added into in $’. While doing so we
sometimes reschedule vertices of H in S’ (see Steps 2.2.1 and 2.5.2).

If h(L)=0, then "merging" is easy (see Step 3). In this case, L is a set of single
vertices. The algorithm consecutively fills the slots of S’ with vertices of L until L is
empty.

If h(L)>0, then "merging" is slightly more involved (see Step 2). The variable
q will be the number of subgraphs Hi that are left in H. All of these graphs will have
height bigger than h(L). If some of them drop down to height h(L) during Step 2.4
then these subgraphs are transferred from H to L at Step 2.5. The variable r has the
following meaning. During the algorithm it will be assumed that L has at least r
principal components. The sum of q and r is at least rn throughout the loop 2. This
assures that there will be at least m initial vertices in H LI L, at least q in H and at
least r in L. We transfer components from H to L to avoid that some subgraphs Hi
of H get completely scheduled and the sum of q and r drops below m.

Correctness of the MERGE algorithm: In the new schedule S’ the precedence
constraints specified by G are not violated, because we iteratively add vertices to S’
(Steps 2.2.1, 2.3 and 3.2) that are initial in the unscheduled portion of H [_J L. Loop 2
has the following invariant: L has at least r principal components and H has q
subgraphs Hi of height bigger than h(L) and q + r_>-m.

Note that by the definition of H, L, q and r the loop invariant trivially holds after
Step 1. We want to show that if the loop invariant holds before Step 2.1 and h(L) is
bigger than zero then it holds after Step 2.5, or h(L) equals zero.

At Step 2.4 only initial vertices are removed from H, Hi and L. Therefore, their
height can drop at most by one. This assures that after Step 2.4 the graph H contains
q subgraphs Hi of height at least h(L). By Lemma 3.2 we know that after Step 2.4
either the graph L contains at least r principal components or h(L)=0. Note that at
Step 2.3 (S’)k was filled with highest initial vertices of L. At Step 2.5 all subgraphs Hi
of H that dropped down to height h(L) are transferred from H to L. The height h(L)
and the sum q + r does not change during Step 2.5. Furthermore, if before Step 2.5.1
L has at least r principal components then L has also at least r principal components
after Step 2.5.1, since each Hi that is transferred contains at least one component of
height h(L). This completes the proof of the invariant of Loop 2.

The following claim completes the proof of correctness. It shows that if p >-ILl
then A (S’)<-A (S), and if p < ILl then A (S’)> A (S) and S’ has idle periods only in its
last slot.

CLAIM 3.1.
(i) After Step 3 the schedule (S’)1, (S’)k- does not have any idle periods.
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(ii) After Step 3 either k=A(S’) or A(S’)<-,(S).
(iii) If A S’) > A S) then S’ can have idle periods only in its last slot.
(iv) p _-> ILl if and only if X (S’) <-_ x (S).
Proof of (i). By the loop invariant we know that the current slot is filled up in

Steps 2.2 and 2.3. Thus, the schedule (S’)I, , (S’)k does not have any idle periods
when Step 3 is reached. At Step 3 all the slots, except may be the last one, are completely
filled. This completes the proof of (i).

Proof of (ii). At Step 1 the schedule S’ is initialized with S, and therefore
A (S’)= A (S). During Steps 2 and 3 the algorithm never adds any vertices to any slot
of S’ with a higher index than the current slot k. On the other hand, in Steps 2.2.1 and
2.5.2 there are vertices removed out of slots with higher indices than the current slot
k. This implies that after Step 3, k A (S’) or Z (S’)_-< A (S).

Proofof (iii). If A(S’) > A(S) then (ii) implies that k A(S’) after Step 3. Applying
(i) we get that S’ can have idle periods only in its last slot.

Proof of (iv). Assume A (S’)> A (S); then by (iii) we know that S’ can have idle
periods only in its last slot. In particular, there are no idle periods in slots 1 through
S) (s) [HI+IL[. Since p can be expressed asA( of S, which implies that = m<

(y.=(s) m)-[HI, it follows that p <
To prove the opposite direction of (iv) assume that p<lL[. Expressing p as

x(s) <: S’y=(s) m-lH] implies that Y= m IH[+ILI. Since is a schedule for H t.J L, we
xx(s) x(s’)have [HI + ILl <- y=(s’) m,. Combining both inequalities we get ,=1 m, < ,,=1 m,, which

implies h (S) < h (S’).
Herewith we completed the proof of the claim and the proof of correctness of the

MERGE algorithm. El
The MERGE algorithm is linear even if G is not transitively reduced [AH74].
LEMMA 3.2 [Wa81]. The MERGE algorithm can be implemented in time and space

O(n + e), where n is the number of vertices and e the number of edges in H U L.
Proof. We only give a general idea ofthe implementation ofthe MERGE algorithm.

A complete description appears in [Wa81]. We keep track of the set of current initial
vertices of H and L; call these sets IH and IL, respectively. Whenever we remove
vertices from these sets we add the vertices that become initial to the list.

In Step 2.2.1 we can choose any vertex of IH that is not already in (S’)k. On the
other hand, vertices of IL should be scheduled according to their height (Step 2.3).
Thus we need a data structure that will enable us to retrieve vertices from I efficiently.
We represent I as an array of lists, where the entry I(h) points to a linked list of all
the initial vertices of height h (in arbitrary order); see [DW84a], [Wa81] for details.
As shown in the proof of correctness there are always enough initial vertices in I(h(L))
and IL(h(L)- 1) to fill (S’)k in Step 2.3. Thus it is enough to pick vertices of the last
and second to last nonempty list of I. This is the main reason for the fact that the
MERGE algorithm can be implemented in O(n + e) time. We do not have to do a
complicated search to find highest vertices in Step 2.3.

For Step 2.5 we need to keep track of the heights of the subgraphs Hi. This is
easy since during each iteration of the loop the height of a subgraph Hi can drop at
most by one. To be able to transfer components easily we need to keep track of the
vertices of each Hi and keep pointers from each vertex of G to all its occurrences in
the data structures. This completes the summary of the proof.

The reduction theorem is an immediate consequence of the following theorem,
in which we apply the MERGE algorithm 3.1.

THEOREM 3.1. Let G be a graph and M be a profile of breadth m. Given a schedule
Sfor the high-graph ofG and M that has p idle periods, then with the MERGE algorithm
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one can find a schedule S’ for the whole graph G and M in time and space O(n + e) that
has the following form:

(i) ifp >= L(G)I then S’ is at most as long as S;
(ii) ifp < IL(G)I then S’ is longer than S and has idle periods only in its last slot.
Proof. We run the MERGE algorithm on the following input parameters:
H is the high-graph and L the low-graph of G;
q is the number of components of H(G) and H1," ", Hq are the components of
/-/(G);
r m q and L1, , Lr_l are some r- 1 principal components of L(G);
Lr is the remaining subgraph of L((3) after removing L1,’" ", L_.
Note that h(Hi) > h(L), for 1 =< = q, since H consists of all components of G

that have height higher than the median of G, and L consists of all components which
are at most as high as the median. By property M1 of the median we know that H(G)
has less than m components, and therefore q < m. Note that H((3) might be empty
and q 0. Property M2 says that G has at least rn components of height/(G, rn)- 1.
This implies that L1," , L exist and that h(Li) >- h(L(G))- 1, for 1 <= i_-< r. Note that
h(L(G))<=Iz(G). It is easy to see that the input parameters can be found in time
O(n + e). Using Lemma 3.2 the proof is completed.

We are now ready to present the main result of this section, the reduction theorem.
It shows that finding an optimal schedule for (3 and M reduces to finding an optimal
schedule for H(G) and M.

THEOREM 3.2 (the reduction theorem). Let G be a graph and M be a profile of
breadth m. Then given an optimal schedulefor the high-graph ofG and M, the MERGE
algorithm finds an optimal schedule for the whole graph G and M in time and space
O(n+e).

Proof. Let S be the given optimal schedule for H(G) and M. In Theorem 3.1 we
showed that with the MERGE algorithm one can find a schedule $’ for G and M in
time and space O(n + e) which has the following form:

(i) if p>=IL(G)I, then A(S’)=<A(S);
(ii) p<IL(G)I, then A(S’)> )t(S) and S’ has idle periods only in its last slot.
We want to show that the optimality of $ for H(G) and M implies the optimality

of $’ for G and M. Every schedule that has only idle periods in its last slot is optimal.
Therefore, if p < IL(G)I then $’ is optimal. In the case p >= IL(G)I, S’ is at most as long
as S. An optimal schedule for G and M has to be at least as long as an optimal
schedule for H(G) and M, since H(G) is a closed subgraph of (3. Thus in the case
p >= ]L(G)I we get h (S’) h (S) and the optimality of S implies the optimality of S’.

The following corollary of the reduction theorem implies that in the case where
H((3) is empty finding an optimal schedule is linear..

COROLLARY 3.1. IfH(G) is empty then HLF is optimalfor G and M and an HLF
schedule can be found in time and space O(n + e).

Proof The "empty schedule" is an optimal schedule for the empty graph H(G)
and M. The MERGE algorithm (applied as in Theorem 3.1) produces an arbitrary
HLF schedule. Such a schedule has idle periods only in its last slot and is therefore
optimal, l-]

The fact that HLF is optimal in the case where H(G) is empty is also implied by
the elite theorem of [DW84a].

The following theorem shows that the length of an optimal schedule is determined
by the high-graph and the cardinality of the low-graph. The structure of the low-graph
is not important.

THEOREM 3.3. Let G and Ibe graphs such that H( G, m) H(I, m) and IL(G, m)l
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L(/, m )1. Let M be a profile of breadth m. Then the optimal schedules for G and M and
for I and M have the same length.

Proof. Let S be some optimal schedule for H(G)= H(I) and M. Let p be the
number of idle periods in the schedule S. Note that all optimal schedules for H(G)
H(I) and M have the same number of idle periods, since they have the same length
and since they contain the same vertices.

In Theorem 3.1 we showed that with the MERGE algorithm one can find a
schedule S’ for G and M whose length only depends on the relationship between p
and IL(G)I. In the same way we can find a schedule g for I and M by "merging" S
with L(I). Since S is a schedule for H(G)= H(I) and since IL(G)I-IL(I)I we have
that A (S’)= A (S). In the reduction theorem we showed that both S’ and S are optimal
for G and/, respectively. This completes the proof of the theorem. I-1

In the following theorem we show which subsets of the set of initial vertices of a
graph start an optimal schedule for this graph. Iterating this theorem we can find an
optimal schedule for the whole graph. The elite theorem of [DW84a] is a stronger
version of this theorem.

THEOREM 3.4. Let G be a graph, M be a profile of breadth m and I be the set of
initial vertices of H(G, rn). If there exists a schedule for G and M then"

Case III > m. There exists a set, R ofm vertices of I which starts some schedule

for H(G) and M, and for any such set R there exists a schedule for G and M starting
with R.

Case III <-m. For any set T ofm- Izl highest initial vertices of L( G) there exists

a schedule for G and M starting with I (.J T.
Proof. We first show that if there exists a schedule for G and M, then there exists

a schedule for H(G) and M that has min (m, III) vertices in its first slot. Let S be a
schedule for G and M. By removing the vertices of L(G) from S we get a schedule
S for H(G) that fits M. Now, if the first slot of $ has idle periods and not all vertices
of I are scheduled in the first slot of $, then we can move vertices of I from higher
slots to the first slot of S. We keep on doing this until either the first slot becomes
filled up or all the vertices of I are scheduled in the first slot. The resulting schedule
has the form we are looking for. It has min (m, III) vertices in its first slot.

Case II1> m. Let S be a schedule for H(G) and M starting with a set R of ml
vertices of L As shown above such a schedule always exists. We now "merge" S with
L(G) as done in Theorem 3.1. The schedule S’ for G and M constructed by the
MERGE algorithm starts also with R, since Steps 2.2 and 2.3 are redundant for k 1.
To see that the schedule S’ for G fits the profile M we observe that there exists a
schedule for G and M and therefore there is enough "space" in the profile M.

Case III--< ml. Let S be a schedule for H(G) and M starting with the set L We
showed already that such a schedule exists. Let T be a set of m-III highest initial
vertices of L(G). We again "merge" $ with L(G) as in Theorem 3.1. The MERGE
algorithm constructs a schedule S’ for G and M that starts with I and a set of m- III
highest initial vertices of L(G)= L. Note that Step 2.2 is redundant for k 1, since
(S)I contains all initial vertices of H(G). Assume the set T is chosen at Step 2.3 as a
set of m-III highest initial vertices of L(G). Then S’ starts with I t_J T, which we
wanted to show.

4. Level orders. In this section, we present a polynomial algorithm for finding an
optimal schedule in the case where the graph is a level order of q components (where
q is a positive constant) and a profile of unbounded breadth m. Our algorithm runs
in time O(mqnq) and uses space O(n’).
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By property M1 of the median we know that H(G, m) has less than rn components.
Therefore, combining the O(mqnq) algorithm with the reduction theorem 3.2 we
get the following result: An optimal schedule for a graph G, such that H(G, m) is a
level order, and a profile of constant breadth m_>-3 can be found in time and space
O(n’-’).

Level orders are a proper subclass of the class of series parallel digraphs [TL79]
which in turn is a proper subclass of the class of totally interacting digraphs [Go76].
In [Go76] it was shown that HLF produces an optimal schedule if the graph is totally
interacting and the profile is straight and of breadth two. It is an easy exercise to see
that this result holds for nonstraight profiles of breadth two. Note that HLF does not
produce an optimal schedule if m 2 and the graph is arbitrary. In this case, restricted
forms of HLF produce an optimal schedule [CG72], [GaS0a].

HLF also produces an optimal schedule for a single level order component (in
linear time). By applying the reduction theorem we obtain an O(n+ e) time bound
for any graph whose high-graph consists of at most one level order component. On
the other hand, neither HLF nor restricted HLF produce an optimal schedule even if
the whole graph is a level order of two components and the profile is straight and of
breadth three. In Fig. 4.1, we give an example to show this. An optimal schedule S
for this graph and the straight profile of breadth three is: {11, 10’, 9’}, {10, 8’, 7’},
{9, 6’, 5’}, {8, 7, 4’}, {6, 5, 3’}, {4, 3, 2’}, {2, 1, 1’}. Note that this schedule has no idle
periods, while any HLF schedule will have idle periods in its second slot.

I0

8

10’ 9’

8’ 7’

6’

4’

2’

FIG. 4.1. HLF is not optimal for three processors.

To describe some special properties of level orders we use the following definitions:
Given two graphs G V, E) and G’= V’, E’). Then G is (transitively) isomorphic to
G’ if and only if there exists a bijective function f: V- V’, such that for all vertices x
and y of V, we have the following: x precedes y in G if and only if f(x) precedes
f(y) in G’. Note that the fact that f is bijective implies that VI V’I. Two vertices x
and y of the same graph G are isomorphic to each other if and only if x maps into y
in an isomorphism of G onto itself. Many closed subgraphs of a level order are
isomorphic. This is the main reason why scheduling a constant number of level order
components is polynomial. There will be only a polynomial number of possible closed
subgraphs that we need to handle in the algorithm.

LEMMA 4.1. Let G be a level order with one component. Then all closed subgraphs
of G that have the same number of vertices are transitively isomorphic.

Proof We want to show that all closed subgraphs of G with k vertices (k =< n)
are isomorphic. Let h be the maximum height such that G has less than k vertices of
height smaller than h. Let nk be the number of vertices in G of height smaller than h.
It is easy to see that every closed subgraph of G with k vertices is of height h, it
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contains all vertices of G of height smaller than h, and k- rlh initial vertices of height
h. This completes the proof since within each component of a level order graph all
vertices of the same level are isomorphic.

We now apply Lemma 4.1 to level orders with q components.
LEMMA 4.2. Let G be a level order with components H1, , Hq. IfI and J are two

closed subgraphs ofG containing the same number of vertices from each component, then
I is transitively isomorphic to J.

Proof. Let I1,’", Iq be the subgraphs of I that contain all vertices of I from
components H1,"" ", Hq, respectively. Define J1,"" ", Jq similarly. Since I and J are
closed subgraphs of G, we conclude that L and Jr are closed subgraphs of H, for
1-< r =< q. The graphs ! and J contain the same amount of vertices from each H, that
is, II 1-Izl. By Lemma 4.1 we conclude that L is isomorphic to J. This implies that
I is isomorphic to J.

DEFINrrION 4.1. Let G be a level order with components H1,"" ", Hq and I be
a closed subgraph of G. Then I is represented by the tuple (hi,"" ", nq) if ! contains
nr vertices of H,, _-< r _-< q.

In the following corollary we rewrite Lemma 4.2 using this definition.
COROLLARY 4.1. Let G be a level order with the components H1," ", Hq. If two

subgraphs of G are represented by the same tuple, then they are isomorphic. All closed
subgraphs of G correspond to O(rt q) distinct tuples.

Proof. The first part of the corollary follows directly from Lemma 4.2 and Defini-
tion 4.1.

Every closed subgraph of G can be represented by some tuple (nl,’", nq). By
Definition 4.1 we know that O<-n<-_lHrl, for l<-r<-q. Since [Hl<=n, all closed sub-
graphs of G can be represented by at most (n + 1)q tuples. Clearly, (n + 1)q

since q is constant, this implies that (n+ 1)
The above corollary describes the key property of level orders that guarantees the

polynomial algorithms. A level order with q components contains at most O(tlq)
equivalence classes of closed subgraphs. During the scheduling algorithm, we will keep
track of all of these closed subgraphs via dynamic programming.

The following length function is used recursively in the polynomial algorithms
we present later.

DEFINITION 4.2. Let G be a graph. Denote by A (G, m) the length of an optimal
schedule for G fitting the straight profile of breadth m.

LEMMA 4.3. The length function A can be calculated by the following recursive

formula:

A(b, m) =0;

(4.1) A(G,m)=l+min({X(G-R,m)l
R is a set of initial vertices of G, 1 <-IRI--< m}).

Proof. The proof is clear from the following fact. Let R be any set of initial vertices
of G such that 1 =< IRI-< m. Then A (G- R, m) A (G, m) 1 if and only if there exists
an optimal schedule for G fitting a straight profile ofbreadth m with R in its first slot. l-]

We will now apply the recursive formula (4.1) to evaluate A for all closed subgraphs
of a level order.

LEMMA 4.4. Let G be a level order with a constant number q of components. Then
A (I, m) can be evaluatedfor all closed subgraphs I ofG in time O(mqnq) and space O(nq).

Proof. The following algorithm evaluates A (G) via dynamic programming, within
time O(mqnq).
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ALGORITHM 4.1.
1. A(b) 0
2. for k:=l to n do

2.1. for all closed subgraphs I of G with k vertices do
2.1.1. A(I):= l+min ({,(I- R)I R is a set of initial vertices of ! and

1 <=[I1-<_ m}).

The correctness follows from Lemma 4.3. To obtain the time bound we need to
show more explicitly how we gather the information during the execution of the
algorithm. Let H,..., Hq be the components of a level order graph. For every
component H. denote by TOP (p, r) the number ofinitial vertices in the closed subgraph
of H that contains p vertices. By Lemma 4.1 all such closed subgraphs are isomorphic.
Furthermore, a level order component is completely specified by a sequence of natural
numbers specifying how many vertices are in each level. Therefore, TOP (p, r), for
every 0-<_ p _<-IHI and 1 <_-r <_-q, can be created in linear time.

By Corollary 4.1, all closed subgraphs of G can be represented by O(nq)
equivalence classes. Each equivalence class is determined by a vector n=
(/11, r/2,’’’ /’/q)in [H,I IHI "" IHI, where n, is the number of vertices from
component Hi. For every such a vector denote by (a, m) the set of all vectors ’obtained from a by removing for every i, ni- n initial vertices from the closed subgraph
of Hi (represented by ni) such that 1 <Y.q ’<TOP (ni, i)r=l (nr- n’r) _<-- m and ni- ni

Note that n-n’<-_m, which implies that It(,m)l=O((m+l)q). Clearly
(m+ 1) q -<(q+ 1)mq; since q is a constant, we have I(fi, m)l= O(mq).

Algorithm 4.1 can be rewritten as follows:

ALGORITHM 4.1’.
1’. A(b) 0
2’. for k := l to n do

2.1’. for all Inll In21 "" lnql, such that Erq=l/I -k do
2.1.1’. A() := 1 +min ({;(a’)ln’ (fi, m)}).

At Step 2.1’, we partition all O(nq) tuples according to the number of vertices
they contain. This can be done in time O(nq). To implement Step 2.1.1’, we make use
of the data structure for TOP (p, r). Since there are O(mq) choices for ’, we get the
time bound O(mqnq), which completes the proof of the time bound. The algorithm
needs O(n q) space to represent all equivalence classes. The array TOP and all remaining
data structures require only O(n) space. [-1

Having analyzed the function A for all closed subgraphs of a level order G with
q components, we can retrieve an optimal schedule for G and the straight profile of
breadth m.

THEOREM 4.1. Let G be a level order with a constant amount q >-_ 2 of components.
An optimal schedule for G and the straight profile of breadth m can be found in time
0(mqnq) and space 0(n q).

Proof Lemma 4.4 implies that we can prepare the values A (/, m) for all closed
subgraphs I of G in time O(mqnq) and space O(nq). We use these values to find an
optimal schedule for G.

ALGORITHM 4.2.
1. k:=0
2. while G is nonempty do

2.1. k:= k+l
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2.2. Let R be a subset of initial vertices of G such that 1 [RI m and
,(G-R)= A(G)- I

2.3. Sk := R
2.4. G:= G-R.

If we use in Step 2.2 the vector representation for the closed subgraphs then it is
easy to see that the total number of different R we scan in Step 2.2 is bounded by
O(mq). Clearly every other step is bounded by O(q). This implies that the total time
complexity for both algorithms (Algorithm 4.1 and Algorithm 4.2) is O(mqnq).

We extend Theorem 4.1 to nonstraight profiles of breadth m. For that we need to
refine the definition of the function h.

DEFINITION 4.3. Let G be a graph and M (ml,. ", md) be a profile of breadth
m. Then

A(G, M) := min ({klthere exist a schedule for G and (ma-k+l,’’’, ma)}).

Note that k is the length of the profile (ma-k+l, "’, ma). Note also that if m is
straight, then Definition 4.3 degenerates to Definition 4.2.

LEMMA 4.5. The function A can be expressed recursively as follows"

h(b, M) =0;

(4.2) h G, M) 1 + min ({h G R, M)[R is a set of initial vertices of G
and 1 -<_ IRI <-- md-x(-R,4)}).

Proof The proof follows directly from the following observations"
(i) h (G, M) is undefined if and only if there exists no schedule for G fitting M.
(ii) If A (G, M) is defined, then there exists a set R such that 1 -< IRI--< ma_.,+,

and A(G-R,M)=A(G,M)-I.
(iii) If A(G, M) is defined, then for any set R, such that IRI_< ma_.,)+ and

A(G-R,M)=A(G,M)-I, there exists a schedule for G fitting the profile
(rnd_a(.4)/,’’’, rod) which starts with R. [-1

As in Lemma 4.4 we evaluate the function A for all closed subgraphs of the level
order G achieving the same time bound as for straight profiles.

LEMMA 4.6. Let G be a level order with a constant amount q of components, and
let M be a profile of breadth m. Then A(/, M) can be evaluated for all closed subgraphs
I of G in time 0(rn qn q) and space 0(n q).

Proof As with Lemma 4.4 and Algorithm 4.1, the only change is in Step 2.1. We
replace the recursive formula for straight profiles (4.1) by the recursive formula for
arbitrary profiles (4.2). Since md-X-R.M)/l <= m, we get the same time bound. I3

Knowing the function A we are ready to retrieve a schedule in a similar fashion
as in Theorem 4.1 and Algorithm 4.2.

THEOREM 4.2. Let G be a level order with a constant amount of components, and
let M be a profile of breadth m. Then a schedule for G and M’ --(md-XG,M)+I, md)
can be found in time O(m’nq) and space O(nq).

Proof. Applying Lemma 4.6 we find h (/, M) for all closed subgraphs I of G. To
retrieve a schedule for G and M’ we use Algorithm 4.2 of Theorem 4.1. Let b be
h (G, M), where G is the original graph and M the profile. Since M is not necessarily
straight, we change the bound of IRI from rn to ma-b+k, l-I

The reversed graph GR of a graph G is a graph obtained by reversing all the edges
in G. For a profile M=(ml, m2,"’, ma) we define the reversed profile MR to be
MR= (md, md-,’’’, m). The reversed schedule SR is defined accordingly.
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In the subsequent corollary we apply Theorem 4.2 on the reversed graph GR and
reversed profile MR to find an optimal schedule for G and M.

COROLLARY 4.3. Let G, q and M be defined as in Theorem 4.2. An optimal schedule
for G and M has length A(GR, MR) and can befound in time O(mqnq) and space o(nq).

Proof. Rewriting Definition 4.3 for the case where the arguments of A are the
graph GR and the profile MR= (md, ma-1, ", ml) we get the following:

A(GR, MR) =min ({klthere exists a schedule for GR and (mk, mk-1, m)}).

Reversing the graph GR and the profile (mk, mk-1,

rewritten as:
m) the above formula can be

A(GR, MR) =min ({k[there exist a schedule for G and (ml," ", mk)}).

We conclude that A (GR, MR) is the length of an optimal schedule for G and M.
To prove the second part of the corollary we observe that when G is a level order

GR is also. Applying Theorem 4.2 to GR and MR we get a schedule S for GR and
M’R in time O(mqnq), where M’R isthe profile (mx(R,MR, ", ml). Since A(GR, MR)
is the length of an optimal schedule for G and M, we conclude that SR is an optimal
schedule for G and M. l-]

Note that A (G, M) is not the length of an optimal schedule for G and M. It is
also not the length of an optimal schedule for G and M’ (defined as in Theorem 4.2).
We could have defined A (G, M) as the length of an optimal schedule for G and M
replacing Definition 4.3. Then the recursive formula corresponding to (4.2) would be:

(4.3)

A(b, M) =0

A(G, M)= 1 +min ({klh(H, M)= k,
where H is a subgraph of G obtained by removing
at least one and no more than mk/l terminal vertices}),

where a terminal vertex is a vertex with no successors.
The scheduling algorithms described in the paper obtain optimal schedules by

iteratively removing sets of initial vertices from the remaining graph and scheduling
them in the first, second,. time slot (for instance, see Algorithm 4.2). Formula (4.3)
corresponds to doing the scheduling process "backwards": Iteratively remove sets of
terminal vertices from the remaining graph and schedule them in the last, second to
last,.., time slot. We choose the standard way of scheduling--that is, to iteratively
remove sets of initial vertices--even though scheduling "backwards" would make
Corollary 4.3 unnecessary.

Combining Corollary 4.1 with Theorem 3.2 we prove the final result of this section.
COROLLARY 4.4. Let G be a graph such that H(G, m) is a level order and M a

profile of constant breadth m >-3. Then an optimal schedule for G and M can be found
in 0 n 1) time and space.

Proof. Let q be the number of components of H(G, m). If q 0, then by Corollary
3.1 an optimal schedule for G and M can be found in time and space O(n+ e)--.
O(n"-l), since m->3. If q-> 1, then Corollary.4.3 shows that an optimal schedule for
H(G, m) and M can be found in time O(mqn q) and space o(nq). Property M1 of
the median implies that q < m-1; therefore O(mqn q) O(m"-lnm-1), which equals
O(n’-l), since m is constant.

So far we have shown that an optimal schedule for H(G) and M can be found
in time and space O(n"-l). By the reduction theorem, we conclude that an optimal
schedule for the whole graph G and M can be found within the same time and space
bounds. [3
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5. Inforests and outforests. In this section we give polynomial algorithms for
finding an optimal schedule if the precedence graph is an inforest, an outforest or an
opposing forest and the profile has constant breadth rn => 3. For inforest we present
an O(n"-1) algorithm, for outforest an O(nm- log n)algorithm and an O(n2"-2 log n)
algorithm for opposing forest. All three algorithms require O(nm-) space. The
algorithm for opposing forest assumes that the profile is straight, whereas the algorithms
for inforest and outforest work for arbitrary profile.

A profile M is called nondecreasing (respectively, nonincreasing) if mi<_-
(respectively, m >= m+), for 1 <= <_- d. The algorithms of [GJ83] for obtaining optimal
schedules for inforests, outforests and opposing forests are less time efficient than ours"

the algorithm for opposing forests requires O(n ’2+2"-5 log n) time, and the algorithms
for outforests and inforests assume nondecreasing and nonincreasing profiles, respec-
tively, and require O(rt m2+m-6 log n) time.

As in the case of scheduling level orders, deciding whether a feasible schedule
exists for each of the three types of forests becomes NP-complete if the breadth of the
profile is a variable of the problem instance [GJ83], [MaS1], [WaS1]. The corresponding
problems stay NP-complete even in the following restricted cases: nondecreasing profile
and outforest graph, nonincreasing profile and inforest and straight profile and oppos-
ing forest [GJ83], [MaS1], [WaS1]. In other related cases HLF produces an optimal
schedule even if the breadth of the profile is unbounded: straight and inforest [Hu61]
or outforest [BrS1], [DW84a], nonincreasing profile and outforest [DW84a! and non-
decreasing profile and inforest [DW84a]. Note that forests are special cases of series
parallel digraphs [LT79] and therefore HLF produces an optimal schedule for forests
and profiles of breadth 2 [Go76].

In this section we first present an algorithm for scheduling an outforest on a profile
of O(1) breadth. To do this we observe that there are at most O(nm-) choices for the
high-graph of a closed subgraph of an outforest. This fact is used to define an
equivalence relation on the set of all closed subgraphs of an outforest. The equivalence
relation partitions this set into a polynomial amount of equivalence classes. Two
subgraphs of the same equivalence class have the same high-graph and the same
number of vertices in their low-graph. We then define a length function on the
equivalence classes similar to the previous section. All closed subgraphs of one
equivalence class have the same length. This length is related to the length of the
optimal schedules of the subgraphs of the equivalence class. As in the previous section,
the length function is evaluated via dynamic programming. We then use the length
function in an algorithm which finds an optimal schedule for an outforest and a profile
of constant breadth. This algorithm is similar to the MERGE Algorithm 3.1. To get
an optimal schedule for an inforest we apply the outforest algorithm to the reversed
profile and the reversed inforest, which is an outforest. Our algorithm for opposing
forest is obtained by combining the inforest algorithm with a result of [GJ83].

Let T be a subset of the vertices of G, then CLOSE (T) is the closed subgraph
induced by T, that is, the subgraph which contains the vertices of T and all the
successors.

The following theorem implies that we have to keep track of O(nm-) high-graphs
while scheduling an outforest. This result will imply the O(n"-) time and space bound
for scheduling an outforest on a profile of constant breadth m.

THEOREM 5.1. The high-graph of a closed subgraph of an outforest G and breadth
rn contains less than rn initial vertices. All closed subgraphs ofG have O(nm-l) different
high-graphs.

Proof. Since G is an outforest, every closed subgraph J of G is, as is the high-graph
of J. By property M1 of the median we know that H(J, rn) consists of less than m
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components, which in this case are outtrees. Each outtree corresponds to exactly one
initial vertex and therefore H(J, m) corresponds to a set of less than m initial vertices
that are incomparable with each other. On the other hand, each set of up to m- 1
incomparable vertices of G induces an outforest which is the high-graph of some
closed subgraph of G. Since m is constant, there are O(n "-1) choices for a set of up
to m- 1 vertices. This completes the proof of the theorem. [3

DEFINITION 5.1. Let J and K be two closed subgraphs of a graph G. Then the
subgraphs J and K are equivalent, J =- K, if and only if they have the same high-graph,
and the number of vertices of J and K that do not have any predecessors above the
corresponding medians is the same. That is,

J-= K iff (H(J)= H(K) and IL(S)l=lL(K)l).

Theorem 3.3 and Theorem 5.1 are the motivation for the definition of the
equivalence relation. From Theorem 3.3 we know that if two closed subgraphs are
equivalent then the length of their optimal schedules for a given profile of breadth m
is the same. Theorem 5.1 implies that if m is a constant, then there is a polynomial
number of different equivalence classes.

Let J be a closed subgraph of a graph O. Then INIT (J) denotes the set of all
initial vertices of J. Note that the closed subgraph J is completely determined by
INIT (J) in the sense that J consists of INIT (J) plus all successors of the vertices of
this set, that is J =CLOSE (INIT (J)). The equivalence class to which J belongs is
completely specified by H(J) (or INIT (H(J))), and IL(J)I. We denote the equivalence
class ofJ as the tuple [INIT (H(J)), IL(J)I]. Applying this notation we get the following:
A closed subgraph K of G is in the equivalence class [I, w] iff INIT (H(K))- I and
IL(K)I w.

The length function we use in this section is a function of an equivalence class
instead of a graph as in 4.

DEFINrrION 5.2. Let G be an outforest, let [/, w] be an equivalence class of G,
and M be a profile of breadth m. Then the length , (/, w, M) is the minimum k for
which there exists a schedule for the members of [/, w] fitting the profile

The function A is well defined because of Theorem 3.3. This theorem implies that
for any two subgraphs K and J, such that K- J, there exists a schedule for J and
M’= (md_k/," ", md) if and only if there exists one for K and M’. Notice that the
length A (/, w, M) is undefined if and only if there exist no schedules for the closed
subgraphs of [/, w] that fit M.

In the following lemma we show how to calculate the value of A (/, w) from A (/, 0).
LEMMA 5.1. Let [/, 0] be an equivalence class, M (ml,. ., rod) be a profile, and

p be the number of idle periods in a schedule for CLOSE(I) and M’-
(md-X(l,O)+l, "’, md). Then

undefined if A (I, 0, M) is undefined,
A(I, w, M)= A(I, O, M) if A(I, O, M) is defined and p >= w,

if A (I, O, M) is defined and p < w,

where

min klk >- 1 and ,
i=d-k+l

Proof. Case A(/, 0, M) undefined. Since the closed subgraphs of [/, w] have at
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least as many vertices as the closed subgraphs of [/, 0], the value of A(/, w) is also
undefined; and if h(/, 0) is defined, then h(/, w)_>- h(/, 0).

For the case where h (/, 0) is defined, let S be a schedule for CLOSE (I) and M’.
This schedule S has p idle periods and

p m, -ICLOSE (I)1.
i=d-A(I,O)+l

Case p >= w. By Theorems 3.1 and 3.3, we know that for any graph J of [/, w]
there exists a schedule S’ for J and M’. Note thatJ [/, w] ifand only iflNIT (H(J)) I
and ]L(J)] w and S’ has p w idle periods. We conclude that if p -> w, then A (/, w)
A(I, 0).

Casep < w. Clearly A (/, w) _-> since the subgraphs of[/, w] contain ICLOSE (I) +
w vertices. If is undefined, then there is not enough "space" in the profile M to
schedule a graph of[/, w] and therefore A(/, w) is undefined also.

For the case where is defined we want to show that for each member of [/, w]
there exists a schedule that fits M (md-x+l,""", md). Since A > A(/, 0), the schedule
S for CLOSE (I) and M’ can be embedded into the profile M. Therefore, there exists
a schedule for CLOSE (I) and M, and such a schedule has more than w idle periods,
since d,---x+ m,>-ICLOSE(I)I+w. By applying Theorems 3.1 and 3.3 again, we
conclude that there exists a schedule for any member of [/, w] and M; therefore,
A(/, w)=, if p< w. lq

We now want to show that the calculation of A (/, w) from A (/, 0) as described in
the previous lemma can be implemented efficiently.

LEMMA 5.2. Let G be an outforest and M be a profile of constant breadth m >= 3.
Given the appropriate data structures, which can be created in time and space O(nm-1),
then for any equivalence class [I, w] of G, A (I, w, M) can be calculatedfrom A (I, O, M)
in constant time.

Proofi The following data structures can be created in time and space O(n"-)
and allow us to calculate A (/, w, M) in constant time from A (/, 0, M).

Data structure A (U, N, L). Let G be an outforest and M be a variable profile
of breadth m.

(i) For every x G, U[x] is one plus the number of successors of x in G.
(ii) For every set T of up to m 1 incomparable vertices of G, U[ T] ,v T U[y].

Note that if T is a set of incomparable vertices then U[ T] ICLOSE (T) I.
(iii) For every k, l<= k<= d, N[k] is the total number of available processors in

the subprofile (md_k+l, md). That is, N[k] d

"’ "--i=d-k+l mi. Note that k is the length
of the subprofile.

(iv) For every r, l<=r<=N[d], L[r] is the length of the shortest profile
(ma-k+,’’’, md) having a total amount of r available processors. Therefore, L[r]=
min ({kiN[k]>= r}).

The properties of data structure A which we need for proving Lemma 5.2 are"

A1. Given the value of A(/, 0) then the value of A(/, w) can be calculated in
constant time.

A2. The data structure A can be created in time and space O(n"-l).
ProofofProperty A1. By Theorem 5.1 and Definition 5.1 we know that III--< m 1,

since G is an outforest. In Lemma 5.1 a formula was given to calculate A(/, w) from
A (/, 0). Using the arrays U, N and L we can rewrite this formula in the following way:

x(I,0)
A(I, w)=

L[U[I]+w]
if p>=w,
ifp<w.
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Furthermore, the number of idle periods p in a schedule for CLOSE (I) and profile
(md-a(l.O)+l,’’’, md) can be expressed as: p N[A(I, 0)]- U[I]. Therefore, if data
structure A is given, and h(I, 0) and I is known, then h(/, w) can be calculated in
constant time.

Proof of Property A2. (i) Determining the number of successors of each vertex of
the outforest G can be done in one traversal of the outforest. Thus the array U can
be evaluated for all vertices of G in time O(n).

(ii) There are O(n "-1) choices for a set T of up to m-1 vertices. For a given T
the value U[ T] can be found in constant time, since m is constant. Therefore, U can
be evaluated for all sets T in time O(n"-l).

(iii) and (iv) The matrices N and L can easily be created in time O(n).
This completes the proof of the properties of data structure A and therefore also

the proof of Lemma 5.2.
As in the previous section we give a recursive formula for the function h. While

scheduling a graph we repeatedly remove sets of initial vertices from the graph. The
notation AR-* B denotes that B is obtained from A by removing R, which is a set of
initial vertices.

Using the above notation we can give a recursive formula for h(I, 0):

(5.1) h(I, O)= l +min ({h(I’, W’)[([I, o]) R-- ([I ’, w’]) ^ <--[g[<=ma_(,w,)}).
The notation ([I, 0]) ([I’, w’]) means the following: Let J be a graph of [I, 0],

then by removing R, which is a subset of I, from J, we obtain a subgraph J’, where
J’ [I’, w’].

The correctness of the above formula is obvious. We make all possible choices to
remove sets of initial vertices and we recurse on the remaining graph. This formula is
used to evaluate h(I, 0) for all sets I of up to m- 1 incomparable vertices of G via
dynamic programming.

LEMMA 5.3. Let G be an outforest and M be a profile of constant breadth m. Then
the function h can be evaluated for all equivalence classes [I, 0] of G in time and space
O(n-).

Proof. The following algorithm evaluates h for all [I, 0] of G in time O(nm-).

ALGORITHM 5.1.
1. h(b, 0):=0;
2. for i--1 to ndo

2.1. for all sets I of up to m- 1 incomparable vertices of G,
such that [CLOSE (I)1- do
2.1.1. h(I, 0):-- /min ({h(I’, w’)l([I 0]) g-- ([I’, W’])

and 1 <= [R[ <_- md-x(I’.w’)}).

Proof of correctness. The correctness follows from (5.1). Notice also that at Step
2.1.1 ICLOSE (I’)1 < ICLOSE (I) since IRI>_-1. As shown in Lemma 5.1 the value of
h (I’, q’) is determined by h (/, 0) and w.

Proof of the bounds. By Theorem 5.1 and Definition 5.1 we know that for any
equivalence class [/, w] of an outforest G, II[--< m- 1 and ! is a set of incomparable
vertices. Note that II] is constant when m is constant. There are O(n"-) different sets
of up to m- 1 vertices of G. Claim 5.1 below implies that with an appropriate data
structure, we can determine in constant time whether the vertices of a given set of
cardinality up to m- 1 are incomparable or not. Therefore, all sets of up to m- 1
incomparable vertices of G can be found in time and space O(n"-). We then create
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data structure A in time and space O(n"-1) and bucket sort all sets T of up to m- 1
incomparable vertices of G according to U[ T]. Thus, Claim 5.1 and Lemma 5.2 imply
that Steps 2 and 2.1 can be implemented in time O(n"-).

CLAIM 5.1. Given the preorder number and the number ofsuccessorsfor every vertex

of G, then for any set T of up to m- 1 vertices of G it can be determined in constant
time whether T is a set of incomparable vertices or not.

Proof of the claim. Let p(x) denote the preorder number and n(x) the number of
successors of the vertex x of G. Now for any two vertices x and y of G, precedes
y if and only ifp(x) <= p(y) <= p(x) + n(x) (see [AH74] for details). To decide in constant
time whether some set T of up to m- 1 vertices of G is incomparable or not we use
the following fact: T is a set of incomparable vertices if and only if for every x and
y of T, x does not precede y. Since T has a constant size, this can be done in constant
time, which completes the proof of the claim.

Since the preorder number and the number of successors of every vertex can be
found in O(n) time the claim implies that Steps 2 and 2.1 can be implemented in time
O(n"-). By Theorem 5.1 there are O(n"-) sets of up to m 1 incomparable vertices
of G. Thus Step 2.1.1 gets executed O(n "-1) times and to get an overall O(n’’-) time
bound we need to show that Step 2.1.1 can be implemented in constant time.

In Lemma 5.2 we showed that A (I’, w’) can be calculated in constant time given
data structure A and A(I’, 0). At Step 2.1.1 the value of A(I’, 0) has been calculated
already since ICLOSE (I’) < ICLOSE (I)].

The set R is a subset of the set I and III < m. Since m is constant, there is only
a constant amount of choices for R. Thus to prove that Step 2.1.1 is constant we have
left to show that given a set R then [I’, w’] can be determined in constant time. This
is achieved by the following data structure.

Data structure B. The outforest G is represented by its adjacency lists [AH74],
in which the immediate successors of every vertex of x are given in a linked list sorted
according to decreasing height.

Properties of data structure B.
B1. Let J be a closed SUtggraph of G, let R be a subset of INIT (H(J)), and let

(INIT(H(J)), /z(J), IL(J)I)--, (I’,Iz’, w’). Then (I’,/x’, w’) can be obtained from
(INIT (H(J)), Ix(J), IL(J)I) in constant time.

B2. Data structure B can be created in time O(n).
ProofofProperty B1. For every vertex x R, let Tx be a set of m highest immediate

successors of x. If x has less than m immediate successors then let T be all immediate
successors of x. Define T to be the following set of vertices: T:=
{INIT (H(J)) R} t_J ([-JR (T)).

Obviously T can be found in O(m) time, since the immediate successors of x R
are given in decreasing height. INIT (n(J))l<m and ITI< m. Note that O(m)
O(1), because m is constant. Since G is an outforest every vertex of T corresponds
to an outtree in J’, which is the subgraph of J obtained by removing the set R from
J. All the roots of height at least as high as the ruth highest component of J’ are
contained in T. Therefore,/x(J’)-/.’ is one plus the height of an ruth highest vertex
of T. If IT < m then/x’ is set to zero. Furthermore, I’= INIT (J’) is a subset of T, i.e.,
I’ is the set of all vertices of T of height bigger than/x’. Since the size of T is constant,
/z’ and I’ can be determined in constant time. Finally w’ is computed as follows:
w’--lt(J’)[= uEIJ+[t(J)l-UEI’J-[R[. This completes the proof of Property B1 of
data structure B.

Proof of Property B2. All vertices of G can be bucket sorted according to their
height in linear time. Create the adjacency lists of G as follows: starting at the highest
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vertices and continue according to decreasing height, insert each vertex to the end of
the adjacency list of the immediate predecessor of it (in constant time). Thus data
structure B can be constructed in time O(n).

To complete the proof of the time bound we still have to show that in Step 2.1.1
[I’, w’] can be determined in constant time when I and R are given. This follows from
Property B 1 of data structure B. Note that at Step 2.1.1, J CLOSE (I) H(J), tx (J) 0
and It(J)l- O.

We are now ready to present the main result of this section.
THEOREM 5.2. Let G be an outforest and M m, , md be a profile ofconstant

breadth m. Then it can be determined in time and space O(n"-) whether there exists a
schedule for G and M. If such a schedule exists, then we can find a schedule for Gfitting
the profile (md-a(I,w)+l," ", md), where G[I, w], in time O(tlm-1).

Proof. To determine whether there exists a schedule for G and M, we apply
Lemma 5.3 and evaluate A for all equivalence classes [/, 0] of G (Algorithm 5.1). This
can be done in time and space O(nm-). Given the value of A (/, 0), it is easy to calculate
A(/, w) (see Lemma 5.3). Note that A(/, w) is defined if and only if there exists a
schedule for G and M (see Definition 5.2). Thus we showed that one can decide in
time and space O(n m-l) whether there exists a schedule for G and M.

If such a schedule exists then the following algorithm finds a schedule for G
fitting the profile M"-(md-X(l,w)+l,’’’, md), such that G[I, w], in time and space
O(nm-’).

ALGORITHM 5.2.
1. In := INIT (H(G)) IL := INIT (L(G)) Ix := Ix(G);

x := x (I., IL(G)I)
2. for k:=d-A+l to d do

2.1. j:=k-d+A
if Iz l >
2.1.1. then Find R such that ([Iz, 0]) ([I’, w’]),

I 1- m, and x (I’, w’) _-< d k
(S)j := R

2.1.2. else Find a set T of mk--IIl highest vertices of IL
(S)j := In I..I T

(s)
2.2. Determine I, I., Ix’ such that (In, IL, Ix) (I, I, Ix

I, := I I:= I’
Proof of correctness. Assume we are before Step 2.1 and the Loop 2 has been

executed already several times, that is, vertices of the original graph G have been put
into the slots 1, 2,. ., k-d + A- 1 of S. Let G be the remaining graph at this point,
that is, the closed subgraph of the original graph that has not been scheduled yet.
Then applying the notation of the algorithm we have: IH I(H(G)), Ic= I(L(G))
and Ix Ix(G).

It is easy to see that both at Step 2.1.1 and 2.1.2 the set (S) is a subset of the
initial vertices of G. Thus in the constructed schedule S the precedence constraints
specified by the graph G are not violated.

The correctness of Algorithm 5.2 is shown by proving the following loop invariant:
There exists a schedule for G and (ink,’’’, md).

At Step 1 we set A to A (In,IL(G) I) and we know that this value is defined. The
definition of the function A (Definition 5.2) implies that there exists a schedule for G
and (md_X+l,""" ma) after Step 1. Therefore, the invariant holds for k=d-A / 1
before the first execution of Loop 2.
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We now want to prove the following: If there exists a schedule for G and
(mk,’’’, md) before Step 2.1, then there exists a schedule for G’ and (mk/,’’’, md)

after Step 2.2, such that (G) sj. (G’). The proof of the above implication follows
from Theorem 3.4.

Case IIHI> m. By Theorem 3.4 there exists a set R of mk vertices of IH that
starts a schedule for H(G) and (mk,’’’,md). Define I’ and w’ such that
([IH, 0]) R._% ([i,, W’]). Since there exists a schedule for H(G) and (mk," ", md) starting
with R we have A ([I’, w’])=< d- k. So far we have shown that the set R as defined in
Step 2.1.1 exists.

On the other hand, any set R that is defined as in Step 2.1.1 starts a schedule for
H(G) and (mk,’’’, md). This is implied by the fact that A(I’, w’)<=d-k. Define H

such that (H(G)) R--% (), then [I’, w’] and there exists a schedule for / and
(mk/l,""", md), since A(I’, w’)<=d-k. Note that (mk/l,""", md) has length d-k. By
Theorem 3.4 we conclude that R as defined in Step 2.1.1 starts a schedule for G and
(mk,’’’, md), since it starts one for H(G) and (mk,’’’, md). This implies that there
exists a schedule for G’ and (mk+,’" ", ma), since (S)j R and (G) R._% (G’).

Case Ii,,I-< Then by Theorem 3.4 we know that for any set T of
highest vertices of IL, there exists a schedule for G and (mk,’’’, md) starting with

IH LJ T. This implies that there exists a schedule for G’ and (mk+," ", md). Note that

at Step 2.1.2 (S)j= IH kl T and (G) s!. (G’). This completes the proof of the loop
invariant and the proof of correctness of Algorithm 5.2.

Proofof time bound. First, we create the data structures A and B in time and space
O(n"-l). Represent IH as a doubly linked list. Implement IL as an array of linked
lists, where the linked list I(h) contains all vertices of I of the height h.

Step 1. Evaluate the function A for all equivalence classes [/, 0] of G. By Lemma
5.3 this can be done in time and space O(n"-). Create all the above data structures,
and evaluate pt and A in the same time bound.

Step 2. We want to show that the loop can be implemented in time O(n).
Case I/HI> mk. Step 2.1.1. Since II,,n<m and m is constant, there is only a

constant amount of subsets R of IH such that [RI-- m. For each set R we can determine
in constant time whether h (I’, w’)=< d- k. Note that we know h (I’, 0) and therefore
by Lemma 5.2, h (I’, w’) can be determined in constant time. We conclude that Step
2.1.1 can be implemented in constant time.

Step 2.2. In the case II 1 > mk. Step 2.2 can be easily implemented in overall time
O(n). By Property B1 of data structure B, I and/z’ can be determined in constant
time. Note that (S)

___
IH. To determine I we look at all immediate successors of the

vertices of (S). If such an immediate successor has height at most/z’, then we add it
to the appropriate list of I in constant time. Since each vertex gets added exactly
once to the array of list I, this costs overall time O(n).

Case IIH[ -< mk. Step 2.2.1. By property M2 of the median we know that G has
at least m components of height at least/x- 1. Exactly II 1 of these components have
height bigger than/x and therefore, G has at least m-II.I--> m-II,l components of
height/z and/z 1. Thus IL has at least mk --IIH] vertices in the lists I(/x) and I(/x 1),
and the set T of Step 2.1.2 can be found in constant time.

Step 2.2. In the case IIHI<= mk we do Step 2.2 in two steps:
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That is, we first remove the set T and determine IL and/2, and then we remove the
set IH and determine I/, I, IX’. Note that (S)j IH t3 T. The reason why we can do
Step 2.2 in two steps is that L(G) and H(G) are disjoint.

To show that Step (i) can be done in overall time O(n), we observe that T can
be removed from IL in constant time. Note that T is a set of mk- II 1 highest vertices
of lists I/(ix) and I(ix 1). To find I we insert all immediate successors of the vertices
of T into the appropriate list of I. Since each vertex gets added at most once this can
be done in overall time O(n). To determine/2 we observe that/2 Ix- 1 if T contains
all vertices of IL(Ix) and I(Ix- 1); otherwise /2 Ix. Note that if/2 =Ix- 1 then T
contains all vertices of I(Ix). Thus H(G) and therefore IH does not change when T
is removed from G.

We showed already that Step 2.2(ii) can be done in overall time O(n) (see
implementation of Step 2.2 in the case where II.1> mk).

This completes the proof of the time bound of Algorithm 5.2. Note that the
expensive part was to evaluate the function A in time O(n "-1) retrieving a schedule
is linear. This also completes the proof of Theorem 5.2.

We now apply Theorem 5.2 to find an optimal schedule for an outforest.
COROLLARY 5.1. Let G be an outforest and M be a profile of constant breadth m.

Then an optimal schedulefor G and M can befound in time O( n
space.

Proof We do a binary search to determine

min ({d’[d’<= d and there exists a schedule for G and (ml,""", md,)}).

For every d ’-< d we can, by Theorem 5.2, decide in time and space O(n"-1) whether
there exists a schedule for G and (ml," ", rn). Since we can assume that d <= n, we
have to do this O(log n) times during the binary search. This completes the proof of
the O(n"-I log n) time bound.

COROLLARY 5.2. Let G be an inforest and M be a profile of constant breadth m.
Then an optimal schedule for G and M can be found in time and space O(nm-1).

Proof Since G is an inforest, GR is an outforest. We apply Theorem 5.2 to the
outforest GR and MR and find a schedule for GR and (marx,w),"’, ml) in time and
space o(nm-1), where [/, w] is the equivalence class of GR of which GR is an element
of. Interpreting the definition of the function A (see Definition 5.2) we see that (I, w)
is the length of an optimal schedule for G and M. We used the same trick to prove
Corollary 4.1.

To prove our time bound for an opposing forest we use the following result of
[GJ83].

THEOREM 5.3. A schedule for an opposing forest fitting a straight profile of breadth
rn and length d can be found in time O(d’-I t(n, m, d)) and space O(s(rn, n, d) + m),
where t( n’, m’, d’) and s(n’, m’, d’) are the time and space, respectively, that it takes to

find a schedule for an inforest with n’ vertices and a nondecreasing profile of constant

breadth m’ and length d’.
Proof Corollary 2.2.1 of [GJ83].
We now combine Corollary 5.2 with Theorem 5.3:
THEOREM 5.4. Let G be an opposing forest and M a straight profile of constant

breadth m. Then a schedule S for Gfitting M can be found in time O( n2’-2) and space
O(n-).

Proof. Let t(n, m, d) and s(n, m, d) be defined as in Theorem 5.3. By Corollary
5.2 we know that t(n, m, d)= O(n "-1) and s(n, m, d)= O(n"-l). Applying Theorem
5.3 we follow that it takes time O(d"-ln "-1) and space O(n"-1) to find a schedule
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for G fitting M. We can easily assume that d < n. Otherwise it is trivial to find a
schedule for G fitting M. Using the fact that d < n, we get the O(n2m-2) time bound. [3

Note that Corollary 5.2 gives a more general result than we need to prove the
above theorem. The O(nr-l) time bound is for arbitrary profiles of constant breadth
rn and not only for nondecreasing profiles. Furthermore, in Corollary 5.2 we showed
that one can find an optimal schedule in time and space O(n ’-1) and not just any
schedule that fits the profile.
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CONVEX SETS AND NONDESTRUCTIVE ASSAY*

YAKOV BEN-HAIM"

Abstract. In the nondestructive assay of sparsely dispersed identical particles, one strives to resolve
the number of particles contained in the sample. A perfect assay system can distinguish any spatial
configuration of k particles from any spatial configuration of n particles, where k n. Let F be the set of
all physically realizable measurements of a single particle. It is shown that if F has a nonempty interior,
then perfect assay capability is unachievable. When F is a convex set, sufficient conditions are developed
which allow efficient analytical evaluation of the degree of resolving power of the assay system. Some results
for nonconvex F are also presented. When completely unambiguous resolution is either unnecessary or
impossible, one characterizes the resolution of the system by the probability of not distinguishing k from
n particles. It is shown that the probability of not distinguishing k from n particles provides an upper bound
for the probability of not distinguishing other pairs of numbers of particles.

Key words, convex sets, nondestructive assay, probabilistic nondestructive assay, spatially random
materials

AMS(MOS) subject classifications. 52A20, 52A40

1. Motivation. Considerable effort has been devoted to developing the technical
capability to measure the number and size of particulate species randomly embedded
in the matrix of a container when direct access to the contents of the container is
impossible [1]-[5]. Such nondestructive assay presents challenging problems even when
it is known that all the particles are identical. An ideal assay system can distinguish
any spatial configuration of n particles from any spatial configuration of k particles,
when n k. In practice many constraints prevent the realization of an ideal assay
system. A rigorous basis for achieving the best possible assay system design is lacking,
and the design of assay systems has been largely by trial and error. In this paper we
shall develop an analytical tool of practical utility in the design of nondestructive assay
systems.

Consider a small particle embedded in the contents of a container. Located outside
the container we have a set of m measuring devices which are sensitive to the position
ofthe particle. Let the readings obtained from these sensors comprise the m components
of a real vector f, called the vector response function. This vector varies as the position
of the particle is changed. Let the response set F be the set of all possible values which

f may obtain.
Consider n ditterent particle positions within a sample container, and let fi

represent the vector response obtained from a sample containing only a single particle,
which is located at position i. For systems with sufficiently low number density of
small particles, the vector response obtained from a sample with one particle at each
of the n positions is f+... +fn. Thus the capability of an assay system to resolve n
from k particles may be stated as

k

fi gi(1) Y for all f’, g in F.
i=1 i=1

For an assay system capable ofcomplete resolving power, (1) holds for all n > k -> 0.
Partial resolving power is specified by stating the values of n and k for which (1)

* Received by the editors September 21, 1982, and in revised form July 2, 1984. This work was supported
in part by the Technion VPR Fund--Lawrence Deutsch Fund.

" Department of Nuclear Engineering, Technion-Israel Institute of Technology Haifa, Israel.
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holds. For instance, one may wish to resolve a single particle from any greater number
of particles. Thus (1) must hold for k 1, n > 1. Whatever is the desired degree of
resolving power, the system must be designed so that the response function f satisfies
(1) for the appropriate values of n and k. Typically, (1) must be satisfied for a large
number of values of n and k. If we wish to employ this specification as a practical
guideline for the design of nondestructive assay systems, it is desirable to reduce this
large group of equations to an equivalent but smaller group. In 2 we develop such
"reduction theorems". We begin our considerations by requiring F to be a convex set.
Some results for nonconvex F are also presented.

The results of 2 are deterministic in the sense that when (1) is satisfied for certain
n and k, then "any" spatial distribution of n particles is distinguishable from "any"
spatial distribution of k particles. It is sometimes useful or necessary to relax this
requirement, and not require distinguishability of very unlikely spatial distributions
of n or k particles. The assay system is then designed to assure a specified upper limit
for the probability of occurrence of indistinguishable spatial distributions of n or k
particles. Section 3 is devoted to the development of probabilistic reduction theorems.
Section 4 briefly discusses the utility of the theorems presented.

2. Deterministic reduction theorems.
2.1. Convex sets. Equation (1) is an unwieldy characterization of the design

requirements for the set F because it comprises a large or infinite number of relations.
We shall aim at reducing this characterization to one composed of a small number of
relations. We begin by recording some basic results which will be useful later on.

DEFINITION 1. Let F be a subset of the m-dimensional Euclidean space E". For
any positive integer n, we define F, as

We see from this definition that (1) can be expressed as

(la) Fk r’) F, f

where F represents the set of all possible vector responses from a single particle and
is the null set. Thus (la) states that any spatial distribution of k particles can be

distinguished from any spatial distribution of n particles.
DEFINITION 2. Given the subset F of E", for any real number a, we define aF

as the set formed by multiplying each element of F by a. That is,

aF= {g: g-- af, f F}.

If F is convex then so is Fn, and Fn nF. From this we see that, when F is convex,
the condition for distinguishability of n from k particles becomes

(lb) kF r-) nF f.

LEMMA 1. For any subset F of F_ and any nonzero numbers a and b,

(i) aFt’) bF=f

if and only if

(ii) F vlbF- .
a
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Proof. If (i) is not true, then there are elements f and g of F such that

af bg

which implies that

b

Hence (ii) is not true. Thus (ii) implies (i). This argument can be reversed to prove
the converse. Q.E.D.

The following definition is fundamental.
DEFINITION 3. Let G be a nonempty subset of E". The expansion ofG, if it exists,

is denoted e(G) and is defined by

e(G)=sup{zE: GfqzG}.

When the expansion of (3 exists and when there are elements f and g of G such that

g=e(G)f

then G is said to be self-expanded.
It is evident that an unbounded set may have a finite expansion and may be

self-expanded. For example, consider the following set in the plane:

G= {(x, y): y= l -x, x e E}.

Clearly G is self-expanded and e(G)= 1.
While the above set is closed, it can be seen that closure is not a sufficient condition

for self-expansion. As an example, consider the following two curves in polar coordin-
ates (r, t) in the plane:

1
rl( t) =,

for 0 < -< 7r/4. Define the set

G is a closed set. Also

2-4t/ Tr

G={(r,t):rl(t)<-_r<=r2(t),0<t<=Tr/4}

r2(t) 4t ,-0

-2--- 2,
rl(t) 7r

which implies that e(G)= 2, and yet G is not self-expanded.
The property of self-expansion is exploited in some of the proofs to follow. It is

thus important to establish that a sufficiently broad class of sets are self-expanded. We
are interested in response sets, which will almost invariably be both closed and bounded.
The next lemma shows that such subsets of E" are self-expanded, if the expansion
exists at all.

It is important to note that expansion is not invariant to translation, and will even
cease to exist if the translation causes the set to include the origin. Thus while the
expansion of a set is related to its width and to its shape in general (translation-invariant
properties), the expansion is distinct from these properties. This has a clear physical
meaning when studying the expansion of a response set. The absolute magnitude of
the response is as important as the range of responses, in determining the expansion
of the set and the resolution-capability of the assay system.
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LEMMA 2. Let G be a nonempty compact subset ofE". If the expansion ofG exists,
then G is self-expanded.

Proof. We require some basic facts from metric topology [8]. Let f(g) represent
the distance from the origin to any point g in E ". Then f(g) is real and continuous
in E ". Also, every restriction of a continuous function to a subset D of its domain is
continuous on D. Thus the restriction of f to G is continuous on G. Also, every
continuous function on a compact domain achieves a minimum value and a maximum
value on its domain.

Since e(G) exists, G does not contain the origin. For every element g in G, define
R(g) as the ray from the origin through g. Also define the set

I(g) g(g) f) G

which is nonempty for any g in G. Since R(g) is closed and G is compact, I(g) is
the closed subset of a compact set and thus compact.

Now, since f(g) is continuous on I(g) for any g in G and since I(g) is compact,
f(g) achieves a minimum and a maximum value on I(g). Define

maximumh lg f( h
u(g)

minimumh g) f( h )"

This ratio exists for any g in G since G does not contain the origin.
Let z denote the expansion of G. It is evident that

z sup {u(g): g G}.

Thus, for any x > 0 there is a g in G such that

O<-z-u(g)<x.

Now consider the sequence of points in G

satisfying
S={gl, g2,"" "}

1
0<= z-u(g,,) <-, n 1, 2, 3,. .

Since G is compact it is a bounded subset of E", and thus contained in some cubic
m-cell (hypercube) [8]. Thus G can be covered by a finite number of m-cells of
arbitrarily small size. Hence S contains an infinite subsequence which converges to a
point for which

z=u().

Since G is closed, ff is an element of G. As noted before, f achieves a minimum value
and a maximum value on I(). Let these extreme values occur at points h and h2,
respectively. Thus

f(h2)=zf(h)

which shows that G is self-expanded. Q.E.D.
LEMMA 3. If F is a nonempty compact convex subset of E", then for a > 1,

(i) F f-) aF= f

if and only if the expansion of F exists and

(ii) e(F) < a.
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Proof. Suppose that (i) does not hold. Then there are elements f and g of F such
that

f=ag

which implies that either the expansion does not exist or, if it exists, that

e(F) ->_ a

which contradicts (ii). Thus if the expansion exists and if (ii) holds, then (i) must also
be true. Now suppose that (ii) does not hold. Recall that, by Lemma 2, F is self-
expanded if the expansion exists. Thus if the expansion exists but is not less than a,
or if the expansion does not exist, there must be a number b >_-a and there must be
elements f and g of F such that

f- bg.
Since F is convex,

h
a-1 b-a

=b_lf+b_l gF.
Combining the previous two relations yields

h ag.

Hence (i) is not true. Thus if (i) holds, (ii) must also be true. Q.E.D.
LEMMA 4. If F is a nonempty compact convex subset of E m, then for a > 1,
(i) F gl aF f

implies

(ii) F f’) bF for all b >= a.

Proof. Assume that (i) is true. Then Lemma 3 implies that the expansion of F
exists and

e(F)<a.

Hence b > e(F), so Lemma 3 implies (ii). Q.E.D.
Now we are ready to prove our basic deterministic reduction theorem for convex

sets.
THEOREM 1. IfF is a nonempty compact convex subset of E"*, then for positive real

numbers n, k, r and s,
(i) nFf-)(n+k)F=

implies
(ii) rFf-)sF=f foranys/r>=(n+k)/n.
In other words when n, k, r and s are integers this theorem states that, if n particles

are always distinguishable from n + k particles then r particles are always distinguish-
able from s particles for

s n+k
r

Proof By Lemma 1, statement (i) implies

n+k
FO F=f

which by Lemma 4 implies

which by Lemma 1 implies (ii).

Fo-SF= for any->S n+k
r r n
Q.E.D.
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This theorem can be given a geometrical interpretation, to which we have already
alluded by introducing the concept of expansion. Referring to Definition 2, we see
that, for a > 1, aF can be viewed as a magnified image of F. Likewise anFt a(n / k)F
is a magnified image of nF t (n / k) F. It is evident that the image is a null set if and
only if the object is null, regardless of whether or not F is convex. Now suppose that
F is convex and disjoint from a certain magnification aF. This means that aF is
"projected" entirely beyond the set F. Hence greater magnification, say bF for b > a,
will also be disjoint from F. A few simple examples will show that this is not necessarily
true if F is not convex.

Let F be a union of two closed intervals on the real line"

F {[2, 3], [7, 8]}.

Inspection shows that F fq2F= and yet F fq3F f. In this example F is not a
connected set. However, the following example demonstrates that connectedness is
not sufficient to obtain the results of Theorem 1. Let F be the curve in E defined in
cylindrical coordinates by the following parametric representation:

r =-sin rt, 0 rt, z t,

for 1-< _<-2. It can be seen that, for a > 1,

FfqaF=f for a 2

while

F fq aF fora=2.

As a final example we note that the convexity of F is not necessary for the results
of Theorem 1. For example, consider the set in E2 comprised of two tangent circles
and their interiors, whose centers lie on a ray from the origin. Theorem 1 is true for
this set even though the set is not convex.

Theorem 1 is the basic "reduction theorem" for convex sets, since it establishes
a single condition on F which is sufficient for an infinite number of different equations
of the form of (1)-(lb) to hold. We shall now demonstrate that for a certain class of
not necessarily convex sets, there are always an infinite number of relations as in (la)
which do not hold. The following definition of the interior of a set will facilitate the
next theorem.

DEFINITION 4. The interior of the subset F of E" is the set in (F) whose elements
fhave the property: given any g in E" there is a number x(g) > 0such thatf+ tg in (F)
if It < x.

THEOREM 2. IfF is a subset ofE" with a nonernpty interior, then there is a positive
integer such that

F,q F,q+p f for all integers q >- 1, 0 <= p <= q, n >-_ .
Proof Choose an element fi from in(F) and let fJ be any other element of F. By

the definition of the interior there is a number x > 0 such that

fi+ p_p_fj=fkF 1
--<x, q>= l, O<=p<=q.

qn n

Hence

and the theorem is proven for r > 1/x.
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2.2. Noneonvex sets. In this section we shall develop two reduction theorems for
nonconvex sets. For any set F, let ch (F) represent the convex hull of F.

THEOREM 3. Let Fbe a nonempty subset ofE m, and let C ch (F). Thenforpositive
integers n and k,

(i) nCf’)(F,+kC)=(
implies that

(ii) Fr fq Fr+jk

for all r= 1, 2,..., n andj= 1, 2, 3,....
Proof. (a) First we prove this theorem for r- n. Suppose that (ii) does not hold.

Then there are elements fi and g of F such that

f n+jk gi"(iii) Ei=I --Ei=I
Since c is the convex hull of F it follows that

1
fe C and

1 ge C.

Thus by the convexity of C,

fi+j-1 g
1

f,
1

c
jn jn

eC=-- -g)+- g.

Employing (iii), this relation becomes

1 jk 1(c=--, g+ g.
nj i=l t

There are k elements d of C such that

1 jk k

gn+i= d .
j i=1 i=1

Hence the previous relation becomes

nc= , di + g.
i=1 i=1

This contradicts (i). Thus if (ii) is false, then (i) is also false and we have proven the
theorem for r- n.

(b) Now suppose, for some positive integer r< n and some fe F and some
g Fr+Sk, that

Then for any h in F,,_,.

h+f=h+g

which implies that (ii) is false for r n. Thus if (ii) holds for r- n, then (ii) holds for
r < n, which completes the proof. Q.E.D.

We can obtain a much stronger result by imposing a certain restriction on the set
F. This requires the following definitions. For any set F, the boundary of F is the set
of all points p for which every neighborhood ofp intersects both F and its complement.
The boundary of F is denoted bd (F).
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DEFINITION 5. Let F be a nonempty compact subset of E". F is self-bordered if
every element of the boundary of the convex hull of F is either in F or may be
expressed as the convex combination of two elements of F.

The theorem of Caratheodory states that for any subset S of E", each element
of ch(S) may be expressed as the convex combination of m 4-1 or fewer elements of
S [8], [9]. We see that the property of self-borderedness bears some relation to
Caratheodory’s theorem. The following lemma, which is a specialization of
Caratheodory’s theorem, illustrates this relationship. It shows, for example, that every
compact subset of E and E2 is self-bordered, though in higher dimensions this need
not be so.

LEMMA 5. If F is a compact subset of E", then every element of the boundary of
ch(F) can be expressed as the convex combination of m or fewer elements of F.

Proofi Let C ch (F). By the theorem of Caratheodory, every element of C can
be expressed as the convex combination of m 4-1 or fewer elements of F. Suppose that
g belongs to bd (C) and that g can be represented by no fewer than m 4- 1 elements
of F. Let one such representation of g be

m+l

g= ai, ai=l, a>0, i=l,...,m+l.
i=1

The positivity of the ai’s results from g not being representable as a convex combination
of fewer than m + 1 elements of F. Let F’ represent the set

F’={f,. f"+}.
If F’ is an aftinely independent set, then ch(F’) is a convex body [8]. Let h be in the
interior of ch(F’), and hence in the interior of C. Let a representation of h as a convex
combination of elements of F’ be

m+l

h= ci, c=l, c>_-0, i=l,...,m+l.
i=1

Now, since the a are all positive, we can choose a positive number x which is small
enough so that

Also,

Thus the point u defined by

a+x(ai-ci) >-0, i= 1, , m+ 1.

m/l, (ai + x(ai c,)) 1.
i=1

m+l

u= ., (ai + x(a, ci)f’
i=l

belongs to ch (F’). Now u is an affine combination of g and h"

u (1 + x)g xh.

Since x > 0, g is strictly between u and h"

1 x
g=u+h.

l+x l+x

Thus, since u belongs to C and h belongs to the interior of C, g must be in the interior
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of C. This contradicts g being in the boundary of C. Thus the supposition that F’ is
an affinely independent set is false.

Now we may proceed more or less as in the proof of the theorem of Caratheodory
[8], [9]. Since F’ is affinely dependent, there exist numbers Yl, Y2,"" ", Ym+l, not all
zero, such that

m+l m+l

(i) y.of’= 0 and Y y, O.
i=1 i=1

It is evident that there is a value of such that

=max --’i=l, ,m+l,y<O

Let us relabel the points of F’, if necessary, so that

(ii) -a’’+l.
Ym+

Then, from (i), we have

m+l m+l m+l

(iii) g- , a.’ , y.’ a, ty, )f’.
i=1 i=1 i=1

It is readily shown that the coefficients ai- tyi are all nonnegative. Also,, (ai- ty,)= 1.

Thus (iii) is a convex combination of g in terms of the elements of F’. However, from
(ii) we see that a,+-tym+-O, so (iii) is in fact a convex combination of only m
elements of F’. This contradicts the supposition that g can be represented by no fewer
than m+ 1 elements of F. Hence this supposition is false and the theorem is
proved. Q.E.D.

By employing the property of self-borderedness we are able to prove a stronger
version of Theorem 3.

THEOREM 4. Let F be a nonempty compact and self-bordered subset ofE, and let
C ch (F). Then for positive integers n and k

(i) nCf’l(Fn+kC)=

implies that
s n+k

(ii) FrFs- for any->-r

Proof. (a) First we prove that, since F is self-bordered,

(iii) bd ((n+ k)C)c F. + kC.

For any element c belonging to the boundary of (n / k)C there is an element d in the
boundary of C such that

c-(n+k)d.

Since F is self-bordered, there are elements of and g in F and there is a number
0-< a <_- 1 such that

c=(n+k)(af+(1-a)g)

=(n+ 1)af+(n+ 1)(1-a)g+(k-1)(af+(1-a)g).



CONVEX SETS AND NONDESTRUCTIVE ASSAY 697

There are nonnegative integers u and v and a number 0=< b =< 1 such that

(n+l)a=u+b and (n+l)(1-a)=v+l-b

which implies that u + v n. Hence

c= uf+vg+bf+(1-b)g+(k-1)(af+(1-a)g)

eF,+kC

which completes the proof of (iii).
(b) Now (i) and (iii) imply that

nC fq bd ((n + k)C) .
Thus, since C is the convex hull of a compact set it is compact and convex. Thus, either

(iv) nCfq(n+k)C=

or

(v) nC c in ((n + k)C).

Let us suppose that inclusion (v) holds. Let 0 represent the coordinate origin: the point
in E" whose coordinates all equal zero. We shall show that inclusion (v) implies that
0 belongs to C. Suppose that 0 does not belong to C. Then since nC is a closed subset
of E ", 0 has a foot in nC [8]. That is, if d(g) represents the distance from point g to
the origin, there is an element f in nC such that

d (f) _-< d (g) for all g nC.

Since

and since f 0, we see that

d(f) f
i=l

This implies that (( n + k)/ n )f is not a foot of 0 in n + k) C, since f belongs to n + k) C
(by inclusion (v)). Let g be a foot of 0 in (n + k)C. Thus

d(g)<d( n+kf)n
which implies that

n.+kg < d(f).

But since (n/(n + k))g belongs to nC, f cannot be a foot of 0 in nC. But since f is by
definition a foot of 0 in nC, the supposition that 0 does not belong to C must be false.

Now let us continue to examine the supposition that inclusion (v) holds. Since 0
belongs to C, it is evident that

F,(F,,+kC)

which implies that

(vi) F, + kC) fq nC
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since

F c nC.

But inequality (vi) contradicts the condition of the theorem, (i). Thus the supposition
that inclusion (v) holds must be false. Hence (iv) is true.

From (iv) and Theorem 1 we obtain

S
rCsC- for any-_->

from which the theorem results by the inclusions

Fr c rC and Fs sC

n+k

but

CtO(F+C)=

Cfq(C+C)(R).

On the other hand, self-borderedness is not necessary for Theorem 4 to hold. For
example, it is not necessary for F to be self-bordered on all of its surfaces, in order
for relation (iii) in part (a) of the proof to be valid.

3. Probabilistic reduction theorems.
3.1. Preliminaries. Our basic deterministic reduction theorem states that if any

spatial distribution of n identical particles is distinguishable from any spatial distribu-
tion of n / k > n identical particles, then r and s particles are always distinguishable
if s/r >-(n + k)/n. This criterion of distinguishability is useful for characterizing the
degree of resolution of the assay system. However, it sometimes occurs that not all
spatial distributions of n and n + k particles are distinguishable. In such a case one
wishes to evaluate the probability of occurrence of indistinguishable spatial distribu-
tions, and to include this probability in characterizing the resolution capability of the
assay system. In this section we shall develop several theorems for this purpose.

Our first task is to characterize the allowed class of spatial distributions of the
assayed particles, and to define the type of function which will describe the probability
of these spatial distributions.

Throughout the previous sections we have defined F as the set of all vector
measurements obtainable, for a given assay system, from any positioning in the

which completes the proof. Q.E.D.
The crux of this proof is that when F is self-bordered the boundary of (n / k)C

is contained in F, + kC (inclusion (iii)). From this it follows that nC and (n/ k)C
are disjoint (iv).

Since any set in E or E2 is self-bordered, Theorem 4 is true for any such set.
However, in more than two dimensions examples of nonself-bordered sets can be
found for which the inclusion in (iii) is not valid. For example, let F be the four
vertices of a regular tetrahedron. Let the faces of this tetrahedron not contain the
origin, and let it have one face perpendicular at its center to a ray from the origin. Let
a denote the vertex furthest from the origin, and let b, c and d be the other three
vertices. Let C- ch (F). The set F+ C is the union of four tetrahedra, each pair of
which touch at just one point. For a properly chosen distance of the point a from the
origin, a will just lie in the triangle defined by the points b / c, b + d, c + d. This triangle
is contained in bd (C + C) but not in F + C. Thus
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container of a single assayed particle. We shall continue with this definition, and
sometimes we shall refer to this set as F1. Now let W1 represent the g-ring of all Borel
subsets of F1. The union of the elements of W1 equals F1, so (F1, W1) is a measurable
space. Furthermore, let us suppose that we have a nonnegative measurable set function
p defined on the elements of W such that pl(F1) 1. Thus (F1, W, p) is a probability
space. We may envision the following procedure for choosing Pl. Each element of F1
represents a specific elementary event (or set of events): the measurement obtained
from a single particle located at a certain position (or any of a set of equivalent
positions) in the assayed container. Elements of W represent sets of events. We may
choose Pl so as to give physically meaningful statistical weight to those sets of events
of practical interest. For further discussion of the calculation of p, see [2].

As in Definition 1, Fn represents the set of all vector measurements obtainable
from any spatial distribution in the container of n identical particles. Let Wn represent
the tr-ring of all Borel subsets of F,. Thus (F,, W,) is a measurable space. Our aim at
present is to define a probability measure p, on the elements of Wn in terms of the
probability measure Pl defined on W. To do this we shall assume that the assayed
particles are randomly and independently located in the container. This assumption
is physically reasonable for many applications, and is analytically quite convenient.

The following considerations motivate the choice of p, which we shall present in
Lemma 7. Let Q(x) be a probability distribution with density q(x). Let X1,’’ ", X,
be independent random variables each with density q and distribution Q. The probabil-
ity distribution for X /. / X, is given by the convolution [7]:

Qn(x) Q_l(x- y)q(y) dy.

From this result we see that p,mthe probability measure on the set of n-particle
measurements--should be related to Pl by a convolution, if the particles are positioned
randomly and independently.

Before we are able to define the measure-theoretic analog ofthe above convolution,
we require a preliminary definition and lemma. We define the section of a set analogous
to the concept employed for Cartesian products [6].

DEFINITION 6. Let E be a subset of F+I and let f be an element of F1. Then the
section of E with respect to f is the set of elements g of F, for which g +f belongs
to E. That is,

Ef {g F,,: g+f E}.

We shall adopt the convention that ifE is the null set, then so is Ef.
LEMMA 6. Let Gi, i= 1, 2, 3,’.. be a sequence of disjoint subsets of F,+l. For any

fin F1
(i) G1)f (q (Gj)f ( for all j,

(ii) U (G,)y G,
i=1 i=1 f"

Proof. Part (i) is clearly true if either Gi or Gj is null. If neither is null, suppose
there is a point z such that

where ij. Thus
f+ze Gi and f+ze Gj

which contradicts the disjointness of G and G.
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Thus

Now to prove part (ii), suppose

Hence there is a set Gk such that

which implies that

Consequently

f+ze U O.
i=1

f+ze G,

(a) G, c U (G,).
i=1 f i=1

Now suppose

Hence there is a set Gk for which

Thus

which implies that

Thus

y+feGk.

y+f U G
i=1

(b) u (G,)s G,
i=l i=1 f"

Combining inclusions (a) and (b) completes the proof of part (ii). Q.E.D.
Now we are able to define p,, and to prove that it is indeed a probability measure.
LEMMA 7. Let E belong to W,, and let Pl be a probability measure on (F1, W).

For any n >-_ 2, the following recursive relation defines a probability measure on (F,, W,).

p,,(E) f pn_l(Ef) dp,(f).
F

Proof. We begin by proving the theorem for n 2. It is evident that P2 is a

nonnegative extended real valued set function, since Pl has these properties. First we
must show that P2 is countably additive. That is, given a disjoint sequence of sets
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1, 2, 3, in W2 we must show that

p2 Gi
i=l

From the definition of P2 we obtain

i=l i=1 f

Employing Lemma 6 and the countable additivity of p we conclude that

Pl ai dpl (f) 1 ai )f dpl (f)
i=1 f i=1

p(G,)dp(f).

Thus

P2 Gi p2(Gi).
i=i

To prove that P2 is a probability measure on (F2, W2) we must show that p(F:)= 1.
For any f belonging to F, we note that (F2): F1. Thus

p2(F2)-- I pl((F2)f) dpl(f)= f p(F) dp(f)= l
F F

which completes the proof for n 2. The proof by induction for higher values of n is
analogous and will not be elaborated. Q.E.D.

We now prove a useful recursive relation between Pn and pn_. Before doing so
we need the following standard definitions.

DEFINITION 7. Let G and H be any two sets in E ’. The difference G-H is the set

of all elements of G which are not elements of H. Likewise, the sum G+ H is the set of
all pairwise sums of elements of G with elements of H.

LEMMA 8. Let A belong to W and let B belong to W._. Then

p,,(A+ B)=p(A)p,,_I(B)+ fAp,_l((A+ B)y-B) dpl(f)

+ f p.-I((A + B)f) dp,(f).
F-A

Proof. From the definition of p. in Lemma 7 we obtain

p.(A+ B) f p._((A+ B)y) dp(f)
F

IA p._((A / B)f) dpl(f)

+ f pn-I((A + B)f) dp(f).
F-A
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Since B and (A/ B):-B are disjoint and Pn-1 is an additive set function we obtain

IAPn_l((A+B)f dpl(f)- fAPn_l(B dpl(f)+ fAPn_l((A+B)f-B dp(f).

Combining this with the previous equation yields the desired result. Q.E.D.

3.2. Convex sets. The proof of the deterministic Theorem 1 rests on Lemmas 1
and 4. In order to generalize Theorem 1 we should seek measure-theoretic analogues
of these results. While Lemma 4 has a simple and useful analogue, we shall see that
the analogue of Lemma 1 is not so simple.

We shall have occasion to refer to the following nonnegative set function defined
on elements G of W1. Let G, represent the n-fold sum of G with itself.

wn(G)= f Pn-l((G.):-Gn-1)dpl(f)+ f Pn-((Gn):) dp(f).
G dF G

From Lemma 8 we see that p(G) can be related to pl(G) as

pn( Gn) pl(G)pn-l(an-1) / Wn( G).

From this relation we see that, for arbitrary or even for convex G, p,(G,) may be less
than or greater than p(G). In fact if G is not empty, the measure of G, may be
nonzero while the measure of G is zero. This is illustrated in Fig. 1 for Ga, where we
see that the points x and y contribute to the measure of G_ even though they belong
to F- G. We see that a further restriction on G is needed in order to obtain an analogue
of Lemma 1.

IF

FIG. 1. Schematic representation ofa 2-dimensional response set, F, showing that p2(2G) depends on the
measure of elements ofF- G.

A useful restriction is that both G and its complement relative to F be convex.
Before developing the resulting analogue of Lemma 1, let us identify those situations
for which such a restriction on G will be useful. Figure 2 shows the intersection of a

oF

F

f
FIG. 2. Schematic representation of 2-dimensional response sets, F and aF, whose intersection may be

approximated by a convex set whose complement is also convex.



CONVEX SETS AND NONDESTRUCTIVE ASSAY 703

convex set F with some multiple of F. Let this intersection be denoted H, and let G
be the subset of F containing H and defined by a chord in F tangent to H. Both G
and its complement are convex, since F is convex. The measure of G and its multiples
will provide upper limits of the measure of H and its multiples. A reduction theorem
for G and its multiples will provide an approximation to the measure of H and its
multiples. We now prove an analogue of Lemma 1.

LEMMA 9. Let F be a subset ofE m, let G be an element of W1, let G’= F- G and
let G, G’ and F be convex. Then

p,(nG)<=l-(1-p(G)) ".

Proof. From Lemma 8 and the definition of w, we obtain

w,(G)+ w,(G’)=p,(nG)+p,,(nG’)-pl(G)p,_((n-1)G)

-p,(G’)p,_,((n-1)G’).

Employing the convexity of G, G’ and F and noting that

Pk(kG) +Pk(kG’) 1 for all k _-> 1,

the previous equation becomes

w,(G)+ w,(G’)=p(G)+p,_((n- 1)G)

2p1( G)p._(( n 1)G).

Since w is a nonnegative set function, we conclude that w,(G) does not exceed the
right-hand side of the previous equation. That is,

w,(G) <_- p(G) +p,_((n 1)G) 2pl(G)p,_((n 1)G).

For n 2 we may combine this inequality with Lemma 8 to yield

p2(2G) Pl(G)2 + w2(G) -<_ 2p(G)-Pl(G)2

which proves the lemma for n 2. Now Lemma 8 and the above inequality on w, can
be used to complete the proof inductively. Q.E.D.

This result implies that, when G and F are convex, the measure of nG is zero if
the measure of G vanishes. This is different from the situation where only G is convex,
and arises from the fact that, since both G and G’ are convex, there cannot be elements

1.0

0.5

.001
0
0 10 20 30 40

r
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of G’ which sum together to yield an element of nG. That is, the situation depicted
in Fig. cannot occur.

We now present an analogue of Lemma 4, after which we will be ready to generalize
Theorem 1.

LEMMA 10. Let F be a subset ofE and let G be any convex element of Wn. Then
for l <=a<b

(i) GN bGc GN aG,
(ii) p,,(GnbG)Mp,,(GnaG).
Proof. Part (i) is trivial if the left-hand intersection is null, so suppose that there

is a point x belonging to G n bG. Thus there are elements f and g in G such that
x =f= bg. Hence

b-f a-lbg=a(b-a)f+b(a-1) )X=b- +b-1 a(b-1 a(b- 1)
g

The last expression is a times an element of G since G is convex. Hence x belongs
to aG, which concludes the proof of part (i). Part (ii) results from part (i) and the fact
that a measure on a ring is a monotone set function [6]. Q.E.D.

We are now ready to present a partial generalization of Theorem 1.
THEOREM 5. Let F be a convex subset of E m, let G belong to W1, let G’= F-G,

let G and G’ be convex and let a >-1. If
FOaFc G

then for any r and any s >-ar

p(rFn sF)-<_ 1 -(1 -p,(G)) r.
Proof From the conditions of the theorem we obtain

rG r(F 0 aF) rF 0 arF.

From Lemma 10 we find that

r(F(’] aF) r(FOsrF)=rFsF.
By the monotonicity of the measure and by Lemma 9 we conclude

pr(rF sF) <-pr(rG) <= 1-(1-pl( G))
which completes the proof. Q.E.D.

This theorem is less than a complete generalization of Theorem 1 for two reasons.
Firstly, it relates intersections with rF only to intersections with F rather than to nF.
Secondly, it only provides an upper bound for the measure of these intersections. It
does, however, provide useful information on the degree of distinguishability of r from
s particles, on the basis of analysis of the set of one-particle measurements. If pl(G)
is much less than 1, or if r is not too much greater than 1, then Theorem 5 provides
an upper limit on the measure of p,(rF fq sF) that is still much less than unity. Figure
3 illustrates this. This means that, for properly chosen G, the measure Pl(G) yields an
upper limit of the probability that r identical particles will be spatially distributed in
the assayed container in such a way as to be indistiguishable from s identical particles.

3.3. Nonconvex sets. We now present one final probabilistic reduction theorem
which is true for arbitrary sets F.

THEOREM 6. Let F be a subset of Em. Then for any positive integer k

p,(F, 0 F,,+k) <: pn+l(Fn+l Fn+k+l).
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Proof. We begin by proving the relation

(i) F1 +(Fn Fn+k) C F,+, f’) F,+k+,.

This inclusion is trivial if F1 + (F, f’) F,+k) is null, so suppose that it is not empty, and
contains an element g. Then g =f+ h, wheref belongs to F1 and h belongs to
Since h F,, we obtain g F,+I. Likewise, since h F,+k, we obtain g F,+k+l. Thus

which completes the proof of the inclusion. Now, from Lemma 8,

P.+(G +(F. f’l F.+k))=p.(F. f’) F.+k)

+ f p,((F, +(F,, fq F,,+k))y-(F,, f’) F,+k)) dpl(f).
,IF

From inclusion (i) and the monotonicity of measure we have

p,,+,(F + (F,, f) F.+k)) >-- p,,+(F,,+, 0 F,,+k+).

Combining the last two relations establishes the desired result. Q.E.D.
The practical utility of this theorem results from the following interpretation. The

theorem asserts that the probability of n particles being spatially distributed in the
assayed container in such a way as to be indistinguishable from n + k particles, never
exceeds the probability of n + 1 particles being indistinguishable from n + k + 1 par-
ticles, whether or not F is convex.

4. Summary and discussion. In the nondestructive assay of sparsely dispersed
identical particles, one strives to resolve the number of particles contained in the
sample. A perfect assay system can distinguish any spatial configuration of k particles
from any configuration of n particles, where k # n. We can refer to the resolving power
of an assay system, to qualitatively express the degree to which the system approaches
this ideal. The set F comprises all possible values which the response function f may
obtain. If F has a nonempty interior, then Theorem 2 states that the system can never
have complete resolving power. However, when/7 is convex, Theorem provides an
efficient analytical criterion for evaluating the degree of resolving power of the assay
system. One important attribute of the formulation of Theorem 1 is that a finite number
of relations on elements of F are sufficient to determine an infinite number of relations
specified in (1). Furthermore, by applying Theorem 1 for n 1, 2, , r/max, one obtains
a criterion for assuring that any number of particles not exceeding nmax will be
unambiguously resolvable. This is important in the analysis of sparse systems since in
practice one is often able to ascertain an a priori upper limit to the number of particles
which may be encountered in any measured container. In such a case, the capability
to resolve a greater number of particles is unnecessary.

It may happen that complete resolution of the number of particles is not possible
for any value of n. One then resorts to the probability of not distinguishing k from n
particles. It often occurs in practice that the assayed particles are located randomly in
the container. In such a situation the probability measure for the n-particle distributions
can be related by convolution to the probability measure for one-particle distributions.
This relation is expressed in Lemma 7. Theorem 5 then establishes an upper limit for
the probability that r particles will be spatially distributed so as to be indistinguishable
from s particles. While Theorem 5 requires the convexity of F, Theorem 6 does not.
This last theorem establishes that the probability of not distinguishing n from n + k
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particles does not exceed the probability of not distinguishing n + from n + k+ 1
particles.

Acknowledgment. The author is indebted to the helpful comments of Prof. Zvi
Artstein.

REFERENCES

[1] Y. BEN-HAIM AND E. ELIAS, Probabilistic interpretation of nondestructive assay of nuclear materials,
Ann. Nucl. Energy, 9 (1982), pp. 1-9.

[2] Y. BEN-HAIM, Probabilistic nondestructive assay of radioactive waste, Ann. Nucl. Energy, 10 (1983), pp.
57-64.

[3] A. KNOLL, A. NOTEA AND Y. SEGAL, Probabilistic interpretation of nuclear waste assay by passive
gamma technique, Nucl. Tech., 56 (1982), pp. 351-360.

[4] T. GOZANI, Active nondestructive assay ofnuclear materials, U.S. National Technical Information Service,
Springfield, VA, NUREG/CR-0602, 1981.

[5] R. SHER AND S. UNTERMEYER, The detection offissionable materials by nondestructive means, Amer.
Nucl. Soc., LaGrange Park, IL, 1980.

[6] P. R. HALMOS, Measure Theory, Springer-Verlag, New York, 1974.
[7] W. FELLER, An Introduction to Probability Theory and its Applications, Vol. 2, John Wiley, New York, 1971.
[8] P. J. KELLY AND M. L. WEISS, Geometry and Convexity, John Wiley, New York, 1979.
[9] S. R. LAY, Convex Sets and Their Applications, John Wiley, New York, 1982.



SIAM J. ALG. DISC. METH.
Vol. 6, No. 4, October 1985

(C) 1985 Society for Industrial and Applied Mathematics

016

AN O(]V]2) ALGORITHM FOR THE PLANAR 3-CUT PROBLEM*

DORIT S. HOCHBAUMt AND DAVID B. SHMOYS

Abstract. A 3-cut for a connected graph G is a set of edges which, when deleted, separate G into 3
components. In this paper we present an O(I VIe) algorithm to find the minimum 3-cut for a planar graph G.

AMS(MOS) sub|ect classifications. F.2.2., G.2.1., G2.2

Given a connected (simple) graph G V, E), a k-cut is a subset of edges E1 such
that the graph G V, E El) contains exactly k components. The problem of finding
the smallest 3-cut is interesting, not only as an extension of the ordinary minimum
(2-)cut problem, but also because of applications in cutting plane methods for the
traveling salesperson problem. In this paper we present a polynomial-time algorithm
to find a minimum size 3-cut for planar graphs. It is easy to see that the 3-cut problem
is polynomial for planar graphs; since the minimum degree of a planar graph is at

most five, there is a trivial cut of size 10. To find the minimum cut we can simply
check all subsets of edges of size less than 10. To simplify notation, for a graph
G-(v, E), IGI will be used to denote IEI; note that for a planar graph IGI= o(I vl).
Thus, the simple enumerative algorithm requires O(IGI’) time. In this paper we present
a simple efficient algorithm that requires only O(IGIz) time.

One simple approach for finding an optimal 3-cut that might be considered is the
greedy approach; that is, choose a triple of vertices (v, v2, v3). First find a minimum
(2-)cut between v and v2. This cut leaves v3 in a component with either v or v2;

suppose, without loss of generality, that v lies in the same component as v3. Next
find the minimum cut in this component, between v and v3. This yields a 3-cut, but
is it an optimal one? A further extension of this would be to try this greedy heuristic
for all ordered triples of vertices. Unfortunately, even in the planar case, this procedure
does not yield this optimum solution. Consider the graph given in Fig. 1. The minimum
3-cut is the set of six edges separating the three square-like sets of four vertices
each. Attempting to find such a cut by enumerating all possible triples of vertices, we
check the triple (v, v2, v3) given in Fig. 1. Suppose that we find a minimum 2-cut

FIG.
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between vl and/)2; one such cut consists of the four edges incident to v. Now find a
minimum cut between v2 and v3; this cut consists of the three remaining edges incident
to v2. In total, we have found a 3-cut of size seven. By a careful examination of all
cases, it is straightforward to verify that for any choice of 3 vertices, there is a cut that
can be the result of this approach that is not optimal.

We will solve the minimum 3-cut problem in G by solving the corresponding
problem in G*, the dual graph of G. Note that the dual graph G* might not be a
simple graph; both self-loops and multiple edges can occur.

Recall that for a planar graph G, there is a 1-1 correspondence between 2-cuts in
G and cycles in G*; we want to generalize this idea. A cycle is a minimal graph with
2 faces. For each face of a subgraph of G*, there are some vertices of G that are
"contained" in that face that are separated from vertices "contained" in the other
faces of the subgraph. This leads us to make the following observation.

Observation. G has a 3-cut of size k if and only if G* contains a subgraph H
with exactly three faces such that H has k edges.

Since G* can be found in O([GI) time, we will focus attention on the problem
of finding a minimum size subgraph with 3 faces. Thus, for the remainder of the paper,
we will assume that we are given both G*, and an embedding of it. We begin by
examining the structure of possible optimal solutions. First of all, the optimal subgraph
H may or may not be connected. Suppose that H is disconnected; since it contains
exactly three faces, it must be precisely two disjoint cycles (see Fig. 2(a)). If H is
connected then for a given embedding either the boundary of the exterior face includes
all of the edges of H or it does not. By considering these cases separately, it is not
hard to see that H must be one of the configurations depicted in Fig. 2(b) and 2(c).

(a) (b)

FIG. 2

(c)

We will show that a variant of the greedy approach works in either of the cases
2(a) and 2(b). Let G. e denote the graph formed from G by contracting the edge e,
i.e., identifying the endpoints of e and deleting e. In terms of the dual graph, the
variant of the greedy heuristic that we shall use is the following:

procedure greedy G*)
begin

find a shortest cycle C in G*
for all edges e in the cycle C do G* G*. e
find a shortest cycle C2 in G*
output C1 LJ C2

end

In this variant we avoid trying all triples of vertices, which of course improves
the efficiency of the algorithm. Although this algorithm does not always give an optimal
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solution, there are a number of cases in which it does work, including those cases
when the optimal solution is of either of the configurations given in Fig. 2(a, b). In
fact, our procedure to find an optimal 3-cut works by first performing greedy (G*),
and then performing a special procedure designed to handle the case depicted in Fig.
2(c). The following theorem justifies this approach.

THEOREM 1. Let C3 be any shortest cycle of the graph G*. If there exists an optimal
3-face subgraph that is the union of 2 cycles with at most one vertex in common, then
there exists some other cycle C such that C3 and C share at most one vertex and C3 (-J C
is an optimal 3-face subgraph.

Proof. Suppose not. Let C LJ C2 be an optimal 3-face subgraph, where C1 and C2
have at most one common vertex. Note that by our assumptions, C3 must have at least
2 vertices in common with Ci for either 1 or 2. Recall that GI denotes the number
of edges in G. Notice that a cycle C has cI vertices.

If Ci and C3 are edge disjoint but have at least two vertices in common, then, by
using Euler’s formula IFl= +lEl-Ivl, we see that the number of faces of CU C is
at least

2 + (Ic, + I-(Ic l- 2)) 4.

Therefore, C LJ C3 contains a proper subgraph with 3 faces and fewer edges than
C LJ C2, which is a contradiction.

If C and C3 have an edge in common, then

Ic, c l<lc, l/lc l<-Ic, l/lc=l.
Furthermore, once again using Euler’s formula, it is not hard to see that C LJ C3 must
have at least 3 faces. Therefore, Ci U C3 is a 3-face subgraph with fewer edges than
C (.J C2, which is a contradiction.

It is important to note that if the optimal 3-face subgraph consists of 2 cycles
sharing at most one common vertex, Theorem 1 says that any shortest cycle is part of
an optimal solution. Thus we may greedily contract it, and search for its partner.

Note that it is very simple to use breadth-first search (BFS) to find the shortest
cycle of a graph that contains a specified vertex u. Recall that BFS partitions the vertex
set of a graph into levels, and the edge set into cross edges and level edges. (For a
comprehensive treatment of BFS, see [AHU].) Furthermore, for each vertex, each edge
incident to it either goes to a vertex of the next level closer to the root, the same level
or the next level further from the root; therefore, it is possible to partition the degree
of any vertex v into the up-degree, up (v), the cross-degree, cross (v), and the down-
degree, down (v), respectively. Note that it is possible to compute all three parameters
as part of the BFS without increasing the order of the running time of the search
algorithm. We detect the smallest cycle containing u by conducting a BFS from u until
we find a vertex v that has up (v)+ cross (v)>-2. Since BFS requires only O(IGI) time,
the procedure outlined above requires only O(IG[) time.

We next consider the case where the optimal solution is of the form depicted in
Fig. 2(c). This graph may be viewed as a pair of points connected by three vertex-disjoint
paths. The following result will be very useful in gaining a better perspective of the
cases in which greedy (G*) is successful.

THEOREM 2. Suppose that there exists an optimal 3-face subgraph G* which is the
union of three paths P1, P2 and P3, between vertices u and v. If one of the paths P is at
least as long as the shortest cycle C in G*, then greedy G*) delivers an optimal solution.

Proof. Consider the solution produced by greedy (G*), C1 U C2. Suppose without
loss of generality that P is at least as long as C, which is a shortest cycle of G*.
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There are two possible cases: either C2 P2 U P3, or C2 P2 U P3. In the first case the
result is trivial since then it is clear that

Ic, u c l- It, l+ Icl IPll + (IP u Pl)- IP, u P:U Pl.
If C2 # P2 U P3 then after contracting C1 the subgraph corresponding to P2 U P3 must
still be a cycle (since not all of the edges of P2 U P3 have been contracted). Since C2
is no longer than this cycle the total length of C1 U C2 is no more than that of
PIU P2U P. v!

We can use Theorem 2 to gain considerable insight into the structure ofthe optimal
solution when greedy (G*) does not deliver an optimal solution. Such optimal solutions,
which must be of the type given in Fig. 2(c), can be characterized by the length of the
three paths P1, P2 and P. More specifically, since greedy (G*) always delivers a
solution of size no more than 10, we know that the three path lengths sum to at most
9, where the longest is strictly shorter than the length of the shortest cycle. From these
two conditions we know that the shortest path is of length at most three. This means
that if we were conducting BFS from u and the optimal B-face subgraph consisted of
three disjoints paths from u to v, v must be, at most, in level three. (We will say from
here on, that v is "labeled" 3.)

We will consider these cases, based on the length of the shortest cycle C1 in G*.
We shall use the notation (x, y, z) to denote the configuration where P, P2, P have
lengths x, y, z where x <= y _<-z.

Case 1. ICI 1. This case is vacuous since it is impossible for the longest path
to have length 0.

Case 2. IC1=2. In this case, the only possible configuration is (1, 1, 1), or
equivalently that there are three edges between some pair of vertices u and/3. Notice
that if we were conducting BFS from u we would find that up (v)>= 3.

Case 3. ICll 3. Here there are two possible configurations, (1, 2, 2) and (2, 2, 2).
These are depicted in Fig. 3.

(1,2,2)

0 u

(2,2,2)

FIG. 3

(Notice that (1, 1, 1) and (1, 1, 2) cannot occur because then the shortest cycle
would have at most 2 edges.) The labels assigned to the nodes in these figures, and
the ones that follow, are the BFS labels of the nodes on the assumption that the given
configuration is an optimal 3-face subgraph. For the first situation, in performing BFS
from u, we find a vertex labeled 1 with cross (v)>_-2. In the second we find a vertex
labeled 2 with up (v)->3. Notice that in both of these cases we have found vertices
with cross v + up v >= 3.

Case 4. IC1[ =4. In this case, there are the configurations (2, 2, 2), (2, 2, 3), (1, 3, 3),
(2, 3, 3) (see Fig. 4).

(Note that (3, 3, 3) need not be considered here, since greedy (G*) is sure to find
C with at most 5 edges.) As above, (2, 2, 2)can be detected by finding a vertex v
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(2,2,3) (1,3,3) (2,3,3)

Ou Ou Ou

v v v 2 v

FIG. 4

labeled with a 2 with up (v) _>- 3. For the case (2, 2, 3), we find a vertex v with up (v) 2
and cross (v)-> 1. For (1, 3, 3), we find a vertex labeled 1 with two neighbors vl and
v2 with up (vi)= 2. For (2, 3, 3), we find a vertex v with cross (v)= 2 (and up (v)>= 1).

Case 5. ICll 5. For this final case, only the configurations (2, 3, 3), (3, 3, 3),
(2, 3, 4) and (1, 4, 4) must be considered. The first configuration is handled exactly as
in Case 4, and the remaining ones are depicted in Fig. 5.

(3,3,3) (2,3,4) (1,4,4)
0 u u

1

2

2 2

3 v v2

FIG. 5

U

2 2

v1 v2v

For (3, 3, 3) we find a vertex labeled 3 with up (v)= 3. For (2, 3, 4), a vertex v
labeled 2 with cross (v)= 1 has a neighbor v2 with up (v2) -> 2. Finally, for (1, 4, 4) a
vertex v labeled with a 1 has two neighbors, vl and v2 with cross (vi)>= 1.

Summarizing what we have done, there are only 2 different types of configurations
that we must search for in performing a BFS from u:

1. A vertex v with cross (v) + up (v) >= 3.
2. A vertex with two neighbors vl and v_ with cross (v) + up (v) >= 2.
Therefore, if greedy (G*) does not find an optimal solution, then by performing

BFS from each vertex and searching for one of these two configurations, we are
guaranteed to find an optimal 3-face subgraph. It is quite straightforward to modify
BFS to detect these configurations. Therefore, we see that it can be implemented in
o(Ivl") time, since BFS from each node requires O(IVI) time for planar graphs.
Furthermore, by performing greedy (G*) and this procedure as well, and then choosing
the best solution found, we find an optimal 3-face subgraph in O(I V2I) time.

It is significant to note that the planarity of G is used in two ways. Most importantly,
it insures the existence of the dual graph; it is used secondarily in guaranteeing an
"easy" cut of size 10, and thus limiting the search considerably.

Another interesting point is that the same argument as was used above, can be
used to show that a greedy approach never delivers a k-cut of size more than 5 k. Thus,
for fixed k the minimum k-cut problem is easily seen to be polynomial using an
enumerative approach. Can a simpler approach, analogous to the one given here be
used instead? Such an approach is complicated by the fact that the types of possible
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configurations become more complicated (and much more numerous) than what was
given in Fig. 2 for the 3-cut problem.

The complexity of the 3-cut problem for arbitrary graphs remains a challenging
open problem. Recently, Hochbaum and Tsai [HT] have shown that a greedy heuristic
for the 3-cut problem gives a solution, even for the weighted case, that is at most 4/3
the optimal solution, and that this bound is tight. Independently, Johnson,
Papadimitriou, Seymour and Yannakakis [JPSY] proved this result in more general
form, that for the weighted k-cut problem a greedy approach yields a solution no more
than (2-2/k) times the optimal solution. They also consider a more general problem:
the problem of finding a minimum k-cut with the additional constraint that they specify
k vertices that must be in different components. They showed that for planar weighted
graphs the minimum 3-cut problem with specified vertices is polynomial. Their
algorithm, although polynomial, is not efficient, since the polynomial is a polynomial
in k! and the degree of the polynomial depends linearly on k. Furthermore, they
showed that the 3-cut problem with specified vertices for arbitrary graphs is NP-
complete. This does not appear to imply anything about the complexity of the 3-cut
problem for arbitrary graphs. If the general 3-cut problem were to be polynomial, it
would be a remarkable extension of one of the oldest results in combinatorial
optimization.

Acknowledgment. We are grateful to the anonymous referee whose suggestions
greatly enhanced the clarity and simplicity of this paper.
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EXAMPLES OF JUMP-CRITICAL ORDERED SETS*

M. H. EL-ZAHAR" AND I. RIVALf

Abstract. For an ordered set P and for a linear extension L of P let s(P, L) stand for the number of
ordered pairs (x, y) of elements of P such that x is an immediate successor of y in L but x is not even
above y in P. Put s(P)=min {s(P, L)IL linear extension of P}, the jump number of P. Call an ordered set
Pjump-critical if s(P-{x})< s(P) for any x P. There are precisely seventeen jump-critical ordered sets with

jump number at most three.

Key words, ordered set, linear extension, jump number, jump-critical

AMS(MOS) subject classifications, primary 06A10, 06A05; secondary 90B35

The purpose of this note is to stimulate activity on the jump number of an ordered
set by recording several important examples. Every linear extension L of a finite ordered
set P can be expressed as the linear sum C10)CEO)"" .03 Cm of chains Ci of P so
labelled that suppCi infp Ci+1. (The linear sum AO)B of ordered sets A and B is the
set A LI B ordered so that a -<_ b provided that a A and b B, or else, a _-< b in A or,
a<=b in B.)

Let C {a ail < ai2 <" < aik, b}. Then bi ai+l and such a pair (b, a+l) is
called a jump (or setup) of the linear extension L, which is said to have rn- 1 jumps.
We write s(P, L)= m-1. Note that ai/l covers b in L, although ai/l bi in P itself.
We put s(P)= min {s(P, L)IL linear extension of P}, the jump number of P.

In the language of scheduling this may be rendered as follows. Suppose we are
to schedule a set of tasks for processing, one at a time, by a single machine. Precedence
constraints, due perhaps to technological dictates, prohibit the start of certain tasks
until certain others are already completed. A task which is executed immediately after
one which is not constrained to precede it requires a "setup" (jump)--entailing some
additional cost. The simplest variation is this: schedule the tasks to minimize the
number of jumps.

Observe that s(P) >= s(P-{x}) >= s(P)- 1 for any x P. Call an ordered set K
jump-critical if s(K-{x})< s(K) for each x K. It is easy to see that every ordered
set P contains a jump-critical subset K with s(P) s(K). It may be that jump-critical
ordered sets tell us much about the problem of determining s(P)--even about construct-
ing "optimal" linear extensions for P, that is, ones for which s(P, L)= s(P). The
ordered set illustrated in Fig. 1 is jump-critical. Obviously, s(P-{a51})< s(P). But to
verify that s(P-{a12})<4, for instance, requires a different chain decomposition:
P-{a_} C2) C40){a31 < a51}){a11 < a32 < a33}. It is a good exercise to check all ten
cases.

An n-element antichain is jump-critical. In fact, it is fairly obvious that the disjoint
sum of jump-critical ordered sets is jump-critical. In addition, s(PI+P2)
s(P1) + s(P2)+ 1. It is equally obvious that the linear sum of jump-critical ordered sets

is jump-critical. Also, s(PIP2)= s(P1)+ s(P_). These are special cases of a more

general construction. Let P be an ordered set and for each x P, let Px be an ordered
set. The lexicographic sum xP Px is the set LIp P ordered so that u -<_ v if, for some
x P, u Px, v Px, and u -<_ v in Px, or else, u Px, v Py, for some x < y in P. It is

* Received by the editors July 28, 1983, and in revised form March 26, 1984.
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P
5

s(P)= s(P,L)=4 P U Ci
i=1

FIG

as= b

b4

04

b5

a3

L=eCi
i=1

implicit in M. Habib [6] that the lexicographic sum ,xP Px of critical ordered sets Px
is itself critical, as long as each ]Pxl > 2.

M. H. E1-Zahar and J. H. Schmerl [4] have shown that a jump-critical ordered
set P with jump number m has at most (m/ 1)! elements. Obviously, the only
jump-critical ordered set P with s(P)- 0 is the singleton. If s(P)= 1 then, of course,
P must contain a noncomparable pair of elements. So, if P is jump-critical then P
must be a two-element antichain. Suppose P is jump-critical and s(P)- 2. P may be
a three-element antichain. The only other possibility is that P is the "four-cycle." Thus,
either P= 1+ 1+ 1 or P(I+ 1)0)(1/ 1).

0 0 0 0 0

The only jump-critical
ordered set with jump
number one, the two-
element antichain

The two jump-critical ordered
sets with jump number two,
the three element antichain ond
the four-cycle

FIG. 2

THEOREM 1. There are preciselyfourteenjump-critical ordered sets withjump number
three. These are, up to duality, the ordered sets illustrated in Fig. 3.

There is of course an obvious intrinsic interest in such a list. However, the particular
ordered sets are at times quite interesting, too. For instance, M. Pouzet [8] had
conjectured that a jump-critical ordered set P with s(P)-m would satisfy ]P]-<2m.
It is true for any "cycle." M. M. Syslo [9] has shown that this bound holds too for
any jump-critical, N-free ordered set. M. Habib [6] disproved this conjecture by
exhibiting the seven-element ordered set G. A plausible variation on this conjecture
was this: if P is jump-critical and s(P)= m then IP] <-_ 2(m + 1). But that too is false as
Habib has already shown. Indeed, let P P10)P20)P3, each P, G. Then s(P)=9 and
yet P] 21. The nine-element ordered set K is a simpler counterexample. Even this
conjecture is false: ifP is jump-critical and s(P)= m then ]P]_-<3m. A counterexample
can be constructed by using three copies of K and "gluing" together successively the
two maximal elements with the two minimal elements (see Fig. 4). This ordered set is
jump-critical with jump number 7 and yet it has 23 elements. It remains an open
question, however, whether the (m + 1)!bound of [4] can be (substantially) improved.

In fact, this "gluing" construction can be carried out more generally to manufacture
further jump-critical ordered sets. The construction is much like one common in lattice
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0 0 0 0

FIG. 3

theory (cf. R. P. Dilworth and M. Hall, Jr. [3], C. Herrmann [7]). Let P1, P2 be ordered
sets and let $1 be an up set of P1 (that is, if x S and x <= y then y $1) and let $2
be a down set of P2 (that is, if x $2 and y_<-x then y $2). Furthermore, suppose
that there is an isomorphismf of $1 onto $2. Construct an ordered set P on P U (P2 $2)
by x <= y in P if (i) x P, y P1, and x <- y in P; or (ii) x P1, Y P2, x =< U for some
uS, andf(u)<-y in P2; or (iii) xP2, YP2, and x<-y in P2. We say, in any case,
that P is obtained from P1 and P2 by gluing S c_ p with $2

_
P. This construction is

particularly interesting to us in the case that S
_
max P, the maximal elements of P1,

and S
_
min P_, the minimal elements of P2. The ordered set illustrated in Fig. 4 is

obtained by gluing max K with min K, "two times in succession."

FIG. 4
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THEOREM 2. Let P1 and P2 be finite jump-critical ordered sets. Any ordered set
obtained from PI and P2 by gluing a maximal element ofP with a minimal element of
P2 is jump-critical and, in this case, the jump number is s(P1)+s(P2). If Imax Pil-
min P21 2 then the ordered set obtainedfrom P1 and P2 by gluing max P1 with min P2
is jump-critical and, in this case, the jump number is s(P)+ s(P2)-1.

This gluing construction can be used to construct an example of a jump-critical
ordered set in which an "optimal" linear extension uses a "long" chain (see Fig. 5).

FIG. 5

There is an obvious question that arises from the second part of Theorem 2" does
the gluing the construction produce a jump-critical ordered set if there are more than
two maximal elements? In Fig. 6 we have illustrated the gluing of two copies of D to
produce an ordered set P with jump number four. However, P is not jump-critical" it
contains the jump-critical ordered set max P min P -(1 + 1 + 1)03 (1 + 1 + 1) which
also has jump number four.

FIG. 6

There is also a natural extension of the gluing construction using the up set of
one ordered set with the up set of another.

This is illustrated in Fig. 7. The obvious analogue of Theorem 2 still holds in this
case.

FIG. 7

Before we proceed to the proof of Theorem 1 we present some terminology that
is of use to us.

Let P be a finite ordered set. For an element a in P put D(a)= {x PIx<- a}, a
down set in P, and U(a)= {x P[x>-_ a}, an up set in P. Following M. H. E1-Zahar
and J. H. Schmerl [4] call the element a accessible in P if D(a) is a chain in P. For
instance, each minimal element of P is accessible. Let w(P) stand for the width of P,
the size of a maximum-sized antichain. According to Dilworth’s chain decomposition
theorem [1], P is the (disjoint) union of w(P) chains. For maximum-sized antichains
A, B in P we write A_-< B whenever for each a A there is b B satisfying a -< b. (It
follows, in this case that, for each b B there is a A satisfying a _-< b, too.) In this
way the set of maximum-sized antichains of P is ordered: there is a greatest (highest)
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antichain and a least (lowest) antichain. As a matter of fact, the set of maximum-sized
antichains is a distributive lattice in which A vB=max(AUB) and A^B=
min (A t.J B) (R. P. Dilworth [2], cf. R. Freese [5]). Finally, note that a jump-critical
ordered set P contains at least two maximal elements and at least two minimal elements.
(For, if P has a unique maximal element, say x, then s(P-{x})= s(P).)

Proof of Theorem 1. It is straightforward, if somewhat laborious, to verify that
each of the ordered sets illustrated in Fig. 3 has jump number three and that each is
jump-critical.

Let P be a jump-critical ordered set with jump number three. For contradictions,
suppose that P contains no subset isomorphic, or dually isomorphic, to any of the
ordered sets illustrated in Fig. 3.

If P contains a four-element antichain then, of course, that must be all of P, that
is, P A. Therefore, w(P) 2 or w(P) 3.

Let w(P) 2. Then P is the union oftwo maximal chains C and C2. Put a infp C
and b supp Ci, for 1, 2. As P is jump-critical, b b and al a2 (in fact C f’) C
). Of course, b cannot be accessible, for otherwise C103 C would be a linear extension
of P (in spite of s(P)= 3). Moreover, s(D(b))= 2, for if s(D(b))- 1 then s(P)= 2.
As D(b) has width two it must contain a four-cycle, say with minimal elements c, d
and maximal elements e,f; similarly, D(b2) will contain a four-cycle with minimal
elements c, d2 and maximal elements eE, f2. Then

({c, d} ^ {c, d})12 ({e,f} ^ {e_, f})LI {b, b}- B.

This leaves the case that P is the disjoint union of three chains C, C2, C3. Again,
put ai infp Ci and b supp C, for 1, 2, 3.

Let us suppose that both {a, a2, a3} and {b, b2, b3} are antichains. If b, say, is
accessible then s(P-D(b))= 2 and, as the width of P-D(bl) is two, it must contain
a four-cycle. This four-cycle together with bl constitutes a subset of P isomorphic to
C. We may then suppose that none of the b’s is accessible. Then each a bi,
ID(b,) tq {al, a2, a3}[ 2 and, dually, [U(a,) f"l {b, b2, b3}l--> 2. It follows that
{al, a2, a3, b, b2, b3} is isomorphic to D or E, or that {a, a2, a3, bl, b2, b3} contains F
or Fd (up to isomorphism).

Next we handle the case that either {al, a, a3} or {bl, b2, b3} is not an antichain,
say {b, b2, b3} is not an antichain. Let { c, c2, c3} be the supremum of all three-element
antichains in P. One of the c’s must be accessible for otherwise the proper subset
U D(c) of P has jump number three. Let c be accessible. If P-D(c) contains a

i=1

three-element antichain {x, x, x3} then c must be comparable to one of these x’s,
say xl. But x Cl since x D(c) and if Cl <x then {c, c2, c3} is not the highest
three-element antichain in P. Therefore, w(P-D(c))=2 and we can assume that
P-D(Cl)--C21,.J C so D(c)=C1. Let {d2, d3}, {e2, e3} be, respectively, the lowest,
highest, two-element antichains in Cz t.J C3 where, say, di, e Ci for both 2, 3. Since
s(C2 [..J C3)--2 then {d, d3, e2, e3} is a four-cycle.

Neither d is below Cl. Also, Cl cannot be below either d. To see this let Cl < d.
According to the maximality of {Cl, c2, Ca}, either c2 < d or Ca < d_. Therefore {dE, d3}
{c2, Ca} which is a contradiction. Moreover, either Cl < e or c < e3, for otherwise
{cl, dE, d3, e, e3} C. Therefore, max P -max (C [_J Ca) {e_, e3} for otherwise P
would have a unique maximal element.

If Cl < e_ and c < e then { Cl, dE, d3, e2, e3}- F.
We may then suppose that c < e2 and therefore, that Cl e3. Put Co infp C1. Let

us suppose that Co dE and Co d3. Then there must be an element e C2 [-J Ca, such
that e e2, e > Co and e noncomparable with c. Otherwise, Co is accessible in the dual



718 M. H. EL-ZAHAR AND I. RIVAL

pd of P and, as P-U(co) has width two and jump number two, it must contain a
four-cycle which, with Co is a subset of P isomorphic to C. If Co<e3 then
{Co, d2, d3, e2, e3} F. Otherwise, d < e < e2 and e, e are noncomparable. Then
{Co, cl, dE, d3, e3, e} G. Therefore, Co < dE or Co < d3.

By the minimality of {dE, d3} either {dE, d3} min (C U Ca) or else there is a unique
element do min (C2 U Ca). Suppose that Co < dE and Co < d3. Since P is jump-critical
it cannot have a least element so there is a unique minimal element do in C2 U Ca and
min P {Co, do}. It follows that {Co, do, dE, d3, e2, e3} - B. Therefore, Co is below exactly
one of dE, d3.

At this stage of the proof it is helpful to visualize schematically the structure of
P. In fact, P now resembles one of the four ordered sets illustrated in Fig. 8. We shall
below refer to the corresponding cases (a), (b), (c), (d) as illustrated in Fig. 8.

d3

do

FIG. 8

CI
03
d3

do

If s(D(e3)) 1 and D(e2)-D(e3) is a chain then s(P)=2. Therefore, either
s(D(e3)) 2 or else D(e2)-D(e3) is not a chain.

Case (i). Let s(D(e3))=2. In this case either D(e3) contains a three-element
antichain or it contains a four-cycle. Suppose D(e3) contains a three-element antichain
{Xl, X2, X3}. Then

({X1, X2, X3} ^ {Cl, d2, d3}) U {e, e3} F.

(Note that {c, d2, d3} is an antichain.)
Let us suppose then that D(e3) contains a four-cycle with minimal elements Xo, x

and maximal elements x2, x3. None of the xi’s is above Cl, for otherwise e3 > C. If each
xi is noncomparable with cl then { cl, Xo, x, x2, x3} C. Since c is accessible in P, c ; x2
and c ; x3. Therefore, c is above exactly one of Xo, x, say cl > Xl, that is, Xl C.

We may suppose that x2 C2 and x3 C3. If e2 > x3 then {Xo, x, x2, x3, e2, e3} B.
Therefore, d3 < x3 < e3 and d2 =< x2 < e2.

(a) If x3> d2 then {Cl, d2, d3, x2, x3}C. Suppose then that x37" d2. Notice that,
as min (C2U C3)={d2, d3}, either Xo>=d2 or Xo>-d3 But Xo>-d implies that x3> d;
hence, Xo --> d3. In this case, x > d3. It follows now that { Co, c, d2, d3, X2, X3, e2, e3} Id.
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(b) If x2=d2 then {Co, c, d2, e2, do, d3, x3, e3}-n. If x3> d2 and X27, d3 then
{ Co, Cl, d_, x2, e2, do, d3, x3} I. If x3 > d2 and x2 > d3 then { c, d2, d3, x2, x3} C. If x3 7,

d2 and x2 > d3 then {Co, Cl, d2, x2, e2, d3, x3, e3} I d. If x3 7, d2 and x2 7, d3 then
{ Co, c, d2, e2, do, d3, X3, e3}-- n.

(c) Note that x dE for otherwise x> Xl -> Co implies Co_-< d, which does not
hold in this case. If x2> d3 then {c, dE, X:z, d3, x3}- C. If x27, d3 then
{Co, Cl, d:z, x2, e2, d3, x3} J. (Observe that either Xo_-> d or Xo -> d and, if x27, d3 then
Xo _>- d so x3> d.)

(d) If x27, d3 then {Co, do, x2, d3, e2, e3}-B. If x> d3 and x3> dE then
{C, dE, X2, d3, x3}- C. If x2 > d3 and x3 7, d2 then { Co, c, dE, X:z, e2, do, d3, x3, e3}- K.

Case (ii). Let s(D(e3))= 1 and suppose that D(e2)-D(e3) is not a chain.
Let {f,f3} be the highest two-element antichain in D(e3). None of the f’s belong

to C, for otherwise, we would not have {d_, d3}--< {f,f3}. Let f Ci for i-2, 3. The
set {x ClxC:e3 and x T, c} is nonempty since D(eE)-D(e3) is not a chain. Let
g max {x C21x e3 and x 7, Cl}. Observe that D(e3) D(g) is a chain since D(f2)

_
D(g). The element g cannot be accessible, for otherwise

D(g)(D(e3)- D(g))O)(D(e2)- (D(e3) U D(g)))

is a linear extension of P with only two jumps. Finally, if g > d then { c, d2, g, d3, e3}
C. Therefore, we assume that g 7, d3.

(a) Since g is not accessible, there must exist an element h C1 satisfying h < g
and h dE. Then { h, d, d3} is an antichain. Therefore, { h, Cl, dE, g, e2, d3, e3}- G.

(b) In this case { Co, c, dE, g, e, do, d3, e3} I.
(c), (d) We must have g > Co and, therefore, {Co, c, d, g, e2, d3, e3} J.
Proof of Theorem 2. Let P, P2 be jump-critical ordered sets, let a max P and

a min P2. Let P be the ordered set obtained by gluing a with a2. First, we see that
s(P) s(P)+ s(P2). In any linear extension of P the elements of P appear in at least
s(P)+ 1 chains and the elements of P in at least s(P2)+ 1 chains. And, at most one
chain of P contains elements from both P and PEmthe chain containing al(--a2).
Hence s(P)>-s(P1)+ s(P2). On the other hand, we can construct an "optimal" linear
extension of P by taking first s(P)+ 1 chains in a linear extension of P1 and then
s(P) chains in a linear extension of P-{a2}. (Note that S(PE-{a2})- s(P2)-1 since

P2 is jump-critical.) It follows that s(P)<-s(P1)+s(P2). Now to see that P is jump-
critical let x P, say x P. As P is jump-critical there is a linear extension of P -{x}
using s(P1) chains and this can be followed by s(P2) chains in a linear extension of
P-{a2} to produce a’linear extension of P with jump number s(P)- 1. The case that
x P2 is similar.

Let P, P2 be jump-critical ordered sets, let max P {a, bl}, min P2 {a, bE}, and
let P be the ordered set obtained by gluing max P1 with min P, say a to a2 and bl
to bE. As above we first verify that s(P)= s(P1)+ s(P2)- 1. In any linear extension of
P the elements of P appear in at least s(P)+ 1 chains and the elements of P2 in at
least s(P2)+ 1 chains. At most two chains of P contain elements from both P and P2,
namely, the chains containing al (=a2) and b (--bE). Therefore, s(P)>-_
s(P1) + s(P2) 1. We can also construct a linear extensibn with s(P)+ s(P2)- 1 jumps.
To this end let L be a linear extension of P1 with s(P1, L1)- s(P1). We may suppose
that a < b in L. In this case bl is the top element of L1. Now, we can construct a
linear extension L2 of P2 in which the smallest element is a2 Oust follow the chain
{a2} by the s(P) chains in an "optimal" linear extension of PE-{a}). Let x cover a2
in L2. Obviously (a2, x) is a jump in L2 and, in fact, x b_. Then LO)(L2-{a2, b_})
is a linear extension of P with jump number s(P)+s(P2)-1. Therefore s(P)<-_
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s(P) + s(P)- 1. Finally, to see that P is jump-critical let x P, say x P. There is a
linear extension of P-{x} using s(P1) chains and if x max P, say x- a, then this
linear extension can be so constructed that b is the top element. Then we can "blend"
this linear extension of P1-{x} with one for PE-{a2}, say L2-{a2} in which bE is the
bottom element. This produces a linear extension of P-{x} with s(P1)/s(P2)-1
chains. Again the case that x P2 is similar.
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TOTALLY-BALANCED AND GREEDY MATRICES*

A. J. HOFFMANf, A. W. J. KOLEN:I: AND M. SAKAROVITCH

Abstract. Totally-balanced and greedy matrices are (0, 1)-matrices defined by excluding certain sub-
matrices. For a n xm (0, 1)-matrix A we show that the linear programming problem max {bylyA <- c, 0 <- y<-
d} can be solved by a greedy algorithm for all c>-0, d >=0 and bt >= b2>= >= bn >-0 if and only if A is
a greedy matrix. Furthermore we show constructively that if b is an integer, then the corresponding primal
problem min cx + dz Ax + z >- b, x >= O, z >= 0} has an integer optimal solution. A polynomial-time algorithm
is presented to transform a totally-balanced matrix into a greedy matrix as well as to recognize a totally-
balanced matrix. This transformation algorithm together with the result on greedy matrices enables us to
solve a class of integer programming problems defined on totally-balanced matrices. Two examples arising
in tree location theory are presented.

AMS(MOS) subject classifications. 05C50, 90C05, 90C10

1. Introduction. A (0, 1)-matrix is balanced if it does not contain an odd square
submatrix with all row and column sums equal to two. Balanced matrices have been
studied extensively by Berge [3] and Fulkerson et al. [7]. We consider a more restrictive
class ofmatrices called totally-balanced (Lovfisz 11]). A (0, 1)-matrix is totally-balanced
if it does not contain a square submatrix which has no identical columns and its row
and column sums equal to two.

Example 1.1. Let T=(V, E) be a tree with vertex set V= {/)1, )2,"" ", Vn} and
edge set E. Each edge e E has a positive length l(e). A point on the tree can be a
vertex or a point anywhere along the edge. The distance d(x, y) between the two points
x and y on T is defined as the length of the path between x and y. A neighborhood
subtree is defined as the set of all points on the tree within a given distance (called
radius) of a given point (called center). Let x (i= 1, 2,..., m) be points on T and
let r (i= 1, 2,. ., m) be nonnegative numbers. Define the neighborhood subtrees T
by T {y TI d (y, x) _-< r}. Let A (aj) be the n m (0, 1)-matrix defined by aj 1
if and only if v T. It was first proved by Giles [8] that A is totally-balanced. This
result was generalized by Tamir [13]: Let Q (i= 1,2,..., n) and R (j= 1,2,..., m)
be neighborhood subtrees and let the n x m (0, 1)-matrix B (b) be defined by bj 1
if and only if Q f)Rj # . Then B is totally-balanced.

Motivation for the types of problems to be studied in this paper is given by the
following two examples from tree location theory stated in Example 1.2.

Example 1.2. Let T (V, E) be a tree, let T. (j 1, 2,..., m) be neighborhood
subtrees and let A (a) be the (0, 1)-matrix as defined in Example 1.1. We interpret
x as the possible location of a facility, and T as the service area of a facility at x,
i.e., x can only serve clients located at T (we assume clients to be located at vertices).
We assume there is a cost cj associated with establishing a facility at x (j 1, 2, , m).
The minimum cost covering problem is to serve all clients at minimum cost. This problem
can be formulated as

min Y cxj
j=l

(1.3) s.t. ax>=l, i=l,2,...,n,
j=l

x {0, 1}, j=l,2,. .,m.
Received by the editors September 18, 1981, and in final revised form July 23, 1984.
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Let us relax the condition in this problem that each client has to be served by
assuming that if a client located at vertex vi is not served by a facility, then a penalty
cost of di 1, 2, , n) is charged. The minimum cost operatingproblem is to minimize
the total cost of establishing facilities and not serving clients, i.e.,

min cjxj + Y. dizi
j=l i=1

s.t. aoxj+zi >- 1, i- 1,2,..., n,
(1.4) =1

x {0, 1}, j=l,2,...,m,

zi {0, 1}, i= 1,2,..., n.

Let A (aj) be a (0, 1)-matrix. We can associate a subset of rows to each column,
namely those rows which have a one in this column. An n x m (0, 1)-matrix is called
greedy if for all i= 1, 2,. ., n the following holds; all columns having a one in row
can be totally ordered by inclusion when restricted to the rows i,i/ 1,..., n. An

equivalent definition is to say that the two 3 2 submatrices

and 0
(1.5) 0

do not occur. Why the name "greedy" is chosen will become clear in the next section.
It is a trivial observation that each greedy matrix is totally-balanced. We will prove in
3 that, conversely, the rows of a totally-balanced matrix can be permuted in such a

way that the resulting matrix is greedy. The proof will be constructive.
Let the n m (0, 1)-matrix A=(ao) be greedy. Consider the problem (P) given by

min cx + dz
j= =

(p)
s.t. ax + z >- bi, 1, 2,. ., n,

j=l

x_->0, j=l,2,...,m,

zi_->0, i= 1, 2, , n.

The dual problem D is given by

max by
i=1

D s.t. ya <- cj, j 1, 2,. , m,
i=1

O<--yi<- di, i= 1, 2, , n.

We will show in 2 that problem (D) can be solved by a greedy algorithm for all c _-> 0,
d_>-0 and b_-> b2 ->’’" -> b,->_ 0 if and only if the matrix A is greedy. Further we
construct an optimal solution to the primal problem (P) which has the property that
it is an integer solution whenever b is integer. This means that after we use the algorithm
of 3 to transform a totally-balanced matrix into a greedy matrix we can solve the
two location problems using the result of 2.
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After we submitted the first version of the paper we found out about the work
done by Farber. Farber [5], [6] studies strongly chordal graphs and gives polynomial-
time algorithms to find a minimal weighted dominating set and minimal weighted
independent dominating set. In these algorithms Farber uses the same approach as
described in 2. In another paper Anstee and Farber 1] relate strongly chordal graphs
to totally-balanced matrices. This paper contains the relationship between totally-
balanced and greedy matrices described in 3 as well as a recognition algorithm for
a totally-balanced matrix which, however, is less efficient than the one described here.

2. The algorithm. A greedy (0, 1)-matrix is in standard greedy form if it does not
contain [ ] as a submatrix. Any n x m greedy matrix can be transformed into a matrix
in standard greedy form by a permutation of the columns in O(nm) time as follows.
Consider the columns as (0, 1) vectors and sort them lexicographically reading in
reverse, from bottom to top. This gives the desired permutation, for suppose [1 ]
occurs as a submatrix with rows i, i2 (i < i2) and columns jl,j2 (jl <j2). Since the
columns are ordered lexicographically we know that there exists a row (i > i2) such
that ai3jl =0 and ai3j 1, but this contradicts the fact that the matrix is greedy. The
algorithm of 3 applied to a totally-balanced matrix also produces a matrix in standard
greedy form. In this section we will assume that the matrix is in standard greedy form.
This assumption does not affect the dual solution obtained but facilitates the description
of the primal solution.

Let A=(aij) be an nm (0,1)-matrix in standard greedy form, let c (j=
1, 2,..., m) and d (i= 1, 2,..., n) be positive numbers (the case when one of these
numbers is zero can be treated similarly) and let bl -> b:>_..._> bn >=0. A feasible
solution 37 of problem (D) is obtained by a greedy algorithm. The values of 37 are
determined in order of increasing and taken to be as large as possible. A constraint
j is tight ifi=l fiiaij Cj. The index a(j) denotes the largest index of a positive y-value
in the tight constraint j, J denotes a set of tight constraints. The greedy procedure is
formulated in Algorithm D.

ALGORITHM D
begin J := ; " := c;

for i:=l step 1 to n
do yi := min { di, min.a,j= {}};

if 37i > 0 then if 37i for some j then choose the largest j
and let J := J t_J {j}; a(j) :=
fi;

:= -97 for all j such that a 1
fi

od
end

For the solution )7 constructed by Algorithm D the following hold:
Property 2.1. If 37k dk, then either there is no j J such that ak 1 or there is

a j J such that ak 1 and a(j)>= k; and
Property 2.2. If )Tk =0, then there is a j J such that akj 1 and a(j)< k.
Property 2.1 follows immediately from the algorithm; If 37k 0, then there exists

an index i, i< k and a constraint j such that constraint j is tight, af akf= 1, and
is the largest index of a positive y-value in constraint j. During the iteration in which

37i was determined we have added an indexj >- j with a(j) to J. Since A is a standard
greedy form we have ak 1. This proves Property 2.2.
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Example 2.3. The matrix and costs of the example as well as the results of
Algorithm D are given in Fig. 2.4. We assume di=2 (i=1,...,9) and
(hi, b2, b3, b4, bs, b6, bT, bs, b9) (6, 5, 4, 3, 3, 2, 2, 2, 1).

g’l 3, g’2 4, 3 5, 4 2, 5 3, g’6 5, 7 3.

0 0 0 0 0-
0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

371 2, l 1, 2 2.

fi2 1, J= {1}, if(l) 2, 11 0, 2 1.

973=0.
)74 2, g-3 3, g-6 3.

375 2, t3 1, ’6 1.

)76 2, J {1, 4I, a(4)= 6, 4= 0, 7 1.

7 1, J {1, 4, 7}, a(7)= 7, 82 0, 85 2, 87 =0.
Ys=0.
yg=0.

FIG. 2.4. Example ofAlgorithm D.

The value of the feasible dual solution 97 is 35.
The primal solution g, is constructed by Algorithm P which has as input the set

of tight constraints J and the indices a(j) (j J).

ALGORITHM P
hegin b := b; :i := 0 for all j J;

while J
do (let k be the last column of J)

b := b- )k for all such that ak 1
:= \(k)

od;
for i:= 1 step 1 to n do := max (0, bi) od

end

Example 2.5. Apply Algorithm P to Example 2.3.
b=b.X2-- X3 ’5-- ’6 -O,

Iteration 1" 7 2, b6 b7 b --0, b9 -1.
Iteration 2:)4 0.
Iteration 3" gl =5, bl 1, b2=0, =-1.

1 1, 4 5 3, all other ff values are zero.
It is easy to check that g, ff is a feasible primal solution with value 35. Since the values
of the feasible primal and dual solutions are equal they are both optimal.

If we prove that ffs >- 0 for all j e J, then it is clear that )7 and , ff are feasible
solutions. In order to prove that they are optimal solutions we show that the complemen-
tary slackness relations of linear programming hold. These conditions are given by

(2.7) 37( a0gs+-b)=0 i=l,2,...,n,
j=l

(2.8) i(y, d,) O, 1, 2,..., n.

(2.6) g()7a-q)=0,,=l j=l,2,...,m,



TOTALLY-BALANCED AND GREEDY MATRICES 725

Let us denote by . the set of column indices in Algorithm P which is initially
equal to J and decreases by one element at each iteration. Accordingly let bi(J)=
b,-jj\3 ajg, i= 1, 2,..., n. Define I by I {i]lj J(j) i.

The following properties hold for Algorithm P;,
Property 2.9. If a a0 1, < l, j J, then b(J) >= bt(J).
Proof. This is true at the start of the algorithm since b >_- b, </. Let k be the last

column of J. Property 2.9 could be altered only if aik 1 and ak 0, which is ruled
out by the fact that A is in standard greedy form.

Property 2.10. b(.) => 0 for all L
Proof. This is true at the start of the algorithm since bi => 0. Let k be the last

column of J. Using Property 2.9 we know that Property 2.10 could be altered only if
aik 1 and i> a(k), which is ruled by definition of a(k).

Property 2.11. b() 0 for all /.

Proof. Let /. There exists a j J such that t(j)= i. At the iteration at which j
was the last column of J we define g b(J) and hence after this iteration we have
b(.) =0. Combining this with Property 2.10 we get b()=0.

Property 2.12. If k > O, k

_
I, Y.jj akjj <= bk.

Proof. Ifk 0, k I, then according to Property 2.1 we have to consider two cases"

1. There is no j e J such that akj--1, In this case we have

ak2 =0---< bk.
jJ

2. There is a j e J such that akj 1 and a(j) > k (note that since k I we can rule
out a(j)- k). Using Properties 2.9 and 2.11 we get bk(f) >- b{()=0.

Property 2.13. If 37k 0, then Yj akj >- bk.
Proof. If 37k 0, then according to Property 2.2 there exists a j e J such that akj 1

and a(j)< k. Using Properties 2.9 and 2.11 we get bk() <- b{}()-0.
It follows from Property 2.10 that _->0 for all j J. Hence 2, $ is a feasible

solution. For the complementary slackness relations (2.6) follows by construction, (2.7)
and (2.8) follow from Properties 2.11, 2.12 and 2.13.

THEOREM 2.14. Problem (D) is solved by Algorithm D for all c>-_O, d >-0 and
b >-_ b2 >-" >-- b, >-_ 0 if and only ifA is greedy.

Proof. If A is greedy, then we transform A into standard greedy form as indicated
by a permutation of the columns. This permutation does not affect the dual solution,
which was shown to be optimal.

If A is not greedy, then there exists a 3 2 submatrix of the form

or 0

1

Let the rows be given by i < 2 < and columns byj <j2. Set d 0 for all { il, i2, i3},
di,= d= d= 1. c 3 for all j except c c= 1, b 1 for all i= 1, 2,..., n. If we
apply Algorithm D we get 37_ 1, all other 7i are zero. The value of this solution is 1.
However )7 37 1 and all other )7 are zero is a feasible solution with value 2. This
shows that Algorithm D does not solve this instance of problem (D).

3. Standard greedy form transformation. In this section we present an O(nm2)
algorithm to transform an n x rn totally-balanced matrix into standard greedy form.
Since a matrix is in standard greedy form if and only if its transpose is in standard
greedy form we may assume without loss of generality that rn <= n.
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Let us call a (0, 1)-matrix lexical if the following two properties hold.
Property 3.1. If rows il, i2 (il < i2) are different, then the last column in which

they differ has a zero in row il and a one in row i2.
Property 3.2. If columns j,j2 (j <j) are different, then the last row in which

they differ has a zero in column j and a one in column j.
The algorithm we will present in this section transforms any (0, 1)-matrix into a

lexical matrix by permuting the rows and by permuting the columns of the matrix.
Theorem 3.3 states that a totally-balanced matrix which is lexical is in standard greedy
form. Since a totally-balanced matrix is still totally-balanced after a permutation of
the rows and a permutation of the columns all we have to do to transform the matrix
into standard greedy form is to transform it into a lexical matrix.

THEOREM 3.3. Ifa totally-balanced matrix A (aij) is lexical, then it is in standard
greedy form.

Proof. Suppose A is not in standard greedy form. Then there exist rows i, i
(il < i2) and columns jl,j2 (jl <j2) such that aij a a2 1 and a2 =0 (see Fig.
3.4).

Let be the last row in which columns jl and j2 differ, and let j3 be the last
column in which rows i and i2 differ. Since A is lexical we have ai3 O, aij3- 1 and

ai =0, ai 1. Since A does not contain a 3 x3 submatrix with row and column
sums equal to two we know that a 0. In general we have the submatrix of A given
by Fig. 3.4 with ones on the lower and upper diagonal and the first element of the
diagonal and zeros everywhere else. The rows and columns have the following
properties.

Jl J2 J3 J4 Jk

0

0

ik 0

0 0

0 0

0

0 0

0

FIG. 3.4. Submatrix of Theorem 3.3.

Property 3.5. ip is the last row in which columns jp--2 and jp_ differ (3 _-< p _<-k).
Property 3.6. jp is the last column in which rows ip_2 and ip_l differ (3-<_ p _-< k).
We shall prove that we can extend this k k submatrix to a (k+ 1)(k+ 1)

submatrix with the same properties. So we can extend this submatrix infinitely. This
contradicts the fact that A has finite dimensions. Let ik/l be the last row in which jk-
and jk differ, and let jk+l be the last column in which ik-1 and k differ. Since A is
lexical we have ak/,k_ 0, aik+,j 1 and aik_tJk+, 0, a+, 1. By definition of ip and
jp (3<-p=<k) we know that a/,p_:= ak/,p_, and a_/,= aip_,jk/,. Using this for
p k, , 3 respectively we get ai/,q aq/, 0 for q 1, 2, , k- 1. Since A does
not contain a (k + 1) (k + 1) submatrix with rows and column sums equal to two we
have aik+lJk+t O.

Let us now describe the algorithm which transforms any (0, 1)-matrix into a lexical
matrix. Let A =(aii) be any (0, 1)-matrix without zero rows and columns. Let us denote



TOTALLY-BALANCED AND GREEDY MATRICES 727

column j by Ej, i.e., Ej { i[ ai 1 }. We assume that the matrix A is given by its columns
El, E2, , E,,. The algorithm produces a 1-1 mapping tr: {1, 2, , n} {1, 2, , n}
corresponding to a transformation of the rows of A (cr(i)=j indicates that row
becomes row j in the transformed matrix) and .a 1-1 mapping z:{E1,..., E,,}
{1,..., m} corresponding to a transformation of the columns of A (-(Ei)=j indicates
that column becomes column j in the transformed matrix). We present the algorithm
in an informal way and give an example to demonstrate it.

The algorithm consists of m iterations. At .iteration we determine the column E
for which z(E) m + (1 -< -< m). At the beginning of each iteration the rows are
partitioned into a number of groups, say Gr,’’ ", G. If <j, then rows in .G will
precede rows in G in the transformed matrix. Rows j and k belong to the same group
G at the beginning of iteration if and only if for all columns E we have determined
so far, i.e. all columns E for which z(E)->_ m- i+ 2, we cannot distinguish between
rows j and k, i.e., j E if and only if k E. At the beginning of iteration 1 all rows
belong to the same group. Let Gr,’", G be the partitioning into groups at the
beginning of iteration (1 <_- _-< m). For each column E not yet determined we calculate
the vector d of length r, where d.(j) IGr_j+ 0 E[ (j 1, 2," ", r). A column E for
which de is a lexicographically largest vector is the column determined at iteration
and z(E)= m- i+ 1. After we have determined E we can distinguish between some
rows in the same group G if 1 --<IG Cl El< G. If this is the case we shall take rows in
G\E to precede rows in G fq E in the transformed matrix. This can be expressed by
adjusting the partitioning into groups in the following way. For j=r, r-1,..., 1
respectively we check if the intersection of G with E is not empty and not equal to

G. If this is the case we increase the index of all groups with index greater than j by
one and partition the group Gj into two groups called Gj and Gj+lwhere Gj+I Gj E
and Gj Gj\E. The algorithm ends after m interations with a partitioning into groups,
say Gr, , G1. The permutation tr is defined by assigning for 1, 2, , r the values
Y-’, GI / 1,’’’, =1 Gl in an arbitrary way to the elements in group G,. The number
ofcomputations we have to do at each iteration is O(mn). Therefore the time complexity
of this algorithm is O(nm2).

Example 3.7. The 9 7 (0, 1)-matrix A is given by its columns E {1, 2, 3},
E2 (1, 2, 3, 5}, E {4, 5}, E4: {3, 4, 5, 9}, E5 {5, 8, 9}, E6 {6, 7, 8, 9}, E7 {6, 7, 8}.

Iteration 1:G1 (1, 2, 3, 4, 5, 6, 7, 8, 9).
d, (IE,[), choose E4, ’r(E,) 7.

Iteration 2:G2 (3, 4, 5, 9), G1 (1, 2, 6, 7, 8).

(1,2) (2,2) (2,0) (2,1) (1,3) (0,3)

Choose E2, r(E2)= 6.

Iteration 3:G4 (3, 5), G (4, 9), G2 (1, 2), G (6, 7, 8).

dE

E1

(1,0,2,0) (1, 1,0, 0)

E5

(1,1,0,1) (0,1,0,3) (0,0,0,3)

Choose Es, -(Es)= 5.
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Iteration 4: G7 (5), G6 (3), G5 (9), G4 (4), G3 (1, 2),
G2 (8), G (6, 7).

E

E1

dE

(0,1,0,0,2,0,0)
(1,0,0,1,0,0,0)
(0,0,1,0,0,1,2)
(0, O, O, O, O, 1, 2)

Choose E3, 7’(E3) 4.

From now on the groups do not change.
Therefore r(E) 3, z(E6) 2, ’(E7) 1. A mapping tr is given by

tr: (6, 7, 8,1, 2, 4, 9, 3, 5)- (1, 2, 3, 4, 5, 6, 7, 8, 9). The mapping r is given by
r: (E7, E6, E, E3, E5, E2, E4) (1, 2, 3, 4, 5, 6, 7).

The transformed matrix is the one used in Example 2.3.
Let us now prove that a matrix transformed by the algorithm is a lexical matrix.

When we say that row is the largest row with respect to cr satisfying a property we
mean that there is now row j with tr(j) > or(i) satisfying the same property. The same
terminology is also used for columns with respect to r.

LEMMA 3.8. If rows andj (tr(i) < or(j)) are different, then for the largest column
E with respect to r in which they differ we have : E, j E.

Proof. Consider the last iteration in which and j are in the same group G and
let E be the column determined at this iteration. Since and j were in the same group
during all previous iterations we know that rows and j are identical when restricted
to columns which are larger than E with respect to r. Since tr(i)< or(j) we have that
after this iteration row j is in a group with larger index than the group containing row
i. This implies that j G f’l E and G\E, i.e., E and j E.

LEMMA 3.9. If columns Ek and E (z(E) < z(Et)) are different, then for the largest
row with respect to tr in which they differ we have : Ek and

Proof. If E is strictly contained in E for some i, j, then we always have z(E)<
z(E). If E Et, then the lemma holds. So we may assume that Ek E and Et if: Ek.
Let be the largest row with respect to o- in E\Ek, and let j be the largest row with
respect to cr in Ek\E. We have to prove that or(i)> tr(j). Consider the iteration in
which Et was determined. Let p be the largest index for which Gp f’) Ek Gp fq E. Since

E was determined before Ek we know that Gp f’l E >-IGp fq Ekl. We conclude that
e Gp. If j Gy with f< p, then o-(j)< tr(i). If j Gp, then after this iteration Gp is

partitioned into two groups Gp fq E and Gp\E where Gp\Et precedes Gp fq E. Since
j Gp\E and Gp fq E we have tr(j) < tr(i).

It follows from Lemmas 3.8 and 3.9 that the transformed matrix is lexical.
In a previous paper (Brouwer and Kolen [4], see also Kolen [10]) it was shown

that there exists a row of a totally-balanced matrix such that all columns covering this
row can be totally ordered by inclusion. The algorithm presented gives a constructive
proof that such a row exists, namely row one of the transformed matrix. As indicated
by one of the referees the existence of such a row can be used to derive an O(n2m)
algorithm to transform a totally-balanced matrix into standard greedy form as compared
to the O(nm2) algorithm presented (note m-<_ n). The algorithm we gave produces a
lexical matrix in standard greedy form. This is important if we consider the following
result. Let A be a n m (0, 1)-matrix. The row intersection matrix B (b) of A is a
n n (0, 1)-matrix defined by b 1 if and only if there exists a column of A which
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covers both row and j. It is an easy exercise to show that if A is a lexical matrix in
standard greedy form, then the row intersection matrix is in standard greedy form.
This is not true for any (0, 1)-matrix A in standard greedy form as is shown by the
following example"

0 1 1 1 1 0 1 1

A=
1 0 0

B=
0 1 1 i1 1 1 1 1 1

0 1 0 1

Using the results of this section we have proved the following theorem which was first
proved by Lubiw 12] by showing that the row intersection matrix of a totally-balanced
matrix does not contain one of the forbidden submatrices.

THEOREM 3.10 (Lubiw 12]). The row intersection matrix ofa totally-balanced matrix
is totally-balanced.

If a matrix contains a k x k submatrix with no identical columns and row and
columns sums equal to two, then the matrix transformed by the algorithm still contains
such a submatrix and therefore contains [ ] as a submatrix. Using Theorem 3.3 we
conclude that a matrix is totally-balanced if and only if the algorithm transforms the
matrix into standard greedy form. We can check in O(nm2) time whether a matrix is
in standard greedy form by comparing each pair of columns.

We finish discussing the relationship between totally-balanced matrices and
chordal bipartite graphs. A chordal bipartite graph is a bipartite graph for which every
cycle of length strictly greater than four has a chord, i.e., an edge connecting two
vertices which are not adjacent in the cycle. Chordal bipartite graphs were discussed
by Golumbic [9] in relation with perfect Gaussian elimination for nonsymmetric
matrices. Chordal bipartite graphs and totally-balanced matrices are equivalent in the
following sense:

(3.11) Given a chordal bipartite graph H ({ 1, 2,. ., n }, { 1, 2,. ., m}, E) define
the n x m (0, 1)-matrix A (aij) by aij 1 if and only if (i,j) E. Then A
is totally-balanced.

Given an n m totally-balanced matrix A (a) define the bipartite graph
H=({1,2,...,n},{1,2,...,m},E) by E={(i,j)la=l}. Then H is a
chordal bipartite graph.

An edge (i,j) of a bipartite graph is bisimplicial if the subgraph induced by all
vertices adjacent to andj is a complete bipartite graph. Let M (m0) be a nonsingular
nonsymmetric matrix. We can construct a bipartite graph from M equivalent to (3.11)
where edges correspond to nonzero elements m. If (i,j) is a simplicial edge in the
bipartite graph, then using rnij as a pivot in the matrix M to make rni to one and all
other entries in the ith row and jth column equal to zero does not change any zero
element into a nonzero element. This is important since sparse matrices are represented
in computers by its nonzero elements. Golumbic [9] proved that a chordal bipartite
graph has a bisimplicial edge. This result immediately follows from our result. The
first one in the first row corresponds to a bisimplicial edge.
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ON THE MATRIX ADJOINT (ADJUGATE)*

RICHARD D. HILL’ AND E. EUGENE UNDERWOOD

Abstract. A unified treatment of rank, eigenvalues, minimal polynomial, minors and factorizations of
the adjoint is given. The roles of the adjoint in determinantal identities and the adjoints of characteristic
matrices and modified matrices are discussed.

1. Introduction. Let Mn(F) denote the space of n n matrices with entries from
the field F. The adjoint (adjugate) of a matrix A Mn(F) is defined by giving its (i,j)th
element (adj a)ij=(-1) i+j detA(jli), where A(jli) is the n-1 square submatrix of
A formed by deleting its jth row and ith column; i.e., adj A is the transpose of the
matrix of cofactors of the elements of A.

Information on the adjoint occurs infrequently in linear algebra texts and literature.
Most adjoint papers concern the (nonrelated) linear operator whose matrix representa-
tion is A* (conjugate transpose).

In this paper we collect some basic results. Then we give a unified treatment of
the rank, eigenvalues, minimal polynomial and minors of the adjoint. Next we consider
different factorizations followed by the appearance of the adjoint in determinantal
identities. Finally we summarize information on adjoints of characteristic matrices and
modified matrices.

2. Standard results. Computationally we may verify a result found in many linear
algebra texts:

(1) A(adj A)= (adj A)A (det A)I,.

This result immediately gives us a standard formulation for the inverse, viz.,

1
(2) if A is nonsingular, A-1- adj A,

det A

i.e.,

(2’) adjA=(detA)A-;

which says that if A is nonsingular, adj A is a multiple of A-. Taking determinants
of (1) above gives us that

(3) det (adj A) (det A)"-.
Application of (1) and (3) leads to

(4) adj (adj A) (det A)"-2A for n > 2.

Taking determinants in (4) we get

(5) det [adj (adj A)] det A("-1)2.

Although (1) may be used to prove the reverse multiplicative property

(6) adj AB (adj B)(adj A),

a powerful but scldomly used theorem, the Cauchy-Binet theorem [9, p. 38], [10,

* Received by the editors June 13, 1983, and in revised form July 1, 1984.
? Department of Mathematics, Idaho State University, Pocatello, Idaho 83209.
t Utah State University, Logan, Utah 84322.
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p. 128], gives us a quick proof as follows"

((adj B)(adj A)) o (adj B)k(adj A)ks
k=l

(-1) ’+2+ detB(kli)detA(jlk)
k=l

=(-1) ’+j detA(jlk)detB(kli)
k=l

(- 1)’+ det AB(j i)

(adj AB)j, i,j=l,. .,n.

Some basic results on the adjugate are now immediate. Considering adj Mn(F)
Mn(F), we see that adj is not linear. In fact, adj is neither additive nor homogeneous;
adj cA cn-1 adj A. We observe that adj is neither injective nor surjective if n > 2.
Nevertheless, adj A-1= (adj A)-1 for nonsingular A; adj Ar= (adj A) for all positive
integers r; and adj A*= (adj A)* where * denotes the conjugate transpose.

If two matrices A and B commute, then adj A and adj B commute; if A and B
are similar, then adj A and adj B are similar.

Considering special matrices, if A is normal, Hermitian or unitary, then adj A
necessarily possesses the same property. Also, if A is skew-Hermitian and n (the order
of A) is even (odd), then adj A is skew-Hermitian (Hermitian). Further, if A is simple
(diagonalizable), then adj A is simple. The converses ofthese results are in general false.

3. Rank, eigenvalues and minimal polynomial. We now characterize the rank of
A, p(A), in terms of the rank of adj A. Using the natural representation of our rank
characterization (Theorem 1), all the results of this section (and one of the next section)
partition corresponding to p(A) being <=n-2, n-1 or n. A more formal setting is
natural for these results.

THEOREM 1. IfA Mn(F), then
(i) p(adj A) 0 itt p(A) <- n 1;
(ii) p(adj A)= 1 iff p(A)= n- 1;
(iii) p(adj A)= n iff p(A)= n.

Proof. First we observe that p(A)<=n-2 iff adj A=0. If p(A)= n-l, then there
exist nonsingular P and Q such that A P(In_(O)Q, where denotes the direct
sum. Then adj A adj Q adj (In_l@0) adj P. Since adj Q and adj P are nonsingular
and p(adj (In_@0)) is one, we have that p(adj A)-1. Since A(adj A)=(detA)In,
p(A) n iff p(adj A)= n. VI

If p(A) n- 1, we note that we have the dyad product representation adj A uv*
where u spans the null space of A and v spans the null space of A*.

We next investigate the minimal polynomial of A (the monic annihilating poly-
nomial of least degree). We use triag {al, , an} to denote an upper triangular matrix
whose main diagonal elements al," ", an are the only elements of concern.

THEORE 2. IfA e M, F), the minimal polynomial of adj A is

(i) x if o(A)<-n-2;
n--1(ii) x-Ax, where A=I]=l h with {h,..., _, 0}, the family of eigenvalues of

A, tip(A) n- 1;
(iii)

X
k -kalAxk-1 --a2A2xk-2 --" 41- Ak,

ao ao
where Xk -1- ak_la

k-1 +" -b ao is the minimal polynomial ofA and A det A, ifp(A) n.
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Proof. If p(A)<-n-2, adj A =0, which gives us that the minimal polynomial of
adj A is x. If p(A) n- 1, we assume adj A to be in Jordan normal form, since similar
matrices have the same minimal polynomials. Then adj A- triag {0,..., 0, A}, where
{hi, h,-1, 0} is the family of eigenvalues of A and A I-I "-1i=x hi. Thus, the first n- 1
columns of adj A consist entirely of zeros. Since (adj A)2- A adj A, adj A has x2- Ax
as its minimal polynomial.

If p(A)- n, A is nonsingular, so that the constant term is nonzero in the minimal
polynomial of A. If xk+ ak_lXk-1 +’" "+ ao is the minimal polynomial, then Ak’-b

Ak-1ak- +" + aoI 0 implies that

a 1
(A-l) k +--(A-1)k-1 + +--I, =0.

tlo tlo

Thus, xk+ (a/ao)X-+ + 1/ao is the minimal polynomial for A-. Letting M(x)=
xt + (a/ao)AXk- + (a2/ao)A2xk- +" + Ak, where A det A, adj A AA-, gives us
that M(adj A) 0. I3

Let Qk,,, denote the set of all strictly increasing sequences of length k chosen from
{ 1,. , n}. As above, if necessary, we consider F, the algebraic closure of F, to insure
a family of n eigenvalues for A M(F). To express the eigenvalues of adj A in terms
of the eigenvalues of A, we again use our rank characterization theorem to split into
cases.

THEOREM 3. If Ax," ", A, are the eigenvalues ofA M(F), then
(i) all eigenvalues of adj A are zero if p(A)<= n- 2;
(ii) the eigenvalues of adj A are zero with multiplicity n- 1 and A (cf. Theorem

2) (0 has multiplicity n if A O) if p(A) n 1
(iii) the eigenvalues of adj A are [I i- ho,,, where hi,. ", h, are the eigenvalues of

A and to Q,,-x.n (equivalently, (det A)/hi, i= 1,..., n) ifp(A) n.

Proof. If p(A) _-< n 2, then p(adj A) 0, and all the eigenvalues of adj A are zero.
If p(A) n, adj A (det A)A-1", the eigenvalues of adj A are (det A)/hi, 1, n.

If p(A)- n-1, then A has a zero eigenvalue and there exists a nonsingular T
such that T-XAT triag {hi," ", h,-1, 0}, where hi," ", h,-x are the other eigenvalues
of A. Thus, adj T-1AT triang {0,. , 0, A}. Since adj T-XAT-- adj T adj A adj T-1,
adj A is similar to triag {0, , 0, A} and thus has eigenvalues A and zero of multiplicity
at least n-1. E1

4. Factorization. The following theorem expresses the adjoint of a block diagonal
matrix in terms of the adjoints of the blocks. As well as being of interest in and of
itself, it leads to our factorization theorem. We denote the block diagonal matrix
diag {Ax, Ax} (where each Ai is square) by Tk"=1 Ai AiO)" "@Ak.

ok
Ai M(F), thenTHEOREM 4. IfA i=

adj A Y. det A adj A.
i=l /=1

Proof If p(A)<-n- 2, adj A =0, and the result follows. If p(A)= n,

adj A det A yo A-I yo det A adj Ai
i=1 i=1

o det A adj
i--X
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If p(A)= n-1, without loss of generality we assume A2,’’ ", Ak to be nonsingular
with the order o’(A1) p(A1) + 1. Since A(adj A) (adj A)A 0, adj A
diag {B1, 0,. 0} with o’(B1) tr(A1). For ao A1, its cofactor in A is

(-1)
/=2 /=2

kThus,
Toward our factorization result, let A have exactly p elementary divisors. Then

A= T-JT, where J=l J is the Jordan normal form of A. By (6), adjA=
adj 7" adj J adj T-, where

adj J 2 det Jl adj Ji.
i=l i=l

l#i

Letting

F"=diag{I"’"I’(Pilqi=l#r detJ)adjJr, I,’",I},
where the rth block is the nonidentity block, r 1,. , p; we have (adj T)Fr(adj T
as p factors of adj A which can be collapsed into q factors, where q is any integer
such that 1 <= q <= p. We state our result as follows"

THEOREM 5. If A M,(F) has exactly p nontrivial elementary divisors (Jordan
blocks), then adj A admits a factorization into q factors, where q is an integer such that
l<=q<=p.

We conclude this section with an interesting factorization by Taussky 15] of adj A
into n- 1 factors each of which has determinant equal to det A. Let x"+ clx"-l+ +
c,_lx + c, be the characteristic polynomial of A; let A1, , A, be the eigenvalues of
A; and let/x2, ,/x, be the zeros of Xn-1 "+" Cl xn-2-l’" -- Cn_ with j[.i, 0.

Assuming p(A)=n, An-l+clAn-2+ + c,_1I (-1)
(-1)"-1 adj A. Thus, adj A l-I =2 (/xd A). Now the algebraic equation I]=1 (A- x)
=1 A of degree n in x has n roots, viz.,/zl 0,/z2, ,/z,. Since det A 1-I=1 A and

H=I (x-x)=det (A-x1), we have the following theorem. (The cases where A is
singular follow by specialization.)

THEOREM 6. If AM,(F), adjA=H=2 (txd-A), where det(A-lxd)=detA,
i--2, ., n.

5. Minors of the adjoint. Our next result gives an arbitrary minor of adj A in terms
of a minor of A. For/3 Q,,,, define s(fl) to be the sign of the permutation which
takes/3 to {1, 2,..., m} elementwise. See [10, p. 126] for submatrix notation.

THEOREM 7. If , y Qm, m > 2, and A M.(F), then det (adj A[flly])
s(fl )s(y) det A(/31 y)(det A) r"-l.

Proof The result obviously holds for singular A. Assuming A nonsingular, adj A
(det A)A-1 gives us that

det (adj A[/ y]) (det A) det A-’[/ y] s()s(y) det A(y I/3)(det A)m-l,

since in general [8, p. 14], s()s(y)detA=detA(y[)/detA-l[ly].
Older texts (e.g. Browne [3]) call s(/3)s(y)det (/3ly) the algebraic complement

of det [/31Y]- For a computational proof of this result see [3, pp. 43-44] or 1, pp. 51-52].
If A= ( ) is partitioned so that E =All,. ., k 1,. ., k] is nonsingular, H-

GE-1F AlE is said to be the Schur complement of E in A. In general, det A
(detE)(detA/E).
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Specializing to k--n- 1 so that H is the 1 1 matrix [an,] and F and G are
column and row vectors respectively, Brualdi and Schneider [4, p. 772] observe that
detA-(det E)(ann-GE-1F)=an, detE-G(adj E)F, which is called the Cauchy
expansion of det A.

6. Adjoints in determinantal identities. Brualdi and Schneider [4] give a self-
contained development of a large number of determinantal identities using only the
basic facts that Gaussian elimination does not alter the determinant and that a
determinant has a Laplacian expansion.

In addition to the aforementioned Cauchy expansion of det A, they have an
immediate specialization of Theorem 7, viz.,

(7) det (adj A)[k + 1,..., n lk / 1, , n] (det A) n-k-1 det All, ., k 1,.-., k].

Brualdi and Schneider standardize a definition for a determinantal identity for
the minors of a matrix. Applying a determinantal identity to adj A yields another
(n n) determinantal identity called a complementary identity or "the law of com-
plementaries" by Muir in his classic [12], which he attributes to Cayley, e.g., the
complementary identity to the definition of the determinant is the result (3).

7. Adjoints of characteristic matrices. For A M,,(F), AI-A is said to be the
characteristic matrix of A. Its determinant is the characteristic polynomial of A; its
roots are the eigenvalues of A.

The quotient q(A ofthe characteristic polynomial c(A by the minimal polynomial
m(A) of A is the greatest common divisor of the elements of adj (,I-A) [9, p. 135].
Then adj (AI-A)=q(A)R(A), where R(A) is called the reduced adjoint. If M(A, IX)
is the two-variable polynomial defined by M(A, IX)=(m(A)-m(IX))/A-IX, then
M(AI, A)= R(A). If C(A, IX)=(c(A)-c(IX))/A -Ix, then C(AI, A) adj (AI-A), i.e.,
we have another formulation of the adjoint of the characteristic matrix.

We further observe that if Aj is an eigenvalue of A, then the nonzero columns of
adj (AjI-A) (and R(A) as well) are right eigenvectors of A associated with the
eigenvalue

The invariant polynomial of largest degree is the quotient of det (AI-A) by the
gcd of the elements of adj (AI-A); again we have m(A). Also, (1) gives us that

(8) (AI-A) adj (AI-A)=c(A)I,

which easily leads to the Hamilton-Cayley theorem [9, p. 131].
Frazer, Duncan, and Collar [6, pp. 165-167] discuss the adjoint of a (general)

polynomial matrix and its derivatives as well as their specialization to the characteristic
matrix [6, pp. 73-78].

8. Modified matrices. In [5] Elsner and Rozsa study the behavior of the adjoint
under the rank one modification A-A+ uv*. The multilinearity of the determinant
leads to the one previously known result:

(9) det (A + uv*) det A + v* adj (A)u.

The results of Elsner and Rozsa partition as the ranks of A and A+ uv* each permute
between n and n- 1.

In particular, if p(A)-n-1 and p(A+uv*)= n, up to a scalar the difference
adj (A + uv*) adj A D is a { 1, 2}-inverse of A, i.e., ADA A and DAD D. Con-
versely, any {1, 2}-inverse of A can be expressed as a difference of adjoints in the
above form.
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If p(A) p(A + uv*) n 1, formulations for adj (A + uv*) vary accordingly as
u , Rng A and v , Rng A*.

Further, letting A/ denote the Moore-Penrose inverse and C(A, uv*)=
[adj (A+uv*)-adj A]/v*(adj A)u (note that v*(adj A)u S0), the following sets are
equal:

{ C(A, uv*): u, v F v(adj A)u 0},

{ C: CAC C, ACA A},

(10)
{(I-rv*/v*r)A/(I-us*/s*u) v’r, s*u S0},

{A+-rg*-hs*+g*Ah rs*: g*s= r*h=O},

{(A+- rg*)A(A+- hs*): g’s= r*h =0},

{A/- rg*- hs*: g’sis*s+ r*h/r*r+ g*Ah =0}.

Finally, Eisner and Rozsa [5, p. 247] derive a representation for the adjoint of the
bordered matrix

( A u) ((a + l) adj A-adj (A+uv*) -adj(A)u)(11) adj
v* a -v*adjA detA

9. Some random comments. 1. Mirski [11, pp. 87-90] gives a development of most
of the results found in 2. Ayres [1, pp. 49-54] also gives many of these results.

2. The rank characterization (Theorem 1) is found in some form (e.g., as a problem)
in Frazer, Duncan and Collar [6, p. 21], Thrall and Tornheim [16, p. 130], Nomizu [13,
p. 175] and Brinkmann and Klotz [2, p. 262]. The reverse multiplicative property (6)
is stated for the nonsingular case in Schneider and Barker [14, p. 205] and Greub [7,
p. 115] (incorrectly), and for the general case in Mirsky [11, p. 90].

3. Frazer, Duncan and Collar [6, pp. 121-125] discuss at some length the computa-
tion of the adjoint of a matrix of rank n- 1.

4. Schneider and Barker 14, p. 204] credit L. A. Gavin in the American Mathemati-
cal Monthly, Jan. 1966, with the following result: Let A Mn(F). If there exists an
integer m such that Am-- I, then [(adj A)r]m L
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Abstract. We study order preserving maps from a finite poset to the integers. When these maps are

bijective they are called linear extensions. For both kinds we give many elementary properties and inequalities.
A positive correlation inequality was proved by Graham, Yao and Yao. Then contributions were made by
Graham, Kleitman, Shearer, Shepp and others. We obtain the corresponding negative correlation inequalities.
Most authors have used the FKG inequality; we use an inequality of Daykin instead. Graham made a

conjecture concerning range posets so we characterise these, and prove various cases of the conjecture.
Finally we give necessary and sufficient conditions for a map defined on a subposet to extend to the whole

poset. The results have applications in computer science.
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1. Introduction. We are concerned with order preserving maps from a finite poset
to a subset of the integers. When these maps are bijective they are called linear
extensions.

This paper was motivated by the results in 3. They are of the form that, if all
maps are equally likely, then the probability that a random map will have certain
properties is positively correlated. Other authors have proved such results via the
classical FKG inequality, but we use an inequality of D. E. Daykin. Also we give some
new results on negative correlations. The interesting Conjecture 3.1 involves the concept
of a range poset, so we characterise these in 9. The conjecture is supported by
Theorems 3.2, 3.3, 3.4 and 3.7. These include fundamental results of Graham, Yao and
Yao and of Shepp.

In 4, 5 and 6 we deal with order preserving maps. First we obtain elementary
properties using the rake-down of a map over a set. Secondly we give various
inequalities. Lastly we discuss the problem of extending a map defined on a subset of
the poset to the whole poset. In 7 and 8 we obtain the parallel results for linear
extensions, except that the analogous inequalities do not arise.

The results in 3 have applications in computer science. Most algorithms for
sorting a finite set F of real numbers compare the numbers two at a time. A set of
comparisons reveals a partial order P of F. The algorithm halts when P becomes the
underlying total order of F. Fundamental quantities in determining the expected
efficiency of such algorithms are those appearing in (3.1) below (cf. [G1], [G2], [GYY]).

2. Notation and definitions. We let 7/denote the integers, and by an interval I we
mean a subset ofT/of the form I =[i,j]= {k 7/: i<= k<=j}. The letter J denotes a finite
interval [1,j] so j is the cardinality IJ[ of J.

We let P be a finite poser with PI 0. A map o" P-> 7/is strict order preserving
if p, q P and p < q imply op < oq, but we omit the word strict. We let 12 denote the
set of all order preserving maps o: P--> J. Notice that fl depends on the given J. By a
linear extension of P we mean a bijective order preserving map A:P-> J so IJI--IPI.
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The set of all such A is A. The pre-image of K c J under to c [l is the subset to-K
{pc P" tope K}, and under 1) it is I-IK U{to-K tool-l}. For Sc P the range of
S over l-I is the subset [IS {top" to c ll, p c S} of J. There are similar pre-images and
ranges for A.

We call D c p a down-set if p < q c D imply p c D. Similarly U c P is an up-set
if p > q c U imply p c U. For $ c P the intersection of all down-sets containing S is
called below S. Then above S is the corresponding intersection of up-sets. The convex
hull S of S is (above S)["1 (below S), and S is convex if S S. Notice that down-sets
and up-sets are convex, and the empty set is both a down-set and an up-set.

For S= P the height h(S) of S is the maximum rn for which we have a chain

s < s2 <" < Sm in S. Here and elsewhere we count vertices as opposed to edges. For
pc P the height h(p) of p is h(below {p}), and the depth d(p) of p is h(above {p}).

For p, q c P we write p q if either p < q or p > q. The opposite of p q is written
Plq and means that p and q are incomparable. If S, T are posets we write S[ T to mean
that slt for all s c S, tcT. AlsoS<Tmeanss<tforallscS, toT.

3. Probability results. We will use a result from [D1], namely:
THEOREM 3.1 (D. E. Daykin). If A, B are subsets of the elements of a distributive

lattice then IAI IBI <-IA v B IA ^ BI, where

Av B={av b" acA, bcB},A^B={a^b" acA, bcB}.

A simple proof was given by Ahlswede and Daykin [AD], and modified by Graham
[G1]. The theorem has various generalisations (cf. [D2]).

Throughout this section we assume that the poset P has been partitioned as
P Q U R. We deal with results of the form "P Q (_J R has the or for F",
where F is 1) or A. So we now define these terms.

DEFINITION 3.1. The partition P Q [AR has the ff negative correlation property
for F if, whenever x (respectively y) is a disjunction of conjunctions of inequalities
in which each inequality has the form q < r (respectively q > r) with q c Q, r c R, we have

Irl {r: x and y}[-<_ [{r" x}l I{r" y}[.

If for example q, q2, q3 c Q and rl, r2, r C R and x was the condition "either
ql < r or both q2 < r2 and q3 < r3", then {F: x} denotes the set of all y in F such that
either yql < yrl or both yq2 < yr2 and Yq3 < yr3. Of course it is not assumed that qi ri
or that qi]ri in P.

DEFINITION 3.2. The partition P Q [AR has the positive correlation property
for F if, whenever both x and y are like the x in Definition 3.1, we have

(3.1) I{r. x}l I{r y}l--< Irl I{r. x and y}l.

We chose the title "Probability Results" for this section because many authors
divide (3.1) by [FI 2 and express the result as

(Probability: x)(Probability: y) _-< Probability" (x and y).

The reader may find it easier to understand our discussion by referring to Table
1, which presents Theorems 3.2-3.6. All our work stems from the result of Graham,
Yao and Yao in the first line of the table, the first part of Theorem 3.2. It says that if
P Q tA R and Q, R are disjoint chains then P has the for A. Proofs of this result
have also been given by Kleitman and Shearer[KS]and by Shepp [$1]. When A {A: x}
and B {A" y}, the for A follows immediately from Theorem 3.1. Secondly one
can let A A and B {A: x and y} and get the ff for A. So we have Theorem 3.2.
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TABLE 1.
Theorems and conjectures.

Theorem Poset P Q U R f/ A

3.2 Q, R chains [GYY]

3.3 QIR [$1] :=> IS1]

3.4 Range poset with m

3.5 IQI [$2] :=> [$2]

3.6 If q then

Range poset conjecture 3.1.

if IJI large =:> [G1]Range poset
if IJI large

One feels that as ]JI - o the proportion of members of f which are injective tends
to 1, and this was proved by Shepp [S1], giving all the implications ==> in Table 1.
Further it shows that we can replace A by f provided that IJI is sufficiently large.

Next consider Theorem 3.6. Here it is assumed that the poset P Q (.J R is such that

(3.2) q Q, r R, q r:=>(t’q) f) (lr) f.

Since f depends on J, this assumption depends on J, and by Lemma 5.4, it is not
satisfied for IJI large. Hence we have written : in Table 1 to indicate that we cannot
here deduce a result for A by letting IJI - c. Lemma 5.4 gives an obvious fast algorithm
for checking if P satisfies (3.2), but there does not appear to be a nice characterisation
of such posets. The hypothesis of Theorem 3.3 implies (3.2). So Theorem 3.3 follows
from Theorem 3.6 and by letting IJ .

Proof of Theorem 3.6. Let Q, R be disjoint sets and (9 be the set of all maps
0: Q t.J R -* J. For 01, 02 (R) define 01 v 02, 01 ^ 02 for q Q, r R by

(01 v 02)q max {01q, 02q}, (01 ^ 02)q min {01q, O2q},

(01 v 02)r min {01r,.OEr}, (01 ^ 02)r max {01r, OEr},

and then it follows that

(3.3) Olq < 01r =, (01 ^ O2)q < (01 ^ O2)r,

(3.4) 01q > 01r =:> (01 v O2)q > (01 v 02)r.

Clearly 01 v 02, 01 ^ 02 O.
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Let ql, q2," "’, q, and rl, r2,. r be the elements of Q and R respectively.
With each 0 (R) associate the vector (Oql,’", Oqm, Or1,’", Orn) considered as an
element of the lattice L j,(j,)n, where J* is J with its order reversed. Since L is a
direct product of copies of J and J* it is distributive. Also 01 v 02 and 01 ^ 02 are the
usual join and meet respectively in L.

Next we claim that if tOl, to2 fl c O then to1 v to2, to1 ^ to2 ft. This fact is easily
established with the aid of (3.2), (3.3), (3.4) and Lemma 4.4.

Now we use Theorem 3.1. For the case let A {fl: x} and B {fl: y}. Then
A ^ B c {: x and y} by (3.3), and trivially A v B c ft. For the dV case let A {fl: x
and y} and B . Then A ^ B {f: x} by (3.3), while A v B {f: y} by (3.4). l-]

As shown in Table 1, the case ofTheorem 3.5 is due to Shepp, and it established
the XYZ conjecture of Rival and Sands. He used a different lattice, but modifying his
proof in the foregoing manner easily yields the c case.

Once Graham had written down (3.2) it was natural for him to write down

(3.5) q Q, re R, q r =:> (Aq) f-) (Ar) QS.

He then made the most interesting part of Conjecture 3.1 in Table 1, suggesting that
if P Q t_J R satisfies (3.5) then it has the for A. We studied condition (3.5) and
will prove in Theorem 9.1 that the only posets which satisfy this condition are what
we now define to be range posets.

DEFINITION 3.3. We say that P- Q t_J R is a range poset if there are partitions

such that

(3.6)

(3.7)

(3.8)

Q=QIUQ2t_J. .UQ,,, R=R1UR2U. .URn

Qi<Qj forl<-i<j<=m,

Ri<Rj forl<=i<j<=n,

either Qi[R or Q, < R or R < Q for 1 -< -< m, 1 <=j <- n.

For example, the posets of Theorems 3.2 to 3.4 are all range posets, but not those of
Theorems 3.5 and 3.6. Using Lemma 9.1 below it is an easy exercise to deduce Theorem
3.4 from Theorem 3.3. Thus we have Theorems 3.2 to 3.4 supporting the range poset
conjecture. For f the main interest of the conjecture is in the sufficient size for
That some condition on IJI is necessary is shown by the N-shaped poset with 4 elements.
The same example shows why there is no entry for fZ in Theorem 3.2.

We end this section by establishing a weak form of Conjecture 3.1. Let P be the
range poset in Definition 3.3. We will call Q1, Q2,’", Q,, the blocks of Q and
R1, R2," ", Rn the blocks of R.

DEFINITION 3.4. We say that P has the weak g’ if Definition 3.1 holds except
that now the inequalities for y are between blocks instead of elements. Thus they now
have the form Q > R with 1 _-< _<- m, 1 _-< j <_- n instead ofthe form q > r with q Q, r R.

DEFINITION 3.5. We say that P has the weak if Definition 3.2 holds except
that now the inequalities for y are between blocks. Notice that the inequalities for x
are still between elements, and that those for y can be expressed in terms of large
numbers of inequalities between elements. Our result is"

THEOREM 3.7. A range poset has the weak and the weak for A.
Proof. If A A and $ c p there is a unique ordering sl, s2, , Sis of the elements

of S such that As1 < As2 <. < A$1s We call sl < s2 <" < Sis the chain which A makes
out of S. For all A,/x A we write Ap/x if A and/x make the same chain out of S for
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every block S of P. Thus p is an equivalence relation for A and we let denote the
set of equivalence classes of p.

Let E, F be chosen arbitrarily and fixed until we get to (3.9). Given a block
S of P let sl<’" <Sis be the chain which every h E makes out of S. Also let
tl <. < tls be the chain which every Ix F makes out of S. Then define rs: S- S by
rssi ti for 1 -<_ <=lS[. Clearly the map IxCrs: S Z is order preserving.

Next we define r: P P by 7rp rsp for all p in each block S. Then r is a
permutation of P because each rs permutes its block S. An important point is that
IXS-IxrS for every Ix F and block S. Since y is defined in terms of inequalities
between blocks we see that Ix F respects y iff Ixr respects y. In the last paragraph
we showed that Ixr is order preserving on each block. Because P is a range poset and

Ix F c A it easily follows that IxTr A. This in turn implies that the map tx Ix" is
an injection F E. Hence IF _-<]E[ and so [El [FI by symmetry. Further IX Ixr is
an injection {F: y}{E: y}.

Recall that any h E makes a chain s <. < Sis out of each block S. Let Pe be
the poset obtained by adjoining to P all the relations in all these chains. Thus Pe is
of the form Pe Qe (-J Re where Qe, Re are the chains which every h E makes out
of Q, R respectively. Also E is simply the set of all linear extensions of Pc. Hence we
can apply Theorem 3.2 to Pe to get

I{E: x}ll{E: y}I<=IE[I{E: x and y}[,

and so

(3.9) ]{E: x}ll{f: y}l<=lfll{E: x and y}[.

Forming the double sum of (3.9) over all E, F ’ gives

I{A: x}l I{A: y}[ <--IAI I{A: x and y}[,

which is the weak .
Using the above results in the usual way one can easily obtain the weak ff, and

the proof is complete. I-]

4. The set 1 or order preserving maps. The map p h(p) is in iff h(P) <= IJI. Also
(4.1) h(p)<-op<-_lJ]/ 1-d(p) ifp P,

Hence we immediately get the next theorem.
THEOREM 4.1. We haveI iff h(P)<-lJI.
From now on we think of P and J as fixed with f . For any to 2 and S c P

we define a map zr: P/ as follows. If S= then r= to. If S we let m
max{tos: s S} and T {s S: tos m}. If there is a T with h(t) m then 7r to.

Otherwise we construct R c P by starting with R T and iterating the rule that, if
p P, r R, p < r and 1 / top tot then p must be adjoined to R. Finally r is defined
by 7rp (top) 1 if p R but 7rp top otherwise. Clearly 7r and we call r the rake
down of to over S. The rake up of to over S is defined similarly. An obvious result is:

LEMMA 4.1. In the above notation, [toS[-1 _-< [zrS[ _-<ltoSI, and if toS is an interval
then zrS is an interval.

The height function h(p) may not map a convex set onto an interval, but it is
easy to see:

LEMMA 4.2. IfD P is a down-set then h(D) [ 1, h(D)].
LEMMA 4.3. Let S, $2,’", S, be pairwise disjoint subsets of P satisfying

(4.2) s, S,, s S, s, < s, j :=> <j.
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Suppose that (n + 1) h (P) <- IJ[. Then there is an to fI satisfying both

(4.3) si Si, sj Sj, <j ==> tosi < toss,

(4.4) for 1 <- <- n if Si is convex then toSi is an interval of length h(Si).

Proof Put Uo P, Un+ and Ui above(S O Si+ [3. [3 Sn) for 1 _-< _-< n so
U+I c U, c. c Uo. For 0 <_- -< n put T Ui\ Ui+l. Then T considered as a possibly
empty poset has its own height function hi. For 1-<i_<- n we have Sic T and if S is
convex in P then S is a down-set in T and Lemma 4.2 applies. Finally define to by
top=ih(P)+h,(p) if pc T for 0-< i_-< n.

This lemma generalises a result of Mirsky [M].
LEMMA 4.4. Ifp P then p=[h(p), IJl+ 1 d(p)].
Proof Starting with the map h(p) rake up repeatedly over {p}.
LEMMA 4.5. If V P is convex, I J is an interval, j J and to then

(4.5) 1 V is an interval provided 2h(P) -< [JI,
(4.6) fl-lI is convex,

(4.7) to-lI is convex and in particular to-j is an antichain.

Proof For (4.5) use Lemmas 4.3 and 4.4.
LEMMA 4.6. Suppose that Vc P is convex, and put k h(V), m h(below V),

n-h(above V). Also suppose that m + n k <= lJI. If the interval I
1 + m- k, IJ[- n + k] has length III k then there is an to El with toV= I.

Proof Starting with the map p-> [JI + 1- d(p) rake down repeatedly over V.

5. Inequalities for order preserving maps.
LEMMA 5.1. If S P and p < q in P but not p < r < q in P then

(5.1) h(S) + IJ h( P) <= InSl,
4<-_ d(p)+ h(q) _-< 2 +IPI,

(5.3) h(p)+ d(q) <- h(P),

(5.4) h(p)+ d(p) <- 1 + h(P).

LEMMA 5.2. Ifg J then IKI <-_ In-’KI <-_ IPI if lKl < h(P) but I-I-K Potherwise.

Proof. We may assume that KI <-- n h(P) and that K {k, k2," ", k,} c J. The
result then follows because the map p--> kh<p) is in

Next we prove what Graham and Harper called normalised matching conditions
(5.5), (5.6). It is well known that each implies the other.

LEMMA 5.3. /f [PI--< IJI and S P and K J then both

(5.5) IsI IJI InsI IPI,
(5.6) IKI IPI In-1KI IJI.

Proof We prove (5.6) using Lemma 5.2. If lKl<h(P) then [KI_--<If-IKI and we
multiply this by IPI_-<I/I. If h(P)<-IKI then IPI-I-KI and we multiply this by
Igl_-<l/I.

In view of Theorem 3.6 we mention an easy consequence of Lemma 4.4.
LEMMA 5.4. Ifp<q in Pand (l’lp)f3 (flq)= then [Jl<=d(p)+h(q)-2.
In view of Theorem 3.2 we mention another triviality.
LEMMA 5.5. Suppose that P Q LJ R where Q, R are disjoint chains. If q Q, r R

and q<r then h(P)<=d(q)+h(r)-2.
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6. Completion of order preserving maps. Let S c P and Yc 7/ and $: S- Y be
order preserving. We say , extends if there is an order preserving map : P-> Y with
sos Ss for all s S. It was the concept of intricacy [B] that motivated Theorems 6.3
and 8.3.

For p < q in P we let c(p, q) be the maximum integer m for which there is a chain
P =Pl<P2<’’" <Pro q in P, so c(p, q) h({p, q}).

THEOREM 6.1. Let S P and d/: S--> 7/be order preserving. Then tp extends iff

(6.1) c(s, t) 1 + dis <-- tl, for all s < in S.

Proof. Clearly condition (6.1) is necessary for $ to extend, and it implies that $
is order preserving. So we assume that (6.1) holds. We let p be any point of P\S and
proceed to define Sp so that (6.1) still holds in S t.J p. Since P is finite repetition will
yield an extension of ,.

Case. We have s < p for some s S. Here we put

,p max {c(s, p) 1 + tps: s S, s < p}.

We must show that if p < S then

c( p, )- l + d/p <= d/t.

Now there is an r S with r < p and

bp= c(r, p)- l + ,r.
Also

c(r,p)+c(p, t)-l <-_c(r, t)<=l-d/r+ d/t,

so the required inequality follows.
Case. We have p < s for some s S but not s’ < p, s’ S. Here we put

bp=min {1-c(p,s)+s: sS,p<s}.

Case. We have pls for all s S. Here we give p any value in 7/, and the proof
of Theorem 6.1 is complete.

THEOREM 6.2. Let S P and ,: S --> J be order preserving. Then , extends to o fl

iff both (6.1) holds and

(6.2) h(s)<=d/s<-IJl+l-d(s) for all sS.

Proof. In view of (4.1) the conditions are clearly necessary. To prove the sufficiency
suppose (6.1), (6.2) hold. Take two new elements r, not in P. Define a new poser
Q P LI { r, t} by taking the existing relations of P and adding the new relations r < p <
for all p P. Similarly extend J to [0, IJI + 1]. Then define ,r 0 and fit IJI + 1. The
result now follows by applying Theorem 6.1 to Q in the obvious way. [3

THEOREM 6.3. Let S P and : S-> 7/be orderpreserving. Let k= [h(P)/2]. Then
there is a partition S S [_J S_ U [.J S such that extends from any one S.

Proof For 1 =< =< k put

P={pP:2i-l<=h(p)<=2i} and S=SfqP.

In each Si a chain has at most two vertices, so (6.1) holds, and , extends from Si by
Theorem 6.1.

Consider the example where P is [1, m] and S is the odd numbered vertices and
,(2i-1) i. This shows that the k in Theorem 6.3 cannot be reduced.
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7. The.set A of linear extensions. Here we have [PI-[JI, and our results are
numbered to contrast and correlate with those for l’l in 4. First we have

(7.1) Ibelow{p} -<_ hp <_-IPI + 1 -labove{p}l if p P, h A.

TIEOREM 7.1 (Szpilrajn 1930). We always have A .
For any h A and S c p we define a map/x: P -> 7/as follows. Put/3 max{As: s S}

with the value 0 by convention if S . If Ibelow S[ =/3 then/x h. Otherwise we put

Q {p P\below S: hp </3}.

Since Ibelow S </3 there is a unique q Q with Aq maximal. We put

R {r6below S: Aq <Ar-<fl}

and observe that qlr for all r 6 R. Finally/x is defined for this case by

/3 ifp= q,
/zp= (Ap)- ifpR,

Ap otherwise.

Clearly/x A and we call /x the push down of A over S. The push up of A over S is
defined similarly. An obvious result is:

LEMMA 7.1. In the above notation, if AS is an interval then txS is an interval
LEMMA 7.2. IfD D2 D, are down-sets ofP there is a h A such that for

all p P, 1 <-_ <-_ n we have Ap <-IDi[ iffp D.
Proof. Push down repeatedly over D1, DE,’’’, D, in any order.
LEMMA 7.3. Let S, $2,..’, S, be pairwise disjoint subsets of P satisfying

(7.2) s, S,, s St, s, < st, j :=> <j.

Then there is a h A satisfying both

(7.3) s, S,, s St, <j ==> hs < Ass,
(7.4) for 1 <-_i<= n if Si is convex then AS is an interval.

Proof For 1 -< <- n let D below(S1 [_J S [_J. LI S). Then D c D2 c" c D,
are down-sets with D f’) S for 1 _-< <j -< n. Let ho be the map of Lemma 7.2. Let
hOl be ho restricted to D. Let ho be the result of repeatedly pushing hOl up over S
in D. Notice that if S1 is convex, then S1 is an up-set in D, and hence ho2S is an
interval by the dual version of Lemma 7.2. Now define h on P to be ho on D1 and
ho elsewhere. In general we repeatedly push up h_ over S in the poser D\D_I and
the lemma follows.

LEMMA 7.4. Ifp P then Ap [Ibelow{p}l, IPI / 1 -]above{p}l].
Proof. Push up and down repeatedly over {p}.
LEMMA 7.5. If V P is convex, I J is an interval and h A then

(7.5) A V is an interval,

(7.6) A-l/is convex,

(7.7) h-lI is convex.

LEMMA 7.6. Suppose that Vc P is convex, and put k IV[, m [below V[, n
labove V[. Ifthe interval I c [1 + m k, IV[- n + k[ has length II1 k then there is a h A
with h V I.

Proof. Starting with the h of Lemma 7.3 push up and down repeatedly over V.
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8. Linear extensions from order preserving maps. This section is parallel to 6.
Again we let S c p and & S- 7/be order preserving. For R c S we define

(8.1) max R max {0r: r c R}, min R min {Or: r c R),

with the convention max min 0. The main result is:
TIaEOREM 8.1. If S P and tp: S--> 7/ is order preserving then d/ extends to an order

preserving injection iff
(8.2) I) -< max V min V+ 1 for all V S.

Proof We assume that (8.2) holds and that S P.
Case 1. There is a p c P\S for which there is no s c S with p < s. We simply let

z be such a p and choose tkz sufficiently large.
Case 2. There is a p c P\S for which there is no c S with < p. Let z be such a

p and tpz be sufficiently small.
Case 3. For every p c P\S there are s, c S with < p < s.
(After we had given a preprint of this paper to R. Aharoni he very kindly gave

us the following simpler proof of this case.)
We will use some notation. For p c P put

ap max{ ts" s c S, s <_- p}, /3p min{Os" s c S, p _-< s},

so ap <-p. Then for each p we have unique p,, p*c S with Op, ap, Op*=/3p and
p, <-p _<-p*. If p c S then p,- p*-p. Let G be the bipartite graph with parts P and
7/, where for all p c P and c 7/there is an edge (p, i) iff ap <= <- tip. Each p c S is on
exactly one edge. For any set A of vertices of G let N(A) be the set of neighbouring
vertices of A.

Now we show that if T c P then IT[-<_ IN(T) I. Since N(T)c 7/ it is a union of
disjoint intervals N(T)= I1U I2 U... U In where each Ii is maximal by inclusion in
N(T). For 1 -< _-< n put T T f’l N(Ii). Then it is easy to see that T T1 U T2 I,.J. I,.J Tn
is a partition of T. Put

W=U{{p,,p*}:pcT} and V=I.
Then W c S and T c V and

N(T) N(V) [min W, max W] Ii.

Using (8.2) we get

[Tl<=iVlmax W-min W+l =ILl.
Then summing over shows that [TI<--IN(T)[.

In the last paragraph we merely established the condition for G to have a matching
by Hall’s theorem (1935). The matching is an injective function :: P- 7/ such that
(p, sop) is an edge of G for every p c P. Thus ap <-p <-_ p for all p c P. If p c $ then
ap p tpp and there is only one edge on p in G. This shows that : on S.

For r, c P let us call the ordered pair (r, t) bad for s if r < but :t < :r. If there
is no bad pair then : is order preserving. So suppose that (r, t) is bad. Then we have

ar at <- :t < r -</3r

We define another injection :’" P- Z by :’r :t, :’t= :r but :’p :p otherwise. By
the last inequality ap <= ’p<-tip for all pc P, so :’= tp on S. Since r< we have
h(r)<h(t). So if F(:)= {(p)h(p)" pc P} then clearly F(:) < F(:’). It follows that
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using bad pairs as above, a finite number of times, will lead to a choice of sc having
no bad pairs, and hence order preserving. [3

THEOREM 8.2. Let S c p and d/: S [1, IPI] be order preserving. Then g/ extends to
h e A ifffor all V S we have (8.2) and both

[above VI =< IPI- min V+ 1,

[below V[-<max V.

Proof. Similar to that of Theorem 6.2.
THEOREM 8.3. Let S c P and : S-> 7/ be an order preserving injection. Let k

[h(P)/2]. Then there are hi, h2," ", hk e A and a partition S S1 [.J S2[_J [.J Sk such
that extends to hi from Si for any one i.

Proof. Similar to that of Theorem 6.3. l]

Problem 8.1. Find the versions of Theorems 6.1 and 8.1 for P countably infinite
and for P noncountably infinite.

9. Range posets.
THEOREM 9.1. If P Q [_J R is a partition of P then the following are equivalent:

(9.1) q e Q, r e R, q r =:> (Aq) (At) ,
f q e Q, r e R, q < r::> P (above {q}) [.J (below {r}),

(9.2)
q e Q, r e R, q > r:=> P (below {q}) I.J (above {r}),

(9.3) P is a range poset as in Definition 3.3.

Proof. Part (9.1)=:>(9.2). Suppose that q e Q, re R, q< r. We assume the worst
circumstances in which there is no p e P with q <p < r. We put U above {q}, D=
below {r} and then U fq Dl=[{q, r}[ =2. Since IPI=IQI+IRI, by Lemma 7.4 we get

PI + 2-IUI-<-IDI. On the other hand [UI +lDI-- 2 +IU tA DI--< 2 +IPI, so we have
equality throughout, and the first of the conditions in (9.2) follows. The second then
follows in turn by symmetry.

Part (9.2) =:> (9.3). For each q e Q put

U(q) R f’l above {q} and D(q) R fq below {q}.

CLAIM 9.1. If q, qe Q and either U(q)\ U(q2) or D(q2)\D(q) then
ql <q2.

Proof. Suppose that re U(ql)\ U(q2). Then q < r so by (9.2) we have q2e P
(above {ql})t.J (below {r}). Now r U(q2) so q r so q_ below {r} so q2e above {ql}
so q < q2. The rest of the claim follows in the same way.

Next we define an equivalence relation p in Q by putting qpq2 itt both U(q)=
U(q) and D(q)= D(q2). Then an immediate consequence of Claim 9.1 is:

CLAIM 9.2. If q, q2 e Q and qllq2 then qpq2.
Let Q, Q2 be different nonempty equivalence classes of p and let ql e Q, q2 e Q2.

By Claim 9.2 we have ql q2. Since Q1 Q by definition of p we have U(ql) U(q)
or D(ql) D(q). We may assume either U(q)\ U(q2) or D(qE)\D(q) . Then
Claim 9.1 shows that q < q2. If q3 e Q1 then qlpq3 so the same argument shows that
q3 q2. Hence we have proved that the equivalence classes of p are totally ordered.
In other words we have obtained Claim 9.3.

CLAIM 9.3. We can let Q1, Q2, Q,, be the equivalence classes ofp numbered so
that (3.6) holds.
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Similarly we can assume that R1, R2,’’ ", R. are equivalence classes of R num-
bered so that (3.7) holds.

To see that (3.8) holds let q<r with q e Qi, r eRj. If ql is also in Qi then
re U(q)-U(q) so ql < r.

Part (9.3)=>(9.1). Let q e Q, re Rj with q < r. In view of Lemma 7.4, if Aq [i,j]
and Ar i’, j’] then

j=IPI+ 1 labove {q}l

<--[PI+ 1-([{q}l+iQ,+ll+"" "+IQ..I+IRI+’"" +[R.I)

< Ibelow { r} i’.

Hence (Aq)f)(Ar)= and (9.1) follows.
LEMMA 9.1. We can assume that rn <-2n + 1 and n <-_ 2m + 1 in Definition 3.3.
Motivated by (9.2) we make the following conjecture
Conjecture 9.1. Let P be covered by three nonempty disjoint chains T, T2, T3.

Suppose that if p, qeP are in different chains and p<q then P=
(above {p})U (below {q}). Then there is a partition P= R U... U R, such that (3.7)
holds, and further for 1 =< i-< n, either R f)T for some j, or if p, q e R are in
different chains then plq.

If this conjecture is true then with the help of Theorem 3.2 we get a probability
result based on conditions t < t) with 1 -< <j -< 3.
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DYNAMICAL BEHAVIOUR OF NEURAL NETWORKS*

E. GOLES CH.

Abstract. We characterize the cyclic behaviour of a threshold neural network defined by an iteration

with memory. Our study is based on an algebraic approach that consists in defining an invariant associated

with the dynamic of the network.

1. Introduction. A mathematical model of neural networks proposed by E. R.
Caianello [1], [2] is represented by a set of equations

yi(t)= l [ aij(s)yj(t-s)-O,] fori=l,...,n,
j=l s=l

where yj(.) {0, 1} for j 1,. ., n and

l[u]={01 if u<0,
otherwise.

The dynamic of this model has been studied in some particular cases.
For a single neuronic equation, i.e.

y(t)= 1 [ s=l a(s)y(t-s)-O],
T. Kitagawa [4], Nagami, Kitahashi, Tanaka, Poljak [6], [7] have characterized the
dynamical behaviour of the system (convergence to stable configurations, reverberation
cycles, etc.) with a hypothesis on the coupling coefficients, a(s). The principal results
are the following"

If the coupling coefficients are all nonnegative, any initial configuration con-
verges to a stable configuration (the fixed points 0 or 1) [6].

If the coupling coefficients are all nonpositive, there exist reverberation cycles
when k

a (s) < 0 < 0. If the a(s) are nonpositive and identical, a(s) a < 0, thes=l

cycle length, T, is a divisor of k + [6].
For a neural equation that evolves in parallel, i.e., k 1 and

v,(t) 1 [ aoy(t-1)-O,], i=l,...,n,
j=l

we have proved in the symmetrical case, i.e., A (a0) symmetric, that the cycle length,
T, is one or two [3].

If A is nonsymmetric, the associated dynamic is very complicated because this
class of networks is a McCulloch-Pitts net and simulates any finite automaton [5].

In this paper we study some aspects of the dynamical behaviour of neural networks
with nontrivial memory (k > 1). Our analysis will be based on an algebraic discrete
invariant associated with the network.

2. Nonuniform coupling coefficients. Let us consider the set of neural equations

y,(t) 1 E a,(s)y(t- s)- O, for i= 1,..., n, y(.) e {0, 1}, a,j(.), 0, e I
j=l s=l
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with the hypothesis

ao(k-s/l)=aji(s) fors=l,...,k and i,j=l,...,n.

We will prove that, in such a network, the cycle length, T, is a divisor of k / 1.
Let us denote y(t)- (yl(t),"’, y,(t)). Since y(t) {0, 1)’, it is obvious that for

any initial configuration y(0),..., y(k-1) the iteration on the neural network is
ultimately periodic; that is to say, there exist r, T and vectors y(r), , y(r / T- 1)
such that

yi(m)= 1 _, ao(s)y(m-s)-O for m r,. ., r+ r-1 and i= 1,. ., n
j=l s=l

where the indexes are taken modulo T.
We can then associate with any cell of the network the cycle-vector"

x (x,(0),..., x,(T- 1)) (y,(r),...,y,(r+ T- 1)).
Algebraic invariant. Let E be the operator

E(x,,xj)= x(t) ai(k-s+l)x(t+s)- ao(s)x(t-s for i, j=l,...,n,
t--0 s=l s=l

where the indexes are taken modulo T.
Properties of E.
1. E(x,, x)+E(x, x,)=0 for i,j= 1,..., n.

Proof We have

E(x,,x)=- xj(t) ao(s)x,(t+s)- ao(k-s+l)x,(t-s
t=0 s=l s=l

Since aj(s)=a(k-s+ 1), a(k-s+ 1) a(s); hence E(x,x)=-E(x,x).
2. Let y the period of the vector xi. Then, ify . k / 1, then:

E(xi, xj)=O for anyj= l, n.

Proof Since T is the period of the network, we have T-fly and by hypothesis
k + 1 Oy.

Let C, be the set

C,={m,m+y,m+2y,,..., m+(fl- 1)y}, m=0,..., y,-1.

Since T fly, we have

y,--1 { k k

E(x,,x)= , Z xi(t) ao(k-s+l)x(t+s)- ao(s)x(t-s)
m=O tCm s=l s=l

Let M(i,j, m) be

M(i,j,m)= . x,(t) ao(k-s+l)x(t+s)- 2 ao(s)xj(t-s)
tCm s=l s=l

Since y is the period of vector x
x(t) x(t + qy) for any q

hence

k

M(i,j,m)=x,(m) Y ao(s) Y, {x(t+k+l-s)-xg(t-s)}.
S=I tC
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Since k + 1

M(i,j, m)=xi(m) ao(s) xj(m+(t+O)y-s)- , x(m+ty-s)
s=l t=O

Since T is the period of the network and T =/3y, it is easy to see that

/3-1 /3-1

E x(m+(t+O)yi-s)= E x(m+ty,-s);
=0 =0

hence M(i,j, m)=O. Then E(xi, x)=’-1.-o M(i,j, m)=O.
3. If / .r k + 1, then Yg= E x, x < O.
Before proving this property let us denote

sup (x,)={t{0,’’’, T- 1}/x,(t)= 1},
pand let {Ci }m--0 be the partition of sup (x) defined as follows:

Let C,.= {t/{t+(k+ 1), t+2(k+ 1), , t-(k+ 1)}_ sup (x,). In particular C=, if (k+ 1)" T.
Let C Cp the maximal subsets of sup (x)\C O having the formi"

C’=(t., t.+(k+ 1),’", t.+q.(k+l))

for m=l,. .,p.
Example. k 3 with T y 16.

0 2 3 4 5 6 7 8 9 10 11 12 13

xi 0 0 0 0

14 15

0

Let

Clearly

C,- {1, 2, 5, 6, 9, 10, 13, 14}, C ={3, 7, 11}.

Proof ofproperty 3. From the partition introduced above we have"

E(x,,x)= v , xi(t) ai(k-s+l)x(t+s)- ao(s)xj(t-s).
j=l j=l m=0 tEC s=l s=l

R(i,j, m)= E xi(t) E ai(k-s+l)x(t+s)- ai(s)x(t-s)
tECT’ s=l s=l

k

R(i,j, m)= Z a(s) Z (xj(t+k-s+l)-x(t-s)).
s=l tC’

From definition of C, it is easy to see that R(i,j, O)=0. Since y4" k + 1, we have at
least C ; hence

k qm
R(i,j, m)= ’. a,(s) Z (x(t.+(k+l)t+k+l-s)-xj(t.+(k+l)t-s)).

s=l t=O

Then

k

R(i,j, m)= Z aj(s)(x(t.+(k+ l)(q.+ l)-s)-x(tm-S));
s=l
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hence

R(i,j, m)= . ao(s)xj(t,+(k+l)(qm+l)-s)- ao(s)x(tm-s).
j=l j=l s=l j=l s=l

Since xi(t +(k+ 1)(qm + 1)) =0, xi(t,) 1 and by definition of the neuronic equation

k., a(s)x(t,,+(k+l)(q,+l)-s)<O,
j=l s=l

aij(S)Xj(tm--S) >
j=l s=l

it follows that

hence

R(i,j, m)<0,
j=l

P

E(x,,x)= R(i,j, m)<0.
j=l j=l m=O

The properties above can be summarized as follows:
THEOREM 1. If we have:

ao(k-s+l)=ai(s fori, j=l,. .,n and s=l," ",k

then, for any initial configuration y(0), , y(k- 1) e {0, 1}" the neural network converges
towards a cycle of length T, such that T[k + 1.

Proof. If T is not a divisor of k+ 1, there exists at least one index e {1,..., n}
such that yi- k + 1; hence from propeies 2 and 3 we conclude

i=lj=l

and from property 1

E(x, x2)=0,
i=lj=l

which is a contradiction. Therefore T
Comments. If k 1 and A (ai) is a symmetric matrix, we have the two-cycle

behaviour studied in the context of nonuniform cellular automata [3].
As a particular case of the preceding result we can consider the case of uniform

coupling coefficients with a nonconnected memory structure, i.e., a set of neural
equations

y,(t)=l a,j Z x(t-ps)-O,
j=l s=l

where (ao) is a symmetric matrix and the memory steps Pl > P2 >’’" > Pk => 1 verify

(H) Pl + P2r P2 + P2r-1 Pr + Pr+l if k 2r,
pl+P2r_l=P2+P2r_2 Pr_l+Pr+l’-2pr if k=2r-1.

It is easy to see that this system is equivalent to the following"

yi(t)=l[ ao(s)xj(t-s)-O]
j=l s=l
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where

0 ifs{pl,...,pk},
a(s) 0 otherwise,

and q Pl + Pk 1.
Furthermore, from hypothesis (H) and A being a symmetric matrix, we have:

ao(q-s+l)=aj(s) fors=l,...,q.

Then we have the corollary:
COROLLARY. If hypothesis (H) holds, then for any initial configuration

y(0),..., y(pl-1){0, 1}", the neural network converges towards a cycle of length T,
such that Tip +pk.

Proof Directly from the previous comment. [3

Remark. We can also prove this corollary by introducing a particular algebraic
invariant. With the notation above, let us define

E(x,,x)=ao x,(t) E xj(t+ps)- x(t-ps)
t=0 s=l s=l

for i,j=l,.. .,n.

From hypothesis (H) and the symmetrical property of A it is easy to prove that E
verifies properties 1, 2, 3; hence Tip +Pk. [-]

3. Some remarks on a single neuronic equation. In the particular case of a single
neuronic equation, i.e.,

y(t)=l[=l a(s)y(t-s)-O],
we generalize to nonconnected memory structure the result of Nagami [6], obtaining
it as a particular case of Theorem 1; i.e.

Ifa(s)=aO fors=l,...,k, then Tl(k+l ).
Furthermore, we can interpret the single neuronic equation with memory of length

k as a directed graph with one threshold cell and k- 1 transfer cells which only transmit
their binary input. For instance, if we have k=4 and a(s)-a for s= 1,2,3, 4, the
associated graph is:

a

[]: threshold cell

(C): transfer cell

where

y(t)=l[a y(t-1)-O],
j=l

y( t) yj_( -1), j=2, 3,4.
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The preceding remarks show that our analysis can be considered as a first step towards
the study ofthe dynamical behaviour ofnonsymmetric threshold networks, i.e., directed
graphs where each node is a threshold cell.

A first problem to study should be the cyclic behaviour of arbitrary directed
networks of order n consisting of one threshold cell and n- 1 transfer cells.

Finally, the approach introduced here seems to be the appropriate tool for this
study because it takes into account both the structure of the network and the iteration
scheme in an algebraic fashion.
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